
STURM-LIOUVILLE PROBLEMS

IN DOMAINS WITH NON-SMOOTH EDGES

A. SHLAPUNOV AND N. TARKHANOV

Abstract. We consider a (generally, non-coercive) mixed boundary value

problem in a bounded domain D of Rn for a second order elliptic differen-
tial operator A(x, ∂). The differential operator is assumed to be of divergent

form in D and the boundary operator B(x, ∂) is of Robin type on ∂D. The
boundary of D is assumed to be a Lipschitz surface. Besides, we distinguish a

closed subset Y ⊂ ∂D and control the growth of solutions near Y . We prove

that the pair (A,B) induces a Fredholm operator L in suitable weighted spaces
of Sobolev type, the weight function being a power of the distance to the sin-

gular set Y . Moreover, we prove the completeness of root functions related to

L.
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Introduction

The Hilbert space methods take considerable part in the modern theory of partial
differential equations. In particular, the spectral theorem for compact selfadjoint
operators attributed to Hilbert and Schmidt allows one to look for solutions of
boundary value problems for formally selfadjoint operators in the form of expansions
over eigenfunctions of the operator.

Non-selfadjoint compact operators fail to have eigenvectors in general. Keldysh
[Kel51] (see also [GK69, Ch. 5, §8] for more details) elaborated expansions over root
functions for weak perturbations of compact selfadjoint operators. In particular,
he applied successfully the theorem on the completeness of root functions to the
Dirichlet problem for second order elliptic operators in divergent form.

The problem of completeness of the system of eigen- and associated functions of
boundary value problems for elliptic operators in domains with smooth boundary
was studied in many articles (see for instance [Bro53], [Bro59a], [Bro59b], [Agm62],
[Kon99]). In a series of papers [Agr94a], [Agr94b], [Agr08], [Agr11b], [Agr11c],
including two surveys [Agr02] and [Agr11a], Agranovich proved the completeness
of root functions for a wide class of boundary value problems for second order elliptic
equations with boundary conditions of the Dirichlet, Neumann and Zaremba type
in standard Sobolev spaces over domains with Lipschitz boundary. In [ST12] this
method was extended to a class of non-coercive mixed problems with Robin type
boundary conditions over domains with Lipschitz boundary.

Root functions of general elliptic boundary value problems in weighted Sobolev
spaces over domains with conic and edge type singularities on the boundary were
studied in [EKS01] and [Tar06]. These papers used estimates of the resolvent of
compact operators and the so-called rays of minimal growth. In order to realise
fully to what extent the completeness criteria of [EKS01] and [Tar06] are efficient,
we dwell on the concept of ellipticity on a compact manifold with smooth edges on
the boundary. Such a singular space X has three smooth strata, more precisely,
the interior part X0 of X , the smooth part X1 of the boundary and the edge X2

which is assumed to be a compact closed manifold. Pseudodifferential operators
on X are (3 × 3) -matrices A whose entries Ai,j are operators mapping functions
on Xj to functions on Xi. To each operator A one assigns a principal symbol
σ(A) := (σ0(A), σ1(A), σ2(A)) in such a way that σ(A) = 0 if and only if A is
compact, and σ(BA) = σ(B)σ(A) for all operators A and B whose composition
is well defined. The components σi(A) of the principal symbol are functions on
the cotangent bundles of Xi with values in operator spaces. They are smooth
away from zero sections of the bundles and bear certain twisted homogeneity as
operator families. An operator A is called elliptic if its principal symbol is invertible
away from the zero sections of cotangent bundles. The invertibility of σ0(A) just
amounts to the ellipticity of A in the interior of X . The invertibility of σ1(A)
is equivalent to the Shapiro-Lopatinskii condition on the smooth part of ∂X . The
invertibility of σ2(A) constitutes the most difficult problem, for this operator family
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is considered in weighted Sobolev spaces on an infinite cone. An operator A proves
to be Fredholm if and only if it is elliptic. However, from what has been said it
follows that there is no efficient criteria of ellipticity on compact manifolds with
edges on the boundary. In general these techniques allow one to derive at most
the following result. Consider a classical boundary value problem on X satisfying
the Shapiro-Lopatinskii condition away from the edge X2. It is actually given by a
column of operators Ai,0 with i = 0, 1, where A0,0 is an elliptic differential operator
in X0 and A1,0 a differential operator near X1 followed by restriction to X1. We
complete the column to a (2 × 2) -matrix A by setting A0,1 = 0 and A1,1 = 0.
The Shapiro-Lopatinskii condition implies that σ2(A)(y, η) is a family of Fredholm
operators on the unit sphere in T ∗X2. Hence we can set σ2(A)(y, η) in the frame
of a (3× 3) -matrix a(y, η) on the unit sphere of T ∗X2 which is moreover invertible.
A distinct quantisation procedure leads then immediately to a Fredholm operator
of the type

