
Finding eigenvalues and eigenfunctions of the
Zaremba problem for the circle

Ari Laptev, Anastasiya Peicheva and Alexander Shlapunov

Abstract. We consider Zaremba type boundary value problem for the
Laplace operator in the unit circle on the complex plane. Using the
theorem on the exponential representation for solutions to equations
with constant coefficients we indicate a way to find eigenvalues of the
problem and to construct its eigenfunctions.

Mathematics Subject Classification (2010). 47A10; 35J57; 30B60.

Keywords. Sturm-Liouville problems, Robin condition, eigenvalues.

1. Introduction

The spectral theory gives powerful tools to investigate operator equations
(see, for instance, [10], [7], [9]). The classical Hilbert space approach helps to
handle both selfadjoint and non-selfadjoint problems in (weighted) Sobolev
type spaces over different types of domains (smooth domains, Lipschitz do-
mains, domains with conical and edges singularities etc.), see, for instance,
[5], [6], [2], [12], [3], [4], [8], [22] and many others. Recently the approach was
adopted to a wide class of non-coercive mixed boundary problems, see [19],
[20].

Apart from the theory, the problem is to find the corresponding eigen-
values and to construct the eigenfunctions. The use of the Fourier method
of separation of variables have lead to nice examples in classical PDE’s (see
for example [23, Suppl. II, P. 1, §2] for the coercive or [19] for non-coercive
problems). However it does not work in many cases even for mixed problems
for the Laplace equation, cf. the example for the Zaremba problem (i.e. a
Robin type boundary problem with the Dirichlet condition on a part S of
the boundary ∂D of the domain D in the Euclidean space and the Neumann
condition on the complement of S on ∂D, see [25]).

In the present paper, using the theorem on the exponential representa-
tion for solutions to equations with constant coefficients (see [15, Introduc-
tion, p. 19]), we indicate a way to present the eigenfunctions of the (generally,
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non-coercive) Zaremba type problem via an (infinite) sums of the Bessel func-
tions in the unit circle on the complex plane. On this way we produce also
a criterion for identifying the corresponding eigenvalues. We emphasize that
unlike to the Dirichlet problem (or to the Neumann problem) it is impossible
to compute corresponding eigenvectors as finite sums of the Bessel functions.

2. The Zaremba type problem for the unit disk

Let R2 be the real plane with the coordinates x = (x1, x2) and C be the
complex plane with the complex structure given by

z = x1 + ix2, z̄ = x1 − ix2
where i =

√
−1 is the imaginary unit. Let also

∆ =
∂2

∂x21
+

∂2

∂x22

be the Laplace operator in R2 ∼= C.
Let D be the unit disk in C. We consider complex-valued functions

defined in D and its closure D. Let S be an (relatively) open connected
subset of ∂D and let a0, b0, b1, b2 be non-negative numbers with b1 + b2 = 2.

Consider the following (generally, non-coercive, which we explain below)
Zaremba type mixed boundary value problem for the Laplace operator in D.
Given a distribution f in D, find a distribution u in D which satisfies −∆u+ a0u = f in D,

u = 0 on S,
Bu = 0 on ∂D \ S.

(2.1)

where the boundary operator B is defined as

Bu = b0u+ b1z∂ + b2z∂.

Of course, the case S = ∂D corresponds to the Dirichlet problem for
the Laplace operator in the disk D.

Zaremba [25] studied similar problem in the space of smooth functions
over a smooth domain D of the Euclidean space R3 with S 6= ∅, ∂D \ S 6= ∅,
and B being the (exterior) normal derivative with respect to ∂D, i.e.

Bu =
∂u

∂ν
= ν1

∂u

∂x1
+ ν2

∂u

∂x2
+ ν3

∂u

∂x3

(here ν = (ν1, ν2, ν3) is the unit normal vector with respect to ∂D) which
corresponds to b0 = 0, b1 = b2 = 1 in our case of the unit disk on the complex
plane.

To specify the functional space for solutions to (2.1) we use the standard
method of Hermitian forms. Namely, one usually defines a Hermitian form
h(·, ·) on a suitable space Hilbert H and reformulates (2.1) in the following
way: given f in the dual H ′ for the space H, find u ∈ H satisfying

h(u, v) = 〈f, v〉 for all v ∈ H (2.2)
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where 〈·, ·〉 is a pairing between H and H ′. Recall that a Hermitian form
h(u, v) is called coercive on a Hilbert space H if

h(u, u) ≥ ‖u‖2H for all u ∈ H

with a constant c > 0 independent on u. Typically, if the form h(·, ·) is not
coercive then a loss of regularity is expected for solutions of the problem
induced by the form. In this case the problem (2.2) is called non-coercive.
However, in many situations one may successfully use non-coercive forms to
study boundary value problems (see, for instance, [11], [19], [20]). We follow
these examples.

With this purpose, let ∂̄ stand for the Cauchy-Riemann operator, cor-
responding to the complex structure, i.e.

∂ =
1

2

( ∂

∂x1
+ i

∂

∂x2

)
.

The formal adjoint ∂̄∗ of ∂̄ is the operator

−1

2

( ∂

∂x1
− i ∂

∂x2

)
=: −∂.

An easy computation shows that ∂̄∗∂̄ just amounts to the −1/4 multiple of
the Laplace operator in the real plane R2 with the coordinates x = (x1, x2).

As usual, we write L2(D) for the space of all the measurable functions u
in D, such that the integral of |u|2 over D is finite. For functions u ∈ C1(D)
we introduce the norm

‖u‖H1(D) =
(∫
D

n∑
j=1

|∂ju|2 dx+

∫
D
|u|2 dx

)1/2
,

where ∂j = ∂
∂xj

. The completion of the space C1(D) with respect to this

norm is the Sobolev space H1(D). It is known that H1(D) is a Hilbert space
with inner product

(u, v)H1(D) =

∫
D

n∑
j=1

∂ju∂jv dx,

for u, v ∈ H1(D).
Consider the Hermitian form

(u, v)+ = a0(u, v)L2(D)+2 b1(∂u, ∂v)L2(D)+2 b2(∂u, ∂v)L2(D)+b0(u, v)L2(∂D\S).

Clearly, the Hermitian form (u, v)+ is coherent with the functional

‖u‖+ =
(
a0‖u‖2L2(D) + 2b1‖∂u‖2L2(D) + 2b2‖∂u‖2L2(D) + b0‖u‖2L2(∂D\S)

)1/2
on H1(D). Let H1(D, S) be the closed subspace in H1(D) consisting of func-
tions vanishing on S. If the functional defines a norm on H1(D, S), we de-
note by H+(D) the completion of H1(D, S) with respect to this norm. Then
H+(D) is actually a Hilbert space with inner product (u, v)+.
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By the definition, each element of the space H+(D) has a well defined
trace on ∂D belonging to L2(∂D); in particular, by the elliptic regularity the
functions from H+(D) belong to H1

loc(D ∪ S) and equal to zero on S.
Let us assume that H+(D) is continuously embedded to L2(D). If we

denote by H−(D) the dual to the space H+(D) and by 〈·, ·〉 the pairing
induced by the inner product in L2(D) then, using integration by parts and
the fact that

4∂∂ = 4∂∂ = ∆,

(z∂u, v)L2(∂D\S) = 2(∂u, ∂v)L2(D) + 1/2(∆u, v)L2(D),

(z̄∂u, v)L2(∂D\S) = 2(∂u, ∂v)L2(D) + 1/2(∆u, v)L2(D)

for all u, v ∈ H2(D)∩H1(D, S), we see that the Zaremba type mixed bound-
ary value problem for the Laplace operator in D reads as follows.

Problem 2.1. Given f ∈ H−(D), find u ∈ H+(D) which satisfies

(u, v)+ = 〈f, v〉 for all v ∈ H+(D). (2.3)

Then the Riesz Theorem on the general form for continuous linear func-
tionals on Hilbert spaces provides a unique solution u ∈ H+(D) to the Prob-
lem 2.1 for each f ∈ H−(D) ”orthogonal” to the null space of the problem
with respect to the pairing 〈·, ·〉, see, for instance, [13, Ch. 4] and elsewhere.
According to the Uniqueness Theorem for the Cauchy problem for solutions
to elliptic systems ([18, Theorem 2.8]), the null-space of the problem equals
to zero if S 6= ∅. Actually, to look on the eigenfunctions and the eigenvalues
of Problem 2.1, it is convenient to consider the bounded linear continuously
invertible operator L : H+(D)→ H−(D), induced by (2.3).

