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Abstract

A new universal method is developed for determination of nanostructure kinetic stability (KS) at high temperatures,
when nanostructures can be destroyed by chemical bonds breaking due to atom thermal vibrations. The method is
based on calculation of probability for any bond in the structure to stretch more than a limit value L,,,,, when the
bond breaks. Assuming the number of vibrations is very large and all of them are independent, using the central limit
theorem, an expression for the probability of a given bond elongation up to L,,,, is derived in order to determine the
KS. It is shown that this expression leads to the effective Arrhenius formula, but unlike the standard transition state
theory it allows one to find the contributions of different vibrations to a chemical bond cleavage. To determine the
KS, only calculation of frequencies and eigenvectors of vibrational modes in the groundstate of the nanostructure is
needed, while the transition states are need not to be found. The suggested method was tested on calculating KS
of bonds in some alkanes, octene isomers and narrow graphene nanoribbons of different types and widths at the
temperature T=1200 K. The probability of breaking of the C-C bond in the center of these hydrocarbons is found to
be significantly higher than at the ends of the molecules. It is also shown, that the KS of the octene isomers decreases
when the double C=C bond is moved to the end of the molecule, which agrees well with the experimental data. The
KS of the narrowest graphene nanoribbons of different types varies by 1-2 orders of magnitude depending on the
width and structure, while all of them are by several orders of magnitude less stable at high temperature than the
hydrocarbons and benzene.
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1. Introduction Although the C,, n >60, fullerenes have higher ener-
gies per atom, mainly Cgo has the largest experimental

Nowadays, following the development of nanotech- yields.

nologies, nanoelectronics, modern catalists, etc., a prob-
lem of determination of stability of different nanostruc-
tures as well as the surface of solids is becoming more
and more topical. Estimates of thermodynamic stabil-
ity, based on the Hibbs free energy Ey;, , are often fail
to predict experimental yields of various nanostructures
in their synthesis because of the importance of the fac-
tors that determine kinetic stability against cleavage of
the nanostructure bonds. A classic example of this is
permanent existence of diamond despite higher stabil-
ity of the graphitic phase; another example is formation
of buckminsterfullerene Cgy in carbon-helium plasma.

Using different versions of molecular dynamics (MD)
to determine KS is very computationally expensive,
since it implies simulating systems for times, much
longer than the inverse of characteristic thermal vibra-
tion frequencies (= 1073 s), which requires more than
millions of standard timesteps ( ~ 1 femtosecond). For
determination of KS of a system under transition from
one stable state to another, one can calculate the fre-
quency (or the probability) of the transition from on
geometry to another with the help of standard transi-
tion state theory developed in (1), where the general-
ized Arrhenius equations is derived v = vy exp (—&T),
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where k is the Boltzmann constant, T is the temperature,
Eparrier 18 the potential barrier for system passing from
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one stable state to another through a transitional state.
The preexponential factor (the effective vibrational fre-
quency) vy for an isolated structure is calculated with
the well-known Eiring formula (1), which also consid-
ers zero-point energy:

o T - o)

Vo = 7
_ hv,
oy (1 - eXP(_k—T'))

ey

where v;. are the vibrational frequencies of N atoms of
the system in the saddle point, and v; - in the minimum.

Unfortunately, application of Arrhenius-type equa-
tion requires calculations of the transition barrier Epy;rier
and determination of the systems potential energy sur-
face. In the case of systems, consisting of hundreds of
atoms, this becomes practically impossible, even if em-
pirical potentials are used. The theory assumes that sys-
tem overcomes the potential barrier along the path de-
termined by only one (soft) vibrational mode, however
it is quite obvious that cleavage of a bond may be caused
by a combination of several vibrations.

At present there is no effective method for determina-
tion of kinetic stability of nanostructures as well as the
surfaces of solids at high temperatures, when the chemi-
cal bonds can be broken due to atom thermal vibrations.

2. Theory

A new method to calculate KS based on the prob-
abilities of any bond in the structure to stretch more
than a limit value L,,,,, when the bond breaks, was sug-
gested in our previous work (2). It is assumed that this
probability describes the KS against destruction due to
thermal vibrations. The proposed method was success-
fully used to calculate the KS of various fullerenes. In
the present work we develop this approach for calcula-
tion of KS of carbonaceous heteroatomic molecules and
nanostructures.