 A0,0 A0,2

A1,0 A1,2

A2,0 A2,2

 :
C∞(X )
⊕

C∞(X2,Cl1)
→

C∞(X )
⊕

C∞(∂X ,Cm)
⊕

C∞(X2,Cl2)

, (0.1)

where l1 and l2 are non-negative integers. However, the Fredholm property of (0.1)
elucidates by no means the original problem{

A0,0u = f in X0,
A1,0u = u0 at X1,

unless X2 is of dimension 0. Thus, operator-valued symbols make the condition of
ellipticity ineffective.

In the present paper we study the completeness of root elements associated
with a mixed boundary value problem (A,B) for a second order elliptic differential
equation with Robin type boundary condition in a bounded domain D of Rn. The
differential operator A(x, ∂) is assumed to be of divergent form and the boundary
operator B(x, ∂) includes an oblique derivative with discontinuous coefficients. The
boundary ∂D of the domain D is assumed to be a Lipschitz surface. Besides, we
distinguish a closed set Y ⊂ ∂D and control the behaviour of solutions to the
problem near Y . To this end we consider the boundary value problem in weighted
Sobolev spaces over D, the weight being a power of the distance to Y . We allow
Y to be empty, so the case of standard Sobolev spaces is not excluded. Within
the framework of analysis on manifolds with singularities the set Y bears usually
singularities of the boundary (cones, edges, etc.) or discontinuities of boundary
operators.

The theory of [Tar06] applies in similar situation (with edge singularities) pro-
vided that one is able to establish the invertibility of the edge symbol. This latter
is a family of Sturm-Liouville boundary value problems in an infinite plane cone
parametrised by the points of the cotangent bundle of the edge. On reducing the
family to the boundary of the cone one obtains two ordinary pseudodifferential
equations on the rays constituting the boundary of the cone. The invertibility of
the edge symbol just amounts to the unique solvability of these equations in cer-
tain weighted Sobolev spaces on the rays. This is a hard problem which deserves
separate investigation.
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Instead we exploit the classical approach of non-negative forms inducing inner
products in spaces of smooth functions (cf. [Sch60], [LM72], [LU73], [Agr94a]),
and the method of rays of minimal growth of the resolvent ([Agm62], [DS63]) to
study the completeness of root elements of the boundary value problem in weighted
Sobolev spaces. Note that usually one imposes Shapiro-Lopatinskii type conditions
on the boundary value problem at the smooth part of ∂D, cf. [AV64], [Tar06], etc.
Our contribution consists in considering non-coercive forms, and hence the Shapiro-
Lopatinskii condition can be violated. Indeed, a Hermitian form associated with a
second order elliptic formally selfadjoint operator A is usually constructed through
a factorization A = C∗C, where C is an overdetermined elliptic first order operator
and C∗ its formal adjoint. According to [SKK73], microlocally any first order op-
erator C with complex-valued coefficients can be presented via the Lewy operator
or the gradient operator or the multidimensional Cauchy-Riemann operator. The
operators of the first type go beyond the elliptic theory, the second type opera-
tors correspond to coercive mixed problems related to A, and the operators of the
third type inherit non-coercive boundary conditions. Thus, it is not fortuitous that
non-coercive boundary value problems for elliptic differential operators attract con-
siderable attention of mathematicians since the 1950 s, see for instance [ADN59],
[KN65]. One of the typical problems of this type is the famous ∂ -Neumann problem
in complex analysis whose boundary conditions involve precisely the multidimen-
sional Cauchy-Riemann operator, see [Koh79]. The investigation of the problem
resulted in the discovery of the subellipticity phenomenon which greatly influenced
to the development of the theory of partial differential equations, cf. [Hör66]. To
the best of our knowledge, there have been no advanced results on the complete-
ness of root functions for non-coercive problems. However, the use of non-coercive
forms enlarges essentially the class of those boundary conditions for which the root
functions of the corresponding mixed problems are dense in weighted Lebesgue and
Sobolev spaces. The enlargement allows one to perturb the boundary conditions
by diverse tangential vector fields. In general, we lose on regularity of solutions,
however, this gap is well motivated by the nature of problems.