Example 2.2. If b1 > 0 and b2 > 0, then one easily conclude that the norm
‖·‖+ is equivalent to the standard norm ‖·‖H1(D) on H1(D, S) and the space

H+(D) coincides withH1(D, S), see, for instance, [13, Ch. 4]. This means that
the form (·, ·)+ is coercive and Problem 2.1 satisfies the Shapiro-Lopatinsky
conditions on ∂D \ S and hence its solutions belong to C∞(D \ ∂S)∩H1(D)
for any f ∈ C∞(D). In particular, the Problem 2.1 is Fredholm and its in-
dex equals to zero. Moreover, its spectrum is discrete, the eigenvalues are
non-negative (and even λ ≥ a0) and the corresponding eigenvectors form or-
thogonal bases in the spaces H+(D), H−(D) and L2(D) (see, for instance, [13,
Ch. 4] and elsewhere). Actually, these are the eigenvectors of the linear com-
pact self-adjoint operators ι∗ιL−1 : H−(D) → H−(D), L−1ι∗ι : H+(D) →
H+(D), and ιL−1ι∗ : L2(D) → L2(D) where ι : H+(D) → L2(D) is the
natural embedding and ι∗ : L2(D) → H−(D) is the adjoint operator for ι,
see, for instance, [19, Lemma 3.1].

Example 2.3. If b0 > 0 and one of the numbers bj > 0, j = 1, 2, is positive,
then the norm ‖ · ‖+ is not weaker than the standard norm ‖ · ‖H1/2(D) on

H1(D, S) and the space H+(D) is continuously embedded to the Sobolev-
Slobodetskii space H1/2(D, S), see [19, Theorem 2.5]. The example con-
structed in [19, Remark 5.1] shows that the embedding is sharp if b1 = 0
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and thus the form (·, ·)+ is not coercive in this case. On the other hand, if
b1 = 0 then Problem 2.1 is a boundary value problem with the so-called ∂-
Neumann boundary condition. Thus combining [19, Theorem 2.5] and results
of [11] we conclude that its solutions belong to C∞(D\∂S)∩H1/2(D) for any
f ∈ C∞(D). Again, the Problem 2.1 is Fredholm, its index equals to zero, its
spectrum is discrete, the eigenvalues are non-negative (and even λ ≥ a0) and
the corresponding eigenvectors form orthogonal bases in the spaces H+(D),
H−(D) and L2(D) (see, for instance, [19, Lemma 3.1]).

Example 2.4. If S = ∅, a0 > 0 and b0 = b1 = 0 then the null space of Problem
2.1 equals to the space of the holomorphic functions of the class L2(D) and
hence in this case the Problem 2.1 is not Fredholm.

In the next sections we will be concentrated on finding the eigenvalues
and the eigenfunctions for Problem 2.1. Since the spectrum of the Dirichlet
problem is well known, we will consider the case where S 6= ∂D only. We will
pay almost no attention to the non-Fredholm case b0 = b1 · b2 = 0.

3. Applying the Fourier method

Consider the mixed problem −∆u+ a0u = λu in D,
u = 0 on S,

Bu = 0 on ∂D \ S,
(3.1)

in the space H+(D), i.e.

2b1(∂u, ∂v)L2(D) + 2b2(∂u, ∂v)L2(D) + b0(u, v)L2(∂D\S) = (λ− a0)(u, v)L2(D)

(3.2)
for all v ∈ H1(D, S).

As we have already noted, we have to study the case a0 ≤ λ ∈ R only.
Since the Helmholtz operator (−∆+a0−λ) is elliptic, we see that the solutions
to (3.1) belongs to C∞(D ∪ S). Moreover, according to Petrovskii Theorem
they are real analytic in D. The results by C. B. Morrey and L. Nirenberg
[14] imply that the solutions also extends analytically in a neighbourhood of
any compact K from the (relative) interior of S on ∂D. However the points
of ∂S ⊂ ∂D can be singular for the solutions to (3.1).

Let

Jp(z) =

∞∑
k=0

(−1)k

22k+p
z2k+p

k! (k + p)!
, J−p(z) = (−1)pJp(z), z ∈ C, p ∈ Z+,

be the Bessel functions, see, for example, [24, §2.11].

For the coercive case the following proposition is well known, see [23,
Suppl. II, P. 1, §2].
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Proposition 3.1. Let S = ∅ and b20 + (b1 · b2)2 6= 0. Then the complete system
of solutions to (3.1) in the space H+(D) consists of functions of the form

up(r, ϕ) = gp(r) exp [ipϕ] = exp [ipϕ]up(z) = (z/|z|)pJp(|z|
√
λp − a0), p ∈ Z,

(3.3)
where the corresponding eigenvalue λp is a root of the function

Gp(λ) = (b0 − pb2)Jp(
√
λ− a0) +

√
λ− a0 Jp−1(

√
λ− a0). (3.4)

Proof. We may apply the Fourier method of separation of variables. Actually,
the matter is quite similar to the coercive mixed problem for the Laplace
operator in the ball (see [23, Suppl. II, P. 1, §2]).

To this end, we pass to the polar coordinates{
x1 = r cosϕ,
x2 = r sinϕ,

where ϕ ∈ [0, 2π] are coordinates on the unit circle ∂D in C. The Laplace
operator ∆ in the spherical coordinates takes the form

∆ =
1

r2

((
r
∂

∂r

)2
+

∂2

∂ϕ2

)
. (3.5)

On the other hand, in the unit disk we have

∂

∂ν
= r

∂

∂r
, z∂ =

1

2

(
r
∂

∂r
+ i

∂

∂ϕ

)
, z∂ =

1

2

(
r
∂

∂r
− i ∂

∂ϕ

)
. (3.6)

It follows from (3.6) that

Bu = b0u+
b2 − b1

2
i
∂u

∂ϕ
+ r

∂u

∂r
.

As usual, to solve the homogeneous equation (−∆ + a0 − λ)u = 0,
we write u(r, ϕ) = g(r)h(ϕ), obtaining two separate equations for g and h.
Namely, (

−
(
r
∂

∂r

)2
+ (a0 − λ)r2

)
g = c g,

−∂
2h

∂ϕ2
= c h,

c being an arbitrary constant.
The second equation has non-zero solutions if and only if c is an eigen-

value of (− ∂2

∂ϕ2 ). These are well known to be c = p2, for p = Z (see, for in-

stance, [23, Suppl. II, P. 1, §2]). The corresponding eigenfunctions of (− ∂2

∂ϕ2 )

are the complex exponents

hp(ϕ) = exp [ipϕ].

Clearly,

hp =

{
zp|∂D if p ∈ Z+,

zp|∂D if −p ∈ Z+.
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It follows from (3.6) that

Bu = hp(ϕ)

(
(2b0 + (b1 − b2)p)g(r)

2
+ rg′(r)

)
.

Fix p ∈ Z and consider the following Sturm-Liouville Problem for ordi-
nary differential equation with respect to the variable r, 0 < r < 1 (see, for
instance, [23, Suppl. II, P. 1, §2]),(

− 1

r2

(
r
∂

∂r

)2
+
p2

r2

)
gp(r) = (λ− a0) gp(r), (3.7)

g′p(1)+
(2b0 + (b1 − b2)p

2

)
gp(1) = 0 and gp(r) is bounded at the point r = 0.

(3.8)
Actually, if λ ∈ R then (3.7) is a version of the Bessel equation, and its

(real-valued) solution g(r) can be expressed via the Bessel function Jp while
the space of all the solutions is two-dimensional, see, for instance, [23, Suppl.
II, P. 1, §2]. For example, if λ = a0 then gp(r) = arp + br−p with arbitrary
constants a and b is the general solution to (3.7). In the general case the
space of solutions to (3.7) contains a one-dimensional subspace of functions
bounded at the point r = 0, cf. [23, Suppl. II, P. 1, §2]. More precisely,

gp(r) = Jp(r
√
λ− a0).

For p ∈ Z, fix a non-trivial solution gp(r) to (3.7), (3.8) corresponding
to an eigenvalue λp. It is known that the system {gp}p∈Z form an orthogonal
basis in the space L2([0, 1], r) with the weight r. Then the function up =
gp(r) exp [ipϕ] satisfies

(−∆ + (a0 − λp))up = 0 on C, (3.9)

Bup = 0 on ∂D. (3.10)

Indeed, by (3.5), (3.6), (3.7) and the discussion above we conclude that this
equality holds in C \ {0}. We now use the fact that up is bounded at the
origin to see that (3.9) holds. On the other hand, (3.10) follows from (3.6)
immediately. Then up is given by (3.3). The corresponding eigenvalue λp is
the root of the function

Gp(λ) =
√
λ− a0 J ′p(

√
λ− a0) +

(2b0 + (b1 − b2)p

2

)
Jp(
√
λ− a0).