The approach is based on finding the probability for
any chemical bond in the nanostructure to stretch more
than a limit value of L,,,, with the help of central limit
theorem (CLT) of probability theory. Assuming all of
vibrational modes are independent and their number
is large, CLT states that the probability of every atom
displacement in every direction is distributed normally,
thus the probability of a bond between any atoms elon-
gation up to L, can be calculated.

Then summing the contributions from harmonic vi-
bration normal modes k gives the displacement vector

for every atom n at time ¢ :

3N-6

Xi(n) exp(i(wit + @) (2)
)

R(n, 1) = Ro(n) +

where Ry(n) is the vector of n-th atom equilibrium co-
ordinates, wy is the k-th vibration mode eigenfrequency,
X (n) is the eigenvector of atom displacement in the k-
th vibration mode, and ¢y is the initial phase of the vi-
bration mode. Hereinafter 3N — 6 stands for the total
number of the molecules vibration modes without trans-
lations and rotations. Apparently, the total energies of
all atoms for a given mode are:

N
m m
En=Ew== ) Kol = FoiXp, ()
n=1

where my is the reduced mass, and X is a vector of
amplitudes in the space of atom numbers for the k-th
mode. Using the Boltzmanns equipartition theorem,
which gives the mean energy of one degree of freedom
of a given mode, the expression for the vibration modes
vector amplitude is easily derived:

al / kT
_ 2 _
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It is necessary to clarify the applicability of the three
formulas stated above to describe the harmonic oscil-
lation contribution at high temperatures (T =~ 1000K)
when the anharmonic contribution to the lattice vibra-
tions can be considerable. Using (4), we can easily es-
timate the displacements of atoms within the harmonic
approximation |AR(n, m)|. For T = 1000K |AR(n, m)| ~
0.4A. The contribution of anharmonic effects may be es-
timated from equation of thermal expansion 'ﬁf(fl";’:;‘)l =
aT, where « is the thermal expansion coefficient, which
has typical values of @ ~ 107 + 10°K~!. There-
fore, at T = 1000K the mean changes of the chemical
bond lengths due to anharmonicity is [AR(r, m)uparm| ~
1072 = 107'A, which is significantly smaller than the
contribution from harmonic oscillations.

Further, having various vibration modes the time-
dependent vector connecting two atoms, n and m, is
equal to:

R(n,m, 1)

Ro(nm) + AR(n, m, t)
3N-6

AR(n,m,t)

As a first approximation of the displacements of the
two atoms, after projecting the changes in the atom co-
ordinates on the vector connecting the two atoms, the
change in the distance between them is:

&)
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AR(n,m,t) = |AR(n,m,1)| X (6)

x cos (AR(n, m, 1), Ro(nm))

Given the displacements of every atom is a result of
a big number of independent thermal vibration normal
modes (5) and the contribution of each mode is rela-
tively small, one can use CLT, which states that the dis-
tribution of atom displacements X(n), being a sum of
small shifts Xy (n) by independent normal modes, repre-
sents a normal distribution D:

3N-6
D[X(n) - Z X, (n)
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1 exp (_ X(n) = (X(n)))? )
2o 202
where the mean atom displacement (X(#n)) = 0, and the

total dispersion of atom displacement o> can be found
from the Lindeberg CLT:

3N-6

o’ = Z ol (®)
k=1

The dispersion of n-th atom displacements due to k-th
vibration normal mode is:

)
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Similar expression gives the dispersion of n-th and m-th
atoms relative displacement:

(|%e) = Xemp) expicont + 4o
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(10)

Using equations (5-10) and assuming that a chemical
bond between two atoms n and m breaks if the distance
between them becomes bigger than L, an expression
for probability P, of the bond cleavage is:

Pun = P(R®) = RoM| > X,..)
N e m)l cos (X ), Ro(um)
- oi(n, m)
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where the total dispersion o%(n, m) is calculated from
(8), and erfc(x) is the complementary error function,

which is decreasing rapidly and erfc(x) = O for x > 2.
An expansion is known for such values:

1 2 1 1
erfe() ~ —= exp(—%)(; -3

Using (11), the probability of bond cleavage is:

anz

2
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Using (4) and (9), the equation (12) is reduced to
an expression that is similar to the Arrhenius equation
for the probability of overcoming potential barrier U,y
while breaking the bond:

U,
Py, = A \/k_Texp (——ff)

T (13)

where the determinative exponential factor in (12) and
the possibility to divide the total atom relative displace-
ment dispersion into partial contributions from the in-
dependent vibration dispersions (8) make it possible to
distinguish the contributions of each vibration mode to
the probability of the given bond cleavage, which is im-
portant in analysis of the structures stability against dif-
ferent vibrati on modes.

3. Results

In this work, we have investigated KS, to be more pre-
cise, the probability of chemical bonds breaking at high
temperature by example of normal (n-) and branched
alkanes: n-C4H,, C¢H 4 (both normal and branched),
n-CgHg, n-CioH»y, as well as zigzag and armchair nar-
row periodic graphene nanoribbons with the width of 3,
4, and 5 hexagons. The calculations of ground state geo-
metric structure with vibration spectrum and the eigen-
vectors of the normal vibrations for the hydrocarbons
molecules were conducted using the GAMESS code
within the DFT formalism using B3LYB exchange-
correlation functional and cc pVDZ basis. This modern
basis set has been specifically designed for post Hartree-
Fock calculations, but it also works well for DFT calcu-
lations. For calculations of periodic graphene nanorib-
bons VASP 5.3.5 ((3), (4)) software package was used in
combination with the PBE exchange-correlation func-
tional and PAW formalism ((5), (6)). At the prestage,
the geometry optimization of the nanoribbons was con-
ducted, as well as the optimization of the length of the
translational vector along the direction of their period-
icity. To isolate the nanoribbons from their periodic
images in the neighboring cells, which are necessarily
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Figure 1: Dependence of the total energy in n-CeH|4 on the extension
of the corresponding bond. Lines marked as GO corresponds to the
energies calculated with full optimization of both fragments.

present when the periodic boundary conditions are ap-
plied, vacuum spacings of 20 A were made along the
normal to the nanoribbons plane and in the plane along
a perpendicular to the nanoribbons directions. The stop-
ping criteria for geometry optimization in all cases was
that the maximal force acting on atoms were not more
than 0.01 eV/A. Integrations on the first Brillouin zone
(1BZ) were done on a 12 X 1 X 1 Monkhorst-Pack (7)
k-point grid. The vibration normal modes were calcu-
lated in the I" point only, within the analytical frozen
phonon method by the density functional perturbation
theory (DFPT) (8).

The maximum increase in length L, of C-C bonds
was defined as 0.98 A. To find this value by the ex-
ample of n-hexane C¢H\4, the total energy U(r) profile
was calculated while two C3H7 fragments were moved
apart along the line connecting two carbon atoms in-
side these fragments, see Fig.1. During that, at each
separation distance r < 6A both fragments were fully
optimized. Having the energy profile, the potential bar-
rier for chemical bond breaking U,,, = 6.59 eV was
obtained.

Next, fitting the U(r) profile (grey thin line in Fig.1)
at small C-C bond extensions Ar < 0.5A with a
quadratic function and using the value of U, Liygx =
0.98Awas finally obtained. In the same way, the value
of Lyay = 1.05 A for the pair of C and H atoms was
found from extension of the tertiary C-H bond in n-
hexane. These values of L,,,, were used in all the cal-
culations.

Apparently, while extending a chemical bond up to
L, before it breaks, the bond can be described as in
an excited state. One of the features of the proposed
method for KS determination is that there is no need to

find the transition states of all bonds in the nanostruc-
ture, which is obviously very complex job. Instead of
it, we use L,,,, obtained from reference systems. The
proposed method was used to calculate the data on the
KS of alkane molecules, the results are summarized in
Table 1. The temperature in the calculations was set
to 1200 K, the temperature of the onset of hydrocarbon
thermal dissociation.