Part 1. Weighted Sobolev-Slobodetskii spaces in Lipschitz domains

1. Sobolev-Slobodetskii spaces

Let D be a bounded domain in Rn with Lipschitz boundary ∂D, i.e. the surface
∂D is locally the graph of a Lipschitz function. More precisely, for each boundary
point p ∈ ∂D there is a neighbourhood U of p in Rn, such that, after a possible
rotation, D ∩ U = {(x′, xn) ∈ U : xn > f(x′)}, where f : Rn−1 → R is a Lipschitz
function, i.e. |f(x′) − f(y′)| ≤ L |x′ − y′| for all x′, y′ ∈ Rn−1. The smallest L for
which the estimate holds is called the bound of the Lipschitz constants. By choosing
finitely many balls {Uν} covering ∂D, the Lipschitz constant for a Lipschitz domain
is the smallest L with the property that the Lipschitz constant is bounded by L for
every ball Uν .

Any bounded Lipschitz domain has actually a global Lipschitz defining function
%, i.e. % : Rn → R satisfies % < 0 in D, % > 0 outside D, and c1 < |%′| < c2 almost
everywhere at ∂D, where c1, c2 are positive constants. The geometric interpretation
of this description is that both D and Rn \ D are locally situated on exactly one
side of the boundary ∂D.
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As a Lipschitz function is differentiable almost everywhere and the derivatives
are bounded, the boundary ∂D possesses a tangent hyperplane and a normal vector
almost everywhere.

We consider complex-valued functions defined in the domain D. For 1 ≤ q <∞,
we write Lq(D) for the space of all (equivalence classes of) measurable functions u
in D, such that the Lebesgue integral of |u|q over D is finite. When endowed with
the norm

‖u‖Lq(D) =
(∫
D
|u|q dx

)1/q
,

the space Lq(D) is Banach. As usual, this scale continues to include the case q =∞,
too. The C∞ functions of compact support in D lie dense in Lq(D) provided that
q <∞.

More generally, for s = 1, 2, . . ., we denote by Hs(D) the completion of C∞(D)
with respect to the norm

‖u‖Hs(D) =
(∫
D

∑
|α|≤s

|∂αu|2 dx
)1/2

,

where the sum is over all multi-indices α = (α1, . . . , αn) of norm |α| := α1+ . . .+αn
not exceeding s, and ∂α = ∂α1

1 · · · ∂αnn with ∂j = ∂/∂xj . It is convenient to define
Hs(D) := L2(D) for s = 0. Obviously, every Hs(D) with s = 0, 1, . . . specifies
within L2(D). In this way we get a scale of Hilbert spaces Hs(D) endowed with
scalar product

(u, v)Hs(D) =

∫
D

∑
|α|≤s

∂αu∂αv dx,

for u, v ∈ Hs(D).
In order to extend the scale Hs(D) to the fractional values of s > 0, one can use

an interpolation procedure. There is also a direct construction along more classical
lines developed in [Slo58]. Given any non-integer s > 0, the so-called Sobolev-
Slobodetskii space Hs(D) is defined to be the completion of C∞(D) with respect
to the norm

‖u‖Hs(D) =
(
‖u‖2H[s](D) +

∫∫
D×D

∑
|α|=[s]

|∂αu(x)− ∂αu(y)|2

|x− y|n+2(s−[s]) dxdy
)1/2

,

where [s] is the integer part of s. The space Hs(D) is endowed with obvious inner
product under which it is a Hilbert space.