By the famous differential relations (see, for instance, [24, §2.12] or [1, 9.1.27])

J ′p(r) = Jp−1(r)− p

r
Jp(r)

and hence Gp is given by (3.4).
As usual, the completeness of the system {up}p∈Z in the space L2(D)

follows from the Fubini theorem. Indeed, since the system {exp [ipϕ]}p∈Z
is an orthogonal basis in the space L2([0, 2π]) and the system {gp(r)}p∈Z
form an orthogonal basis in the space L2([0, 1], r), the familiar arguments
show that the system {gp(r) exp [ipϕ]}p∈Z is an orthogonal basis in the space
L2([0, 2π]× [0, 1]) = L2(D). �
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Remark 3.2. We emphasize that the scheme works even in the cases where
we can not guarantee a compact embedding in H+(D) ↪→ L2(D). Indeed,
if S = ∅, a0 > 0, b0 = b1 = 0 then the embedding H+(D) ↪→ L2(D) is
continuous. It can not be compact because the space H+(D) contains the
space of holomorhic L2(D)-functions. However, using the problem (3.7), (3.8)
for the Bessel equation, we can construct a basis in L2(D), consisting of
eigenfunctions of the corresponding Zaremba problem. Note that if λ = a0
then all the holomorphic monomials {zp}p∈Z+ are eigenvectors corresponding
to this eigenvalue with infinite multiplicity.

Proposition 3.3. Let the (relative) interiors of the sets S and ∂D \ S on ∂D
be not empty. If either a0 > 0 or b0 > 0 then solutions to (3.2), belonging to
the space H+(D), can not be presented as finite sums of the type

u(r, ϕ) =

N∑
k=1

cke
ipkϕJpk(r

√
λ− a0) (3.11)

with some numbers N ∈ N, pk ∈ Z and ck ∈ C.

Proof. Equation (3.2) implies that the solution u, corresponding to λ = a0,
is a solution to elliptic system

b1∂u = b2∂u = 0 in D
If either a0 > 0 or b0 > 0 then u ∈ L2(D) and hence it has a finite order
of growth near ∂D. Since u vanishes on S in the weak sense, the Uniqueness
Theorem for the Cauchy problem for elliptic equations, see, for instance, [18,
Theorem 2.8], implies that u ≡ 0 in D.

Fix λ > a0. Assume that u is presented in the form (3.11). Then

−∆u = λu in D.
Applying the boundary operator on ∂D \ S we obtain

N∑
k=1

cke
ipkϕ

(
(2b0 + (b1 − b2)pk)

2
Jpk(

√
λ− a0) +

√
λ− a0J ′pk(

√
λ− a0)

)
= 0.

Since any finite system {eipkϕ}Nk=1 is linearly independent on any interval
(α, β) ⊂ [0, 2π], we see that(

(2b0 + (b1 − b2)pk)

2
Jpk(

√
λ− a0) +

√
λ− a0J ′pk(

√
λ− a0)

)
= 0

for all 1 ≤ k ≤ N and hence Bu = 0 on the whole boundary ∂D.
Since u should also vanish on S, we see that again the Uniqueness The-

orem for the Cauchy problem for elliptic equations, see, for instance, [18,
Theorem 2.8], implies that u ≡ 0 in D. �

This proposition means that, for S 6= ∅, S 6= ∂D, we should look for the
eigenfunctions in the form

u(r, ϕ) =

∞∑
k=1

cke
ipkϕJpk(r

√
λ− a0) (3.12)
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with some numbers pk ∈ Z and ck ∈ C or even

u(r, ϕ) =

∫ +∞

−∞
eipϕJp(r

√
λ− a0)dµ(p)

with some measure dµ on R.
The last formula suggests us to use the theorem on the exponential

representation of solutions to partial differential equations with constant co-
efficients (see [15, Introduction, p. 19]) instead of the method of separation
of variables.

4. Applying the theorem on the exponential representation

From now on we set a0 = 0, because a non-zero a0 produces a shift of the
spectrum only.

Applying the Fourier transform we see that the characteristic manifold
of the Helmholtz operator (−∆− λ), λ ≥ 0, coincides with the circle

N = {y ∈ R2 : y21 + y22 = λ} = {ζ ∈ C : |ζ|2 = λ},

where ζ = y1 + iy2.
By the definition and [19, Theorem 2.5], if b20 + (b1 · b2)2 6= 0 then each

element of the space H+(D) has a well defined trace on ∂D belonging to
L2(∂D). In particular, the solutions to (3.1) in the spaces H+(D) are smooth
functions in the disk D having a finite order of growth near ∂D, see [18].

Then the theorem on the exponential representation of solutions to par-
tial differential equations with constant coefficients [15, Introduction and Ch.
VI, §4, theorem 1] suggests us to look for the solution to (3.1) in the following
form

u(x) =

∫
y21+y

2
2=λ

exp[i(x1y1 + x2y2)] dµ(y), λ > 0.

where dµ(y) is a (not uniquely defined, in general) complex measure onN , i.e.
dµ ∈ C ′(N ), where C ′(N ) is the dual to the Banach space C(N ) of continuous
functions on N . After a complexification we get a slightly different form:

u(z) =

∫
|ζ|=1

exp[
√
−λ(zζ̄ + z̄ζ)/2] dµ(ζ), λ > 0. (4.1)

Since the solutions (3.1) in the spaces H+(D) are smooth functions on
the disk D having a finite order of growth near ∂D, we conclude that the
traces (or, more precisely, weak boundary values) of Bu are also well defined
in the space of distributions on ∂D, see [18, Theorem 2.6]. In particular, since
u|∂D\S ∈ L2(∂D \ S) we conclude that b1z∂u+ b2z̄∂u belongs to L2(∂D \ S)

for any solution to (3.1) belonging to H+(D).
Since u ∈ L2(S) and Bu ∈ L2(∂D\S) we may look for a measure dµ(ζ)

such that u presented by (4.1) has traces of u and (weak boundary values of)
Bu vanishing on S and (∂D \ S), respectively, as elements of the Lebesgue
spaces L2(S) and L2(∂D \ S).
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With this purpose, we assume that

S = {z ∈ C : |z| = 1, α < arg(z) < 2π},

with a number α, 0 < α ≤ 2π (α = 2π corresponds to the case S = ∅). Then
the system {z2pπ/(2π−α)}p∈Z is an orthogonal basis in L2(S) if 0 < α < 2π.
Hence

∂D \ S = {z ∈ C : |z| = 1, 0 ≤ arg(z) ≤ α}

and the system {z2pπ/α}p∈Z is an orthogonal basis in L2(∂D \ S).

Now a function u of the form (4.1) is a solution to (3.1), belonging to
H+(D), if and only if for all p ∈ Z we have∫

S

u(z)z−2pπ/(2π−α)
dz

z
= 0, (4.2)

∫
∂D\S

(Bu)(z)z−2pπ/α
dz

z
= 0, (4.3)

where

Bu(z) =

∫
|ζ|=1

(
b0 +

√
−λb1zζ̄

2
+

√
−λb2z̄ζ

2

)
exp[
√
−λ(zζ̄ + z̄ζ)/2] dµ(ζ).

(4.4)

Since

exp[z + z̄] =

∞∑
m=0

m∑
j=0

zj z̄m−j

j! (m− j)!
, (4.5)

equalities (4.2) and (4.3) are true for all p ∈ Z if and only if for all p ∈ Z we
have∫

S

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m m∑
j=0

zj−2pπ/(2π−α)z̄m−j ζ̄jζm−j

j! (m− j)!
dµ(ζ)

dz

z
= 0, (4.6)

b0

∫
∂D\S

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m m∑
j=0

zj−2pπ/αz̄m−j ζ̄jζm−j

j! (m− j)!
dµ(ζ)

dz

z
+

b1

∫
∂D\S

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 m∑
j=0

zj+1−2pπ/αz̄m−j ζ̄j+1ζm−j

j! (m− j)!
dµ(ζ)

dz

z
+

b2

∫
∂D\S

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 m∑
j=0

zj−2pπ/αz̄m−j+1ζ̄jζm−j+1

j! (m− j)!
dµ(ζ)

dz

z
= 0.

(4.7)

Recall that∫
β1≤arg(z)≤β2

zpz̄q
dz

z
=

{
i(β2 − β1), p = q,
exp[iβ2(p−q)]−exp[iβ1(p−q)]

p−q , p 6= q.
(4.8)



Finding eigenvalues and eigenfunctions of the Zaremba problem 11

Hence, using (4.8) we see that (4.2) is true for all p ∈ Z if and only if
for all p ∈ Z we have

0 =

∫
|ζ|=1

∑
m
2

+
pπ

2π−α∈Z+
0≤m

2
+

pπ
2π−α≤m

(√
−λ
2

)m
(2π − α)i ζ

−2pπ
2π−α dµ(ζ)

(m2 −
pπ

2π−α )! (m2 + pπ
2π−α )!

+

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m ∑
0≤j≤m

2j− 2pπ
2π−α 6=m

K(1)
m,j(p, α)

ζ̄jζm−jdµ(ζ)

j! (m− j)!
, (4.9)

where

K(1)
m,j(p, α) =

exp[i 2π (2j − 2pπ
2π−α −m)]− exp[i α (2j − 2pπ

2π−α −m)]

2j − 2pπ
2π−α −m

.