The table displays probabilities of C-C and C-H
bonds breaking, as well as the corresponding inter-
atomic distances, in the center and at the edges of
molecules. It can be seen that for all the molecules
the probability of destroying the least stable bonds (C-
C) in the center of the molecules is significantly higher
than probability of breaking the bonds at the edges. The
difference is bigger for the longer carbon chains; this
agrees well with available experimental data on the sta-
bility of n-alkanes with different chain lengths (9). The
same relation can be seen for the C-H bonds. In the
branched isohexane, the probability of the central CH
group tearing off the central carbon atom is two orders
of magnitude higher than probability of breaking of the
central C-C bond in n-hexane. The same behavior is ob-
served for the C-H bond with only one order of magni-
tude difference. In all the cases, the probability of bond
cleavage strongly correlates with the bond length the
longer the interatomic distance, the higher the probabil-
ity of bond breaking.

While analyzing the KS of the alkanes, it was found
that the decisive role in the molecule destruction falls
not on a single, but on a group of some valent vi-
brations that have maximum contribution in the exten-
sion/compression of the weakest bond. For example, the
main role of C-C bonds cleavage in the hexane C¢H4 is
shared between six different vibrations.

The same approach was applied to KS evaluation for
narrow periodic graphene nanoribbons with their edges
terminated by hydrogen atoms. It was shown for T
= 1200 K that probabilities of breaking of the C-H
bonds on the edges of armchair nanoribons with the
widths of 3, 4, 5 hexagons (ANR7, ANRS and ANR9
in standard notation) are equal to 3.48 = 1072*,4.86 =
10723,2.32 % 10722, respectively. The corresponding
values for zigzag type nanoribbons (ZNR4, ZNRS and
ZNR6 in standard notation) are 2.81 * 10724 4.65 =
10722,5.96 % 1072, respectively. At the same time, the
probabilities of breaking of the C-C bonds in all consid-
ered nanoribbons were significantly lower than ~ 10732,
The obtained results claim that the KS of the narrowest
armchair nanoribbons of 3 hexagon width are signifi-
cantly (1-2 orders of magnitude) higher than the KS of
the nanoribbons with bigger, 4 or 5 hexagons, width.



Table 1: Bond length (d) and probability of breaking (v) for bonds in the center and at the edge of different hydrocarbons

T=1200K C- (center) C- (edge) C-H (center) C-H (edge)

v d % d % d % d
C4Hyo 6.04¥107% | 1.533 | 1.65¥107% | 1.531 | 3.01*107> | 1.106 | 4.34*107°¢ | 1.103
CeHis | 6.10¥107%° | 1.533 | 2.02%107% | 1.531 | 4.94¥107 | 1.107 | 2.00¥107%° | 1.102

CsHys izo | 1.66%10777 | 1.542 | 4.39¥107% | 1.532 | 3.15%107>* | 1.109 | 5.63*107° | 1.104
CsHis | 6.47¥107%° | 1.533 | 1.87*107% | 1.531 | 4.57%107 | 1.107 | 4.44%¥107%° | 1.104
CioHis | 1.67%107% | 1.543 | 5.17%107%° | 1.532 | 6.53*107> | 1.107 | 3.01¥107%° | 1.103

In addition to this, the KS of zigzag nanoribbons is [7] Monkhorst, H.J. Phys. Rev. B13 (1976) 51885192.

an order of magnitude lower than the KS of armchair [8] Gonze, X. Lee, C. Phys. Rev. B 55 (1997) 10355-10368.

nanoribbons. [9] http://www.neftemagnat.ru/enc/296.
In order to compare the stability of the nanoribbons

with stable hydrocarbons, having hydrogen atoms at the

molecule edge, the KS of benzene molecule was cal-

culated as well. At T = 1200 K the probabilities of

breaking of the C-H bonds equals to 0.27 * 1073¢, which

indicates that nanoribbon thermal stability at high tem-

perature is inferior relative to benzene.
Summing up, a universal method is developed for

determination of nanostructure kinetic stability at high

temperatures, when the nanostructure gets destroyed by

chemical bonds breaking due to atom thermal vibra-

tions. It is shown that the method gives an effective Ar-

rhenius formula. The examples of several normal and

branched alkanes show good correlation of calculated

KS with available experimental data. The method needs

only the spectrum of normal vibrations to be known,

and allows one to distinguish the contributions of each

vibration mode to the KS of the given chemical bond.
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