In the sequel, for a closed subset S of D, we denote by Hs(D, S) the closure of the
subspace C∞comp(D \ S) in Hs(D). When endowed with induced norm, Hs(D, S)
is obviously a Hilbert space. If S is the whole boundary we get what is usually

referred to as
◦
Hs(D).

To define the spaces Hs(D) for all negative s ∈ R, too, we exploit an appropriate
duality. More precisely, let H+ and H0 be complex Hilbert spaces with scalar
products (·, ·)+ and (·, ·)0, respectively. Suppose that H+ is a subspace of H0 and
the natural inclusion

ι : H+ → H0 (1.1)

is continuous. We also assume that there is a space Σ ⊂ H+, such that Σ is dense
in H+ and ι(Σ ) is dense in H0. Write H− for the completion of Σ with respect to



6 A. SHLAPUNOV AND N. TARKHANOV

the norm

‖u‖− = sup
v∈Σ
v 6=0

|(v, u)0|
‖v‖+

.

Remark 1.1. Since Σ is dense in H+ and the norm ‖·‖+ majorises ‖·‖0, we conclude
that

‖u‖− = sup
v∈H+

v 6=0

|(v, u)0|
‖v‖+

.

The following two lemmas are well known (see for instance [Sch60]).

Lemma 1.2. The space H0 is continuously embedded into H−. If inclusion (1.1)
is compact then the space H0 is compactly embedded into H−.

Proof. By definition and the continuity of the map (1.1) we get

‖u‖− ≤ sup
v∈H+

v 6=0

‖u‖H0‖v‖H0

‖v‖+
≤ c ‖u‖H0

for all u ∈ H0, i.e. the space H0 is continuously embedded into H− indeed.
Suppose (1.1) is compact. Then the Hilbert space adjoint ι∗ : H0 → H+ is

compact, too. By Remark 1.1 we conclude that

‖u‖− = sup
v∈H+

v 6=0

|(ι(v), u)H0 |
‖v‖+

= sup
v∈H+

v 6=0

|(v, ι∗(u))+|
‖v‖+

= ‖ι∗(u)‖+ (1.2)

for all u ∈ H0. Therefore, any weakly convergent sequence in H0 converges in H−,
which shows the second part of the lemma. �

Lemma 1.3. The Banach space H− is topologically isomorphic to the dual space
(H+)′ and the isomorphism is defined by the sesquilinear form

〈v, u〉 = lim
ν→∞

(v, uν)0 (1.3)

for u ∈ H− and v ∈ H+ where {uν} is any sequence in Σ converging to u.

That is, for every fixed u ∈ H−, pairing (1.3) defines a continuous linear
functional fu on H+ and, for each f ∈ (H+)′, there is a unique u ∈ H− with
f(v) = fu(v) for all v ∈ H+. Moreover, the conjugate linear map u 7→ fu is an
isometry.

Proof. Cf. Lemma 3.3 of [Sch60] for Sobolev spaces. To show that the limit on the
right-hand side of (1.3) exists for each fixed function v ∈ H+, is suffices to show
that {(v, uν)0} is a Cauchy sequence. By definition,

|(v, uν − uµ)0| ≤ ‖v‖+‖uν − uµ‖− → 0

as ν, µ → ∞, which is our claim. Clearly, this limit does not depend on the
particular sequence {uν}, for if ‖uν‖− → 0, then |(v, uν)0| → 0 for all v ∈ H+.
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From the definition it follows that

|〈v, u〉| ≤ ‖u‖− ‖v‖+

for all u ∈ H− and v ∈ H+. Hence, for each fixed element u ∈ H+, the formula
fu(v) := (v, u) defines a continuous linear functional fu on H+, such that

‖fu‖(H+)′ ≤ ‖u‖−.

If {uν} ⊂ Σ approximates an element u in H−, then equality (1.2) implies that
the sequence {ι∗ι uν} converges to a function U in the space H+ and

‖U‖+ = lim
ν→∞

‖ι∗ι uν‖+
= lim

ν→∞
‖uν‖−

= ‖u‖−.