Similarly, using (4.7) and (4.8) we see that (4.3) is true for all p ∈ Z if
and only if for all p ∈ Z we have

0 = b0

∫
|ζ|=1

∑
m
2

+
pπ
α
∈Z+

0≤m
2

+
pπ
α
≤m

(√
−λ
2

)m
αi ζ

−2pπ
α dµ(ζ)

(m2 −
pπ
α )! (m2 + pπ

α )!
+

b0

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m ∑
0≤j≤m

2j− 2pπ
α
6=m

K(2)
m,j(p, α)

ζ̄jζm−jdµ(ζ)

j! (m− j)!
+

b1

∫
|ζ|=1

∑
m−1

2
+
pπ
α
∈Z+

0≤m−1
2

+
pπ
α
≤m

(√
−λ
2

)m+1
αi ζ

−2pπ
α dµ(ζ)

(m2 −
1
2 + pπ

α )! (m2 + 1
2 −

pπ
α )!

+

b1

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 ∑
0≤j≤m

2j− 2pπ
α
6=m−1

K(2)
m−1,j(p, α)

ζ̄j+1ζm−jdµ(ζ)

j! (m− j)!
+

b2

∫
|ζ|=1

∑
m+1

2
+
pπ
α
∈Z+

0≤m+1
2

+
pπ
α
≤m

(√
−λ
2

)m+1
αi ζ−

2pπ
α dµ(ζ)

(m+1
2 + pπ

α )! (m−12 − pπ
α )!

+

b2

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 ∑
0≤j≤m

2j− 2pπ
α
6=m+1

K(2)
m+1,j(p, α)

ζ̄jζm−j+1dµ(ζ)

j! (m− j)!
, (4.10)

where

K(2)
m,j(p, α) =

exp[iα(2j − 2pπ
α −m)]− 1

2j − 2pπ
α −m

.

The relations (4.9) and (4.10) seem to be rather bulky. However we may
simplify them describing properly the space of measures on ∂D. Indeed, it is
well-known that the space of measures on ∂D is topologically isomorphic to
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the space C ′(∂D) dual to the space C(∂D) of continuous functions on ∂D.
Let us give another description of the dual space.

With this purpose we note that the Banach space C(∂D) can be iden-

tified with the space C̃[0, 2π] of continuous functions on the segment [0, 2π]
with equal values an the ends of the segment:

C̃[0, 2π] = {u ∈ C[0, 2π] : u(0) = u(2π)}.
In particular, the Fourier series∑

q∈Z
(u, ζq)L2(∂D)ζ

q

converges uniformly on ∂D (to u) for each u ∈ C(∂D) and

‖u‖C(∂D) = max
|ζ|=1

∣∣∣∑
q∈Z

(u, ζq)L2(∂D)ζ
q
∣∣∣.

Consider the (linear) space of the formal series

C(∂D) =

d =
∑
q∈Z

dqζ
q dζ

2πiζ
, |ζ| = 1


where {dq} is chosen in such a way that the functional

‖d‖− = sup
v∈C(∂D)
v 6=0

∣∣∣∑q∈Z(v, ζq)L2(∂D)dq

∣∣∣
‖v‖C(∂D)

(4.11)

is finite. If ‖d‖− = 0 then (having in mind v = zp) we see that

0 ≤
∣∣∣∑
q∈Z

(ζp, ζq)L2(∂D)dq‖ζp‖−1C(∂D)

∣∣∣ = 2π|dp| ≤ ‖d‖− = 0

for all p ∈ Z and thus dp = 0 for all p ∈ Z, too. Hence the functional is a
norm on C(∂D). It is easy to see that C(∂D) is a Banach space with the norm
‖ · ‖−.

Now we may define the pairing between the spaces C(∂D) and C(∂D).
Namely, we set

〈v, d〉 =
∑
q∈Z

(v, ζq)L2(∂D)dq (4.12)

for each v ∈ C(∂D) and d ∈ C(∂D). According the definition of the space
C(∂D) we have

|〈v, d〉| ≤ ‖v‖C(∂D) ‖d‖− (4.13)

for all v ∈ C(∂D) and d ∈ C(∂D).

Lemma 4.1. The dual space C ′(∂D) is topologically isomorphic to the space
C(∂D).

That is, for every fixed d ∈ C(∂D), pairing (4.12) defines a continuous
linear functional fd on C(∂D) and, for each f ∈ C ′(∂D), there is a unique
d ∈ C(∂D) with f(v) = fd(v) for all v ∈ C(∂D). Moreover, the linear map
d 7→ fd is an isometry.
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Proof. Cf. [17, Lemma 3.3] for the Sobolev spaces. It follows from (4.13) that
for every fixed d ∈ C(∂D), the formula

fd(v) := 〈v, d〉, v ∈ C(∂D),

defines a continuous linear functional fd on C(∂D), such that

‖fd‖C′(∂D) ≤ ‖d‖−.

Moreover, by the very definition of the norm ‖ · ‖−,

‖fd‖C′(∂D) = sup
v∈C(∂D)
v 6=0

∣∣∣∑q∈Z(v, ζq)L2(∂D)dq

∣∣∣
‖v‖C(∂D)

= ‖d‖−.

It remains to show that any continuous linear functional f on C(∂D)
has the form f(v) = 〈v, df 〉 for some df ∈ C(∂D). According to the Riesz
theorem, for any f ∈ C ′(∂D) there is a measure dµ supported on ∂D such
that

f(v) =

∫
∂D

v(ζ) dµ(ζ) for all v ∈ C(∂D).

As we have noted above, for each v ∈ C(∂D) we have

v =
∑
q∈Z

(v, ζq)L2(∂D)ζ
q,

where the Fourier series converges uniformly on ∂D. Hence

f(v) =
∑
q∈Z

(v, ζq)L2(∂D)dq,

where

dq =

∫
∂D

ζq dµ(ζ).

Finally, since the functional f is continuous,

‖f‖C′(∂D) = sup
v∈C(∂D)
v 6=0

∣∣∣∑q∈Z(v, ζq)L2(∂D)dq

∣∣∣
‖v‖C(∂D)

= ‖d‖−;

in particular, the norm ‖d‖− is finite. �

Thus we arrive at the following statement (cf. (3.12) above).

Lemma 4.2. Any eigenfunction of Problem 2.1 in the disk D, corresponding
to an eigenvalue λ, has the form

u(z) =
∑
q∈Z

(z/|z|)q Jq(|z|
√
λ) dq(λ) (4.14)

with some coefficients {dq(λ)}q∈Z, satisfying ‖d(λ)‖− <∞. Moreover, if the
(relative) interiors of the sets S and ∂D \ S are not empty, then the number
of non-zero coefficients dq(λ) in the sum can not be finite.
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Proof. It follows from (4.5) that∫
∂D

exp[
√
−λ(zζ̄ + z̄ζ)/2] ζq

dζ

2πiζ
=

∫
|ζ=1|

∞∑
m=0

(
|z|
√
−λ

2

)m m∑
j=0

(z/|z|)2j−mζm−2j+q

j! (m− j)!
dζ

2πiζ
=

∑
(m+q)/2∈Z

0≤(m+q)/2≤m

(
|z|
√
−λ

2

)m
(z/|z|)q(

m+q
2

)
!
(
m−q
2

)
!
.

If q ≥ 0 then m ≥ q and we substitute (m− q)/2 = k:∑
(m+q)/2∈Z

0≤(m+q)/2≤m

(
|z|
√
−λ
2

)m
1(

m+q
2

)
!
(
m−q
2

)
!

=
∑
k≥0

(
|z|
√
−λ

2

)2k+q
1

k! (k + q)!
=

(√
−1
)q Jq(|z|√λ).

If q < 0 then m ≥ −q and we substitute (m+ q)/2 = k:∑
(m+q)/2∈Z

0≤(m+q)/2≤m

(
|z|
√
−λ
2

)m
1(

m+q
2

)
!
(
m−q
2

)
!

=
∑
k≥0

(
|z|
√
−λ

2

)2k+|q|
1

k! (k + |q|)!
=

(√
−1
)|q| J−q(|z|√λ) =

(√
−1
)−q

(−1)qJq(|z|
√
λ) =

(√
−1
)q Jq(|z|√λ).

Hence formula (4.14) from Lemma 4.2 holds.
In particular, if |z| = 1, we obtain the Laurent decomposition for the

holomorphic function exp[
√
−λ(ζ−1 + ζ)/2] in C \ {0}:

exp[
√
−λ(ζ−1 + ζ)/2] =

∑
q∈Z

(√
−1
)q Jq(√λ)ζ−q (4.15)

(this equality also follows from [1, 9.44 and 9.45]).
Finally, the statement on the finite set of non-zero coefficients dq follows

from Proposition 3.3. �

Now let us indicate at least two examples where the expressions (4.9)
and (4.10) can be analysed with the use of Lemma 4.1.

Example 4.3. Let S = ∅, i.e. α = 2π, cf. Proposition 3.1. Then (4.2) is
fulfilled automatically and we need to check (4.3) only. On the other hand,
for all m, j, p ∈ Z+, 2j − p−m 6= 0 we have

K(2)
m,j(p, 2π) =

exp[i2π(2j − p−m)]− 1

2j − p−m
= 0.

Then (4.3) is true for all p ∈ Z if and only if for all p ∈ Z we have

0 = b0

∫
|ζ|=1

∑
0≤m+p≤2m
m+p

2
∈Z+

(√
−λ
2

)m
2πi ζ−p dµ(ζ)

(m−p2 )! (m+p
2 )!

+
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b1

∫
|ζ|=1

∑
0≤m−1+p≤2m
m−1+p

2
∈Z+

(√
−λ
2

)m+1
2πi ζ−p dµ(ζ)

(m−1+p2 )! (m+1−p
2 )!

+

b2

∫
|ζ|=1

∑
0≤m+1+p≤2m
m+1+p

2
∈Z+

(√
−λ
2

)m+1
2πi ζ−p dµ(ζ)

(m+1+p
2 )! (m−1−p2 )!

.

Substituting the summation indexes ((m + p)/2 = k in the first sum, (m −
1 + p)/2 = k in the second sum and (m+ 1 + p)/2 = k in the third sum), we
see that this is equivalent to the following: for all p ∈ Z

0 = b0

∫
|ζ|=1

∞∑
k=(|p|+p)/2

(√
−λ
2

)2k−p
ζ−p dµ(ζ)

k! (k − p)!
+

b1

∫
|ζ|=1

∞∑
k=(|p−1|+p−1)/2

(√
−λ
2

)2k−p+2
ζ−p dµ(ζ)

k! (k − p+ 1)!
+

b2

∫
|ζ|=1

∞∑
k=(|p+1|+p+1)/2

(√
−λ
2

)2k−p
ζ−p dµ(ζ)

k! (k − p− 1)!
. (4.16)

If p < 0 then

∞∑
k=(|p|+p)/2

(√
−λ
2

)2k−p
1

k! (k − p)!
=

∞∑
k=0

(√
−λ
2

)2k−p
1

k! (k − p)!
=

(√
−1
)|p| J|p|(√λ) =

(√
−1
)|p|

(−1)pJp(
√
λ) =

(√
−1
)p Jp(√λ). (4.17)

If p ≥ 0 then after re-indexation n = k − p we obtain

∞∑
k=(|p|+p)/2

(√
−λ
2

)2k−p
1

k! (k − p)!
=

∞∑
n=0

(√
−λ
2

)2n+p
1

n! (n+ p)!
=
(√
−1
)p Jp(√λ). (4.18)

Similarly,

∞∑
k=(|p−1|+p−1)/2

(√
−λ
2

)2k−(p−1)+1
1

k! (k − p+ 1)!
=
(√
−1
)p√

λJp−1(
√
λ)/2,

(4.19)
∞∑

k=(|p+1|+p+1)/2

(√
−λ
2

)2k−(p+1)+1
ζ−p dµ(ζ)

k! (k − p− 1)!
=
(√
−1
)p√

λJp+1(
√
λ)/2.

(4.20)
Since b1 + b2 = 2, using (4.16)–(4.20) and the famous relation (see, for

instance, [1, 9.1.27])

Jp+1(r) + Jp−1(r) = 2pJp(r)/r (4.21)



16 Ari Laptev, Anastasiya Peicheva and Alexander Shlapunov

we see that (4.3) is true for all p ∈ Z if and only if for all p ∈ Z we have

[(b0 − pb2)Jp(
√
λ) +

√
λJp−1(

√
λ)]

∫
|ζ|=1

ζ−pdµ(ζ) = 0. (4.22)

Now using Lemma 4.1 and (4.8) we conclude that for a measure dµ ∈
C(∂D) equality (4.3) is true for all p ∈ Z if and only if for all p ∈ Z we have

[(b0 − pb2)Jp(
√
λ) +

√
λJp−1(

√
λ)]dp = 0. (4.23)

Clearly, the infinite system of linear equations (4.23) has a non-zero solution
d ∈ C(∂D) if and only if

Gq(λ) = (b0 − qb2)Jp(
√
λ) +

√
λJp−1(

√
λ) = 0

for some q ∈ Z. In this case as a solution we may take the measure

dµq(ζ) =
ζq

2π(i)p+1

dζ

ζ
, q ∈ Z

and the corresponding eigenvalues are the roots of the function Gq(λ). In
particular, the corresponding eigenfunctions are given as follows

uq(z) =

∫
|ζ|=1

exp[
√
−λ(zζ̄ + z̄ζ)/2]

ζq

2π(i)q+1

dζ

ζ
=

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m m∑
j=0

zj z̄m−jζm−j+q ζ̄j

j! (m− j)!2π(i)q+1

dζ

ζ
=

∞∑
m=0

(√
−λ
2

)m
z(m+q)/2z̄(m−q)/2

(i)q
(
m+q
2

)
!
(
m−q
2

)
!

= (z/|z|)qJq(|z|
√
λ).

Thus we arrive at the results identical to that of Proposition 3.1.

Lemma 4.4. Let S be the lower semicircle and b0 + (b1 · b2)2 6= 0. Then

1. formula (4.2) is true for all p ∈ Z if and only if for all p ∈ Z we have∫
|ζ|=1

ζ−2p
(
π(−1)pJ2p(

√
λ)− 2F (1)

p (ζ, λ)
)
dµ(ζ) = 0, (4.24)

where

F (1)
p (ζ, λ) =

√
λ

2

∞∑
k=0

(√
−λ
2

)2k 2k+1∑
j=0

ζ2k+1−2j+2p

(2k + 1− 2j + 2p)j! (2k + 1− j)!

is a primitive for the holomorphic in C \ {0}) function

f (1)p (ζ, λ) = ζ2p−1 sin
(√

λ(ζ + 1/ζ)/2
)

; (4.25)

2. formula (4.3) is true for all p ∈ Z if and only if for all p ∈ Z we have∫
|ζ|=1

ζ−2p
(
π (−1)

p
[(2(b0 − pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)]
)
dµ(ζ) +

√
λ

∫
|ζ|=1

ζ−2p
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

)
dµ(ζ) = 0, (4.26)
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where

F (2)
p (ζ, λ) =

∞∑
k=0

(√
−λ
2

)2k 2k∑
j=0

ζ2k+1−2j+2p

(2k + 1− 2j + 2p)j! (2k − j)!

is a primitive for the holomorphic in C \ {0}) function

f (2)p (ζ, λ) = ζ2p
√
λ cos

(√
λ(ζ + 1/ζ)/2

)
. (4.27)

Proof. If S is the lower semicircle then α = π. Then λ > 0,
m

2
+

pπ

2π − α
=
m

2
+ p

and

K(1)
m,j(p, π) =

exp[i2π(2j − 2p−m)]− exp[iπ(2j − 2pπ −m)]

2j − 2p−m
={

0, if m is even,
2

2j−2p−m if m is odd.

Hence, arguing as in Example 4.3 we see that (4.2) is true for all p ∈ Z
if and only if for all p ∈ Z we have

0 =

∞∑
k=0

(√
−λ
2

)2k−2p
πi

k! (k − 2p)!

∫
|ζ|=1

ζ−2p dµ(ζ)−

2

∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k+1 2k+1∑
j=0

1

2k + 1− 2j + 2p

ζ2k+1−2jdµ(ζ)

j! (2k + 1− j)!
=

i

[
(−1)

p
πJ2p(λ)

∫
|ζ|=1

ζ−2p dµ(ζ)−

∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k 2k+1∑
j=0

√
λ

2k + 1− 2j + 2p

ζ2k+1−2jdµ(ζ)

j! (2k + 1− j)!

 . (4.28)

It follows from (4.28) that (4.2) is true for all p ∈ Z if and only if for all
p ∈ Z we have (4.24). Now consider the function

sin
(√

λ(ζ + 1/ζ)/2
)

=

∞∑
k=0

(−1)k[
√
λ(ζ + 1/ζ)/2]2k+1

(2k + 1)!

holomorphic everywhere except the origin. Using the binomial formula one
easily obtains that

ζ2p−1 sin
(√

λ(ζ + 1/ζ)/2
)

=

√
λ

2

∞∑
k=0

(√
−λ
2

)2k 2k+1∑
j=0

ζ2k−2j+2p

j! (2k + 1− j)!

is holomorphic everywhere except the origin, too. Since (2k − 2j + 2p) never
equals to (−1), we see that the integral∫

γ

ζ2p−1 sin
(√

λ(ζ + 1/ζ)/2
)
dζ = 0
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for any simple closed curve γ ⊂ C \ {0}. Hence (see, for instance, [21, Ch

2, §9, corollary 3] the function f
(1)
p (ζ, λ), given by (4.25), admits a primitive

F
(1)
p (ζ, λ) in C \ {0}.