Moreover,

fu(v) = 〈v, u〉
= lim

ν→∞
(ι v, ι uν)0

= lim
ν→∞

(v, ι∗ι uν)+

= (v, U)+

for all v ∈ H+. Now, the Riesz theorem yields ‖U‖+ = ‖fu‖(H+)′ whence

‖fu‖(H+)′ = ‖u‖−.

It remains to show that any continuous linear functional f on H+ has the form
f(v) = 〈v, uf 〉 for some uf ∈ H−. By the Riesz theorem, for any f ∈ (H+)′ there
is a unique element Uf ∈ H+, such that f(v) = (v, Uf )+ for all v ∈ H+. Besides,
‖Uf‖+ = ‖f‖(H+)′ . By definition, the operator ι is injective and its image is dense

in H0. Hence, the image of the operator ι∗ι in H+ is dense, too. Pick a sequence
{uν} ⊂ H+ with the property that {ι∗ι uν} converges to Uf . Then, according to
(1.2), {uν} is a Cauchy sequence in H−, and so it converges to an element uf in
this space. It as easy to see that uf is actually independent of the particular choice
of the sequence {uν}. Finally, we obtain

〈v, uf 〉 = lim
ν→∞

(ι v, ι uν)0

= lim
ν→∞

(v, ι∗ι uν)+

= (v, Uf )+

= f(v)

for all v ∈ H+, as desired. �

Remark 1.4. Note that H+ is reflexive, since it is a Hilbert space. Hence it follows
that (H+)′ = H+, i.e., the spaces H+ and H− are dual to each other with respect
to (1.3).

Now we define H−s(D) to be the dual to Hs(D) with respect to the paring
induced by (·, ·)L2(D). More precisely, byH−s(D) is meant the completion of C∞(D)
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with respect to the norm

‖u‖H−s(D) = sup
v∈Hs(D)
v 6=0

|(v, u)L2(D)|
‖v‖Hs(D)

.

Then, by Lemma 1.2 and Rellich Theorem, Hs(D) is compactly embedded to

Hs′(D) for any s, s′ ∈ R with s > s′.
It is also well known that any differential operator of orderm ≥ 0 with coefficients

of class C [s]−m,1(D) maps Hs(D) continuously to Hs−m(D), for s ≥ m. To extend
the proper action of differential operators to the whole scale of Sobolev spaces,
one needs a slightly different definition of Sobolev spaces of negative smoothness.
Namely, for s > 0, denote by H̃−s(D) the completion of C∞(D) with respect to
the norm

‖u‖H̃−s(D) = sup
v∈C∞comp(D)

v 6=0

|(v, u)L2(D)|
‖v‖Hs(D)

.

Obviously, H−s(D) is continuously embedded into H̃−s(D), if s > 0. According to

Lemma 1.3, H̃−s(D) is the dual of
◦
Hs(D) with respect to the pairing induced by

(·, ·)L2(D).

Any differential operator of order m ≥ 0 with coefficients of class C∞(D) proves

to map Hs(D) continuously to H̃s−m(D), if 0 ≤ s < m − 1/2, and H̃s(D) to

H̃s−m(D), if s < 0.
Moreover, the following result holds, cf. Proposition 12.1 of [LM72, Ch. 1, § 12.8]

for domains with smooth boundary.

Lemma 1.5. Let ∂D be a Lipschitz surface. If 1/2 < s < 1 then any first order
differential operator with coefficients of class C∞(D) maps Hs(D) continuously to
Hs−1(D).

Proof. Indeed, the space C∞comp(D) is dense in Hs′(D) for all 0 ≤ s′ < 1/2 (see for
instance Corollary 1.4.4.5 of [Gris85]). For 1/2 < s < 1, we have 0 < 1− s < 1/2,
and so

‖w‖Hs−1(D) = sup
v∈H1−s(D)

v 6=0

|(v, w)L2(D)|
‖v‖H1−s(D)

= sup
v∈C∞comp(D)

v 6=0

|(v, w)L2(D)|
‖v‖H1−s(D)

whenever w ∈ Hs−1(D). Hence, given any u ∈ C∞(D) and 1 ≤ j ≤ n, we get

‖∂ju‖Hs−1(D) = sup
v∈C∞comp(D)

v 6=0

|(v, ∂ju)L2(D)|
‖v‖H1−s(D)