On the other hand,

K(2)
m,j(p, π) =

exp[iπ(2j − 2p−m)]− 1

2j − 2p−m
={

0, if m is even,
2

m−2j+2p if m is odd.

Hence (4.3) is true for all p ∈ Z if and only if for all p ∈ Z we have

0 = b0
∑

m
2

+p∈Z+
0≤m

2
+p≤m

πi

(m2 − p)! (m2 + p)!

(√
−λ
2

)m ∫
|ζ|=1

ζ−2p dµ(ζ) +

b0

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m ∑
0≤j≤m
m/26∈Z

2

m− 2j + 2p

ζm−2jdµ(ζ)

j! (m− j)!
+

b1

∫
|ζ|=1

∑
m−1

2
+p∈Z+

0≤m−1
2

+p≤m

(√
−λ
2

)m+1
πi ζ−2p dµ(ζ)

(m2 −
1
2 + p)! (m2 + 1

2 − p)!
+

b1

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 ∑
0≤j≤m
m/2∈Z

2

m− 1− 2j + 2p

ζ̄j+1ζm−jdµ(ζ)

j! (m− j)!
+

b2

∫
|ζ|=1

∑
m+1

2
+p∈Z+

0≤m+1
2

+p≤m

(√
−λ
2

)m+1
πi ζ−2p dµ(ζ)

(m+1
2 + p)! (m−12 − p)!

+

b2

∫
|ζ|=1

∞∑
m=0

(√
−λ
2

)m+1 ∑
0≤j≤m
m/2∈Z

2

m+ 1− 2j + 2p

ζ̄jζm−j+1dµ(ζ)

j! (m− j)!
(4.29)

Using results of Example 4.3 and the calculations we have already done in
the first part of the proof, we see that (4.29) reduces to the following: for all
p ∈ Z we have∫
|ζ|=1

ζ−2p
(
π (−1)

p
[(b0 − 2pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)] + 2b0F

(1)
p (ζ, λ)

)
dµ(ζ) +

b1
√
λ

∞∑
k=0

(√
−λ
2

)2k 2k∑
j=0

1

2k − 1− 2j + 2p

ζ2k−2j−1dµ(ζ)

j! (2k − j)!
+

b2
√
λ

∞∑
k=0

(√
−λ
2

)2k 2k∑
j=0

1

2k + 1− 2j + 2p

ζ2k−2j+1dµ(ζ)

j! (2k − j)!
= 0. (4.30)
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Thus, using (4.30) we see that (4.3) is true for all p ∈ Z if and only if
for all p ∈ Z we have∫
|ζ|=1

ζ−2p
(
π (−1)

p
[(b0 − 2pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)] + 2b0F

(1)
p (ζ, λ)

)
dµ(ζ) +

√
λ

∫
|ζ|=1

ζ−2p
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

)
dµ(ζ) = 0. (4.31)

Taking into account (4.24), we finally conclude that (4.3) is true for all p ∈ Z
if and only if for all p ∈ Z we have (4.26). It is not difficult to see that

F
(2)
p (ζ, λ) is a primitive for the holomorphic function (4.27) in C \ {0}. �

Clearly, the integrands in formulas (4.24) and (4.26), i.e. the functions

F (1)
p (ζ, λ) = π(−1)pJ2p(

√
λ)− 2F (1)

p (ζ, λ), (4.32)

F (2)
p (ζ, λ) = π (−1)

p
[(2(b0 − pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)]+ (4.33)

√
λ
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

)
are primitives in C \ {0} for the holomorphic function (−2 f

(1)
p (ζ, λ)), given

by (4.25) and for the holomorphic function

f̃ (2)p (ζ, λ) = ζ2p−1
√
λ(b2ζ + b1ζ

−1) cos
(√

λ(ζ + 1/ζ)/2
)
,

respectively. Now let us simplify (4.24) and (4.26) with the use of Lemmata
4.1, 4.4 and formula (4.8).

Lemma 4.5. The measure dµ = dµ(λ) ∈ C(∂D) satisfies (4.2) and (4.3) if
and only if for any p ∈ Z we have

(−1)pπJ2p(
√
λ)d2p(λ) + 2

∑
q∈Z

(−1)q J2q−1(
√
λ)

2p+ 1− 2q
d2q−1(λ) = 0, (4.34)

π(−1)p
(

2(b0 − pb2)J2p(
√
λ) +

√
λJ2p−1(

√
λ)
)
d2p(λ) +

∑
q∈Z

(
b1J2q−2(

√
λ)

2p+ 1− 2q
− b2J2q(

√
λ)

2p+ 1− 2q

)
(−1)q−1d2q−1(λ) = 0. (4.35)

Proof. Indeed, (4.8) yields

(2π)−1(ζ−2pF (1)
p (ζ, λ), ζ−2q)L2(∂D) =∫

|ζ|=1

ζ2q−2p
(

(−1)pπJ2p(
√
λ)− 2F (1)

p (ζ, λ)
) dζ

2πiζ
=

(−1)pπJ2p(
√
λ)

∫
|ζ|=1

ζ2q−2p
dζ

2πiζ
−

∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k 2k+1∑
j=0

√
λ ζ2k+1−2j+2qdζ

2πiζ(2k + 1− 2j + 2p)j! (2k + 1− j)!
=
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{
0, p 6= q,

(−1)pπJ2p(
√
λ), p = q.

because 2k + 1− 2j + 2q 6= 0. Similarly,

(2π)−1 (ζ−2pF (2)
p (ζ, λ), ζ−2q)L2(∂D) =∫

|ζ|=1

ζ2q−2p
(
π (−1)

p
[(2(b0 − pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)]
) dζ

2πiζ
+

√
λ

∫
|ζ|=1

ζ2q−2p
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

) dζ

2πiζ
={

0, p 6= q,

π (−1)
p

[(2(b0 − pb2)J2p(
√
λ) +

√
λJ2p−1(

√
λ)], p = q.

Besides, using (4.8) we obtain

(2π)−1(ζ−2pF (1)
p (ζ, λ), ζ1−2q)L2(∂D) =∫

|ζ|=1

ζ2q−1−2p
(

(−1)pπJ2p(
√
λ)− 2F (1)

p (ζ, λ)
) dζ

2πiζ
=

−
∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k 2k+1∑
j=0

√
λ

2k + 1− 2j + 2p

ζ2k+1−2j+2q−1 dζ

2πi ζ j! (2k + 1− j)!
=

−
∑
k≥0

0≤k+q≤2k+1

(√
−λ
2

)2k √
λ

2p+ 1− 2q

1

(k + q)! (k − q + 1)!
.

If q ≥ 1 then k ≥ q−1 and, substituting the indexes m = k−q+1, we obtain∫
|ζ|=1

ζ2q−1−2p
(

(−1)pπJ2p(
√
λ)− 2F (1)

p (ζ, λ)
) dζ

2πiζ
=

−2

2p+ 1− 2q

∞∑
m=0

(√
λ

2

)2m+2q−1
(−1)m+q−1

(m+ 2q − 1)!m!
=

2(−1)q J2q−1(
√
λ)

2p+ 1− 2q
.

If q ≤ 0 then k ≥ −q and, substituting the indexes m = k + q, we obtain∫
|ζ|=1

ζ2q−1−2p
(

(−1)pπJ2p(
√
λ)− 2F (1)

p (ζ, λ)
) dζ

2πiζ
=

−2

2p+ 1− 2q

∞∑
m=0

(√
λ

2

)2m−2q+1
(−1)m−q

m! (m+ 1− 2q)!
=

2(−1)1−q J1−2q(
√
λ)

2p+ 1− 2q
=

2(−1)q J2q−1(
√
λ)

2p+ 1− 2q
.

In particular,

ζ−2pF (1)
p (ζ, λ) = −

∑
q∈Z

(−1)q J2q−1(
√
λ) ζ1−2q

2p+ 1− 2q
. (4.36)

Similarly,

(2π)−1(ζ−2pF (2)
p (ζ, λ), ζ1−2q)L2(∂D)
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|ζ|=1

ζ2q−2p−1
(
π (−1)

p
[(2(b0 − pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)]
) dζ

2πiζ
+

√
λ

∫
|ζ|=1

ζ2q−2p−1
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

) dζ

2πiζ
=

√
λ

∫
|ζ|=1

ζ2q−2p−1
(
b1F

(2)
p−1(ζ, λ) + b2F

(2)
p (ζ, λ)

) dζ

2πiζ
,∫

|ζ|=1

ζ2q−2p−1 F (2)
p (ζ, λ)

dζ

2πiζ
=

∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k 2k∑
j=0

1

2k + 1− 2j + 2p

ζ2k−2j+1+2q−1dζ

2πiζ j! (2k − j)!
=

∑
k≥0

0≤k+q≤2k

(√
−λ
2

)2k
1

2p+ 1− 2q

1

(k + q)! (k − q)!
.

If q ≤ 0 then k ≥ −q and, substituting the indexes m = k + q, we obtain∫
|ζ|=1

ζ2q−2p−1 F (2)
p (ζ, λ)

dζ

2πiζ
=

1

2p+ 1− 2q

∞∑
m=0

(√
−λ
2

)2m−2q
1

m! (m− 2q)!

=
(−1)q J−2q(

√
λ)

(2p+ 1− 2q)
=

(−1)q J2q(
√
λ)

(2p+ 1− 2q)
.

If q ≥ 1 then k ≥ q, and substituting the indexes m = k − q, we obtain∫
|ζ|=1

ζ2q−2p−1 F (2)
p (ζ, λ)

dζ

2πiζ
=

1

2p+ 1− 2q

∞∑
m=0

(√
−λ
2

)2m+2q
1

(m+ 2q)!m!
=

(−1)q J2q(
√
λ)

(2p+ 1− 2q).

In particular,

ζ−2pF (2)
p (ζ, λ) =

∑
q∈Z

(−1)q J2q(
√
λ) ζ1−2q

2p+ 1− 2q
. (4.37)

Again, by the same arguments, since the non-zero summand correspond
to 2j = 2k + 2q − 2, ∫

|ζ|=1

ζ2q−2p−1 F
(2)
p−1(ζ, λ)

dζ

2πiζ
=

∫
|ζ|=1

∞∑
k=0

(√
−λ
2

)2k 2k∑
j=0

1

2k − 1− 2j + 2p

ζ2k−2j−1+2q−1dζ

2πiζ j! (2k − j)!
=

∞∑
k≥0

0≤k+q−1≤2k

(√
−λ
2

)2k
1

2p+ 1− 2q

1

(k + q − 1)! (k − q + 1)!
=
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(−1)q−1 J2q−2(
√
λ)

(2p+ 1− 2q)
.

Finally, (4.2) and (4.3) follow from (4.24) and (4.26) and the form of
the measure dµ(λ) ∈ C(∂D). �

It is clear now that the infinite system of linear equations (4.34), (4.35)
is an analogue of the infinite system of linear equations (4.23) obtained in
Example 4.3 for the case S = ∅.

Set now

γp,q = γp,q(λ) = α(1)
p (λ)β(2)

p,q(λ)− α(2)
p (λ)β(1)

p,q(λ),

where

α(1)
p = α(1)

p (λ) = π(−1)pJ2p(
√
λ),

α(2)
p = α(2)

p (λ) = π(−1)p
(

2(b0 − pb2)J2p(
√
λ) +

√
λJ2p−1(

√
λ)
)
,

β(1)
p,q = β(1)

p,q(λ) =
2(−1)q J2q−1(

√
λ)

2p+ 1− 2q
=

β
(1)
q,q (λ)

2p+ 1− 2q
, (4.38)

β(2)
p,q = β(2)

p,q(λ) =
(
b2J2q(

√
λ)− b1J2q−2(

√
λ)
) (−1)q

2p+ 1− 2q
=

β
(2)
q,q (λ)

2p+ 1− 2q
.

(4.39)
We fix the order of the coefficients dq, q ∈ Z, as follows:

DT = (d−1, d0, d1 d2 d−3, d−2 . . . d2p−1, d2p, d−2p−1, d−2p . . . ), p ∈ N.

Then (4.34) and (4.35) correspond to the infinite system of equations

A(λ)D = 0 (4.40)

with an infinite ”matrix” A(λ):

β
(1)
0,0(λ) α

(1)
0 (λ) β

(1)
0,1(λ) 0 β

(1)
0,−1(λ) 0 β

(1)
0,2(λ) . . .

β
(2)
0,0(λ) α

(2)
0 (λ) β

(2)
0,1(λ) 0 β

(2)
0,−1(λ) 0 β

(2)
0,2(λ) . . .

β
(1)
1,0(λ) 0 β

(1)
1,1(λ) α

(1)
1 (λ) β

(1)
1,−1(λ) 0 β

(1)
1,2(λ) . . .

β
(2)
1,0(λ) 0 β

(2)
1,1(λ) α

(2)
1 (λ) β

(2)
1,−1(λ) 0 β

(2)
1,2(λ) . . .

β
(1)
−1,0(λ) 0 β

(1)
−1,1(λ) 0 β

(1)
−1,−1(λ) α

(1)
−1(λ) β

(1)
−1,2(λ) . . .

β
(2)
−1,0(λ) 0 β

(2)
−1,1(λ) 0 β

(2)
−1,−1(λ) α

(2)
−1(λ) β

(2)
−1,2(λ) . . .

β
(1)
2,0(λ) 0 β

(1)
2,1(λ) 0 β

(1)
2,−1(λ) 0 β

(1)
2,2(λ) . . .

β
(2)
2,0(λ) 0 β

(2)
2,1(λ) 0 β

(2)
2,−1(λ) 0 β

(2)
2,2(λ) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .


and the set of the coefficients {dq} having the finite norm ‖d‖−.

First, we note that for any fixed p ∈ Z the numbers α
(1)
p (λ) and α

(2)
p (λ)

can not vanish simultaneously because of the Siegel theorem on common
zeroes of the Bessel functions (see [24, pp. 484-485]).
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Then (meaning that for each p ∈ Z there is ip = 1 or ip = 2 such that

α
(ip)
p (λ) 6= 0) we obtain an equivalent infinite system of linear equations

Ã(λ)D = 0

where

Ã(λ) =



β
(i0)
0,0

α
(i0)
0

1
β
(i0)
0,1

α
(i0)
0

0
β
(i0)
0,−1

α
(i0)
0

0
β
(i0)
0,2

α
(i0)
0

0 . . .

γ0,0 0 γ0,1 0 γ0,−1 0 γ0,2 0 . . .
β
(i1)
1,0

α
(i1)
0

0
β
(i1)
1,1

α
(i1)
0

1
β
(i1)
1,−1

α
(i1)
0

0
β
(i1)
1,2

α
(i1)
0

0 . . .

γ1,0 0 γ1,1 0 γ1,−1 0 γ1,2 0 . . .
β
(i−1)

−1,0

α
(i−1)

0

0
β
(i−1)

−1,1

α
(i−1)

0

0
β
(i−1)

−1,−1

α
(i−1)

0

1
β
(i−1)

−1,2

α
(i−1)

0

0 . . .

γ−1,0 0 γ−1,1 0 γ−1,−1 0 γ−1,2 0 . . .
β
(i2)
2,0

α
(i2)
0

0
β
(i2)
2,1

α
(i2)
0

0
β
(i2)
2,−1

α
(i2)
0

0
β
(i2)
2,2

α
(i2)
0

1 . . .

γ2,0 0 γ2,1 0 γ2,−1 0 γ2,2 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .


Thus we arrive at the following theorem.

Theorem 4.6. Let the (relative) interiors of the sets S and ∂D \ S on ∂D be
not empty. If b20 + (b1 · b2)2 = 0 then a number λ > 0 is an eigenvalue of
Zaremba problem (3.2) with a0 = 0 if and only if there is a non-zero vector
D = D(λ) with the coefficients {dq(λ)} having the finite norm ‖d(λ)‖− such
that its non-zero odd part

DT
odd(λ) = (d−1(λ), d1(λ) d−3(λ), . . . d2p−1(λ), d−2p−1(λ), . . . ), p ∈ N,

satisfies

Ãodd(λ)Dodd(λ) = 0, (4.41)

where

Ãodd(λ) =



γ0,0(λ) γ0,1(λ) γ0,−1(λ) . . . γ0,p(λ) γ0,−p(λ) . . .
γ1,0(λ) γ1,1(λ) γ1,−1(λ) . . . γ1,p(λ) γ1,−p(λ) . . .
γ−1,0(λ) γ−1,1(λ) γ−1,−1(λ) . . . γ−1,p(λ) γ−1,−p(λ) . . .
. . . . . . . . . . . . . . . . . . . . .

γp,0(λ) γp,1(λ) γp,−1(λ) . . . γp,p(λ) γp,−p(λ) . . .
γ−p,0(λ) γ−p,1(λ) γ−p,−1(λ) . . . γ−p,p(λ) γ−p,−p(λ) . . .
. . . . . . . . . . . . . . . . . . . . .


.

Besides the corresponding measure dµ(λ) ∈ C(∂D) can not have finite number
of the non-zero coefficients dq(λ).

On the other hand, as we have seen above, the Siegel theorem on the
common zeroes of the Bessel functions sets some restrictions on the simulta-
neous vanishing of the determinants γp,q(λ)
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A disadvantage of Theorem 4.6 is that we need to control the growth of
the coefficients {dq(λ)}. However we can improve the situation using Hahn-
Banach Theorem.

As usual, we split any function v ∈ C(∂D) into the sum of the odd and
even parts:

v(ζ) = vodd(ζ) + veven(ζ),

where

vodd(ζ) = [v(ζ)− v(−ζ)]/2, veven(ζ) = [v(ζ) + v(−ζ)]/2.

Since vodd, veven ∈ C(∂D), the corresponding Fourier series converge uni-
formly on ∂D:

v(ζ) =
∑
p∈Z

(v, ζp)L2(∂D)ζ
p,

veven(ζ) =
∑
p∈Z

(v, ζ2p)L2(∂D)ζ
2p, vodd(ζ) =

∑
p∈Z

(v, ζ2p−1)L2(∂D)ζ
2p−1.

In particular, the space C(∂D) splits on the direct sum

C(∂D) = Codd(∂D)⊕ Ceven(∂D)

with the continuous natural projectors.

Corollary 4.7. Let the (relative) interiors of the sets S and ∂D \ S on ∂D be
not empty. If b20 + (b1 · b2)2 = 0 then the following conditions are equivalent:

1) a number λ > 0 is an eigenvalue of Zaremba problem (3.2) with a0 = 0;

2) the system {ζ−2pF (1)
p (ζ, λ), ζ−2pF (2)

p (ζ, λ)}p∈Z, where functions F (1)
p (ζ, λ)

and F (2)
p (ζ, λ) are given by (4.32) and (4.33), respectively, is not com-

plete in C(∂D);
3) the system{

Φp(ζ, λ) = ζ−2p
(
α(1)
p (λ)F (2)

p (ζ, λ)− α(2)
p (λ)F (1)

p (ζ, λ)
)}

p∈Z
(4.42)

is not complete in Codd(∂D).

Proof. The equivalence of conditions 1) and 2) of the corollary follows from
Hahn-Banach Theorem and formulae (4.24), (4.26).

To prove the equivalence of conditions 2) and 3) we note that any mea-
sure dµ ∈ C(∂D) splits naturally as

dµ = dµeven + dµodd

with

dµeven =
∑
p∈Z

d2pζ
2p, dµodd =

∑
p∈Z

d2p−1ζ
2p,

dµodd = dµ|Codd(∂D), dµeven = dµ|Ceven(∂D).

As we have seen in the proof of Lemma 4.5, for each p ∈ Z there is

jp = 1 or jp = 2 such α
(jp)
p (λ) 6= 0. Hence the linear span of the system
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{ζ−2pF (1)
p (ζ, λ), ζ−2pF (2)

p (ζ, λ)}p∈Z coincides with the linear span of the sys-
tem{
ζ−2pF (jp)

p (ζ, λ)/α(jp)
p (λ), ζ−2p

(
α(2)
p (λ)F (1)

p (ζ, λ)− α(1)
p (λ)F (2)

p (ζ, λ)
)}

p∈Z
.

Now, following the calculations of Lemma 4.5, we see that

ζ−2pF (j)
p (ζ, λ) = ζ2pα(j)

p (λ) +
∑
q∈Z

β(j)
p,q(λ)ζ1−2q

and therefore

Φp(ζ, λ) = ζ−2p
(
α(1)
p (λ)F (2)

p (ζ, λ)− α(2)
p (λ)F (1)

p (ζ, λ)
)

=
∑
q∈Z

γp,q(λ)ζ1−2q.

(4.43)
By the very definition the elements of the system (4.42) belong to Codd(∂D).
Hence Theorem 4.6 means that the number λ is an eigenvalue of Zaremba
problem (3.2) with a0 = 0; if and only if there is non-zero measure dµ ∈ C(∂D)
with the non-zero odd part dµodd such that∫

∂D
ζ−2p

(
α(1)
p (λ)F (2)

p (ζ, λ)− α(2)
p (λ)F (1)

p (ζ, λ)
)
dµodd(ζ) = 0

for all p ∈ Z. Finally, applying Hahn-Banach Theorem we conclude that this
statement is equivalent to the condition 3) of the corollary. �

According to Theorem 4.6 a number λ > 0 is an eigenvalue of Zaremba
problem (3.2) with a0 = 0 if and only if there is d ∈ C(∂D) such that∑

p∈Z

(∑
q∈Z

γp,q(λ)d2q−1

)
z1−2p = 0 for all z ∈ C \ {0}. (4.44)

On the other hand, the functions Φp(ζ, λ) are holomorphic in C \ {0}. Hence
their Laurent series converge uniformly with respect to ζ on any compact
in C \ {0}. Thus, since the sequence {γp,q(λ)}q∈Z consists of the Laurent
coefficients of the function Φp(ζ, λ) (see (4.43)), we may change the order in
(4.44) and obtain the equivalence of (4.44) and the following equality∑

q∈Z
d2q−1

(∑
p∈Z

γp,q(λ)z1−2p
)

= 0 for all z ∈ C \ {0}. (4.45)

Since

α(1)
p (λ)β(2)

p,q(λ) = π(−1)q
(
b2J2q(

√
λ)− b1J2q−2(

√
λ)
) (−1)pJ2p(

√
λ)

2p+ 1− 2q
=

−π(−1)q
(
b2J2q(

√
λ)− b1J2q−2(

√
λ)
) (−1)pJ2p(

√
λ)

2(q − 1) + 1− 2p
,

formula (4.37) implies that∑
p∈Z

α(1)
p (λ)β(2)

p,q(λ)z1−2p =

π(−1)q+1
(
b2J2q(

√
λ)− b1J2q−2(

√
λ)
)
z−2(q−1)F

(2)
q−1(z, λ) =
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−πβ(2)
q,qz

−2(q−1)F
(2)
q−1(z, λ).

Similarly, since

α
(2)
p (λ)β

(1)
p,q(λ)

2π(−1)q J2q−1(
√
λ)

=
(−1)p

(
(2(b0 − pb2)J2p(

√
λ) +

√
λJ2p−1(

√
λ)
)

2p+ 1− 2q
=

−
(−1)p

(
(2b0 − (2q − 1)b1 + (2(q − 1) + 1− 2p)b2 J2p(

√
λ) +

√
λJ2p−1(

√
λ)
)

2(q − 1) + 1− 2p
,

formulae (4.36), (4.37) imply that∑
p∈Z

α
(2)
p (λ)β

(1)
p,q(λ) z1−2p

2π(−1)q J2q−1(
√
λ)

= −b2
∑
p∈Z

(−1)pJ2p(
√
λ) z1−2p−

z−2(q−1)
(

(2b0 − (2q − 1)b1)F
(2)
q−1(z, λ)−

√
λF

(1)
q−1(z, λ)

)
.

Finally, we note that, according to (4.15) and the Euler formula,∑
p∈Z

(−1)pJ2p(
√
λ) z−2p = cos [

√
λ(z + z−1)/2], z 6= 0.

and therefore we obtain a holomorphic function in C \ {0}:

Ψq(z, λ) =
∑
p∈Z

γp,q(λ)z1−2p = 2b2π(−1)q J2q−1(
√
λ) z cos [

√
λ(z + z−1)/2]+

(4.46)

2π(−1)q J2q−1(
√
λ) z−2(q−1)

(
(2b0− (2q− 1)b1)F

(2)
q−1(z, λ)−

√
λF

(1)
q−1(z, λ)

)
+

π(−1)q
(
b1J2q−2(

√
λ)− b2J2q(

√
λ)
)
z−2(q−1)F

(2)
q−1(z, λ) =

2b2π(−1)q J2q−1(
√
λ) z cos [

√
λ(z + z−1)/2] +

π(−1)qz−2(q−1)
(
− 2
√
λJ2q−1(

√
λ)F

(1)
q−1(z, λ) +(

2J2q−1(
√
λ) (2b0 − (2q − 1)b1) + b1J2q−2(

√
λ)− b2J2q(

√
λ)
)
F

(2)
q−1(z, λ)

)
.

Hence we obtain the following.

Corollary 4.8. Let the (relative) interiors of the sets S and ∂D \ S on ∂D
be not empty. If b20 + (b1 · b2)2 = 0 then a number λ > 0 is an eigenvalue of
Zaremba problem (3.2) with a0 = 0 if and only if there is a non-zero set of
the coefficients {dp(λ)}p∈Z such that ‖d(λ)‖− <∞,∑

p∈Z
d2p−1(λ)Ψp(z, λ) = 0 for all z ∈ ∂D

for the analytic functions Ψp(z, λ) in C \ {0}, given by (4.46), and

d2p(λ) = −
∑
q∈Z

d2q−1
β
(ip)
p,q (λ)

α
(ip)
p (λ)

.
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