= sup
v∈C∞comp(D)

v 6=0

|(∂jv, u)L2(D)|
‖v‖H1−s(D)

≤ sup
v∈C∞comp(D)

v 6=0

‖∂jv‖H̃−s(D)‖u‖Hs(D)

‖v‖H1−s(D)

≤ c ‖u‖Hs(D),
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for the operator ∂j : H1−s(D) → H̃−s(D) is bounded, if s > 1/2 (see for instance
Corollary 1.4.4.6 of [Gris85]). �

Also the traces of functions from Hs(D), where s > 1/2, are well defined on the
Lipschitz surface ∂D. More precisely, for 0 < s < 1, we define Hs(∂D) to be the
completion of C∞(D) with respect to the norm

‖u‖Hs(∂D) =
(
‖u‖2L2(∂D) +

∫∫
∂D×∂D

|u(x)− u(y)|2

|x− y|n−1+2s
dsxdsy

)1/2
.

If s ≥ 1, then we define Hs(∂D) as the completion of C∞(D) with respect to the
norm

‖u‖Hs(∂D) =
( ∑
|α|≤[s]

‖∂αu‖2L2(∂D) +
∑
|α|=[s]

‖∂αu‖2Hs−[s](∂D)

)1/2
.

To justify the designation, we note that if ∂D ∈ C0,1, then, for 0 ≤ s < 1, one
arrives at the same space Hs(∂D) when completing C0,1(∂D) with respect to the
(equivalent) norm (

‖u‖2L2(∂D) + ‖u‖2Hs(∂D)

)1/2
.

If s ≥ 1 and ∂D ∈ C [s],1, then using a proper partition of unity {φν} on ∂D one
obtains the same space Hs(∂D) as the completion of C [s],1(∂D) with respect to the
(equivalent) norm(∑

ν

( ∑
|β|≤[s]

‖∂β(φνu)‖2L2(∂D) +
∑
|β|=[s]

‖∂β(φνu)‖2Hs−[s](∂D)

))1/2
.

Here, ∂β are (tangential) derivatives in appropriate local coordinates on the surface
∂D.

Let u ∈ Hs(D). There is a sequence {ui} in C∞(D) approximating u in the
Hs(D) -norm. If s > 1/2 then {ui} is a Cauchy sequence in L2(∂D). As usual,
the limit ts(u) of {ui} in L2(∂D) is called the trace of u on ∂D. It is known that
ts(u) does not depend on the approximating sequence {ui}. For 1/2 < s < 3/2, the
trace operator ts obtained in this way acts continuously fromHs(D) toHs−1/2(∂D).
Moreover, it possesses a bounded right inverse, see for instance [McL00] and [LM72,
Ch. 1, § 8] for domains with smooth boundary. If the surface ∂D is sufficiently
smooth, then ts : Hs(D)→ Hs−1/2(∂D) is bounded and possesses a bounded right
inverse for all s > 1/2.

2. Weighted Sobolev spaces of non-negative integer smoothness

Mixed problems for partial differential equations are often considered in weighted
spaces of Sobolev type. One chooses a weight function to appropriately control the
behavior of solutions near interface surface on the boundary where the boundary
conditions change their character.

Another motivation to introduce weights consists in possible geometric singular-
ities of the boundary of the manifold where the problem is posed. Indeed, local
analysis of formal solutions to a partial differential equation immediately shows that
there are solutions with typical behavior adequately described in weighted spaces
only.
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By the so-called Simonenko principle, the Fredholm property of a boundary
value problem is equivalent to the local solvability of the problem. While the local
solvability of elliptic problems is easily determined away from the set of singularities,
localization at singular points requires a hard analysis. However, this approach does
not work at all to study the spectrum of the problem, because the spectral problems
are non-local by the very nature. So, we are going to consider singular sets rather
globally.

To this end we fix a closed set Y ⊂ D situated on an (n − 1) -dimensional
surface. Introduce special weighted Sobolev spaces associated with Y . Let ρ be
a continuous non-negative function in D and let ρ be smooth away from Y . We
assume that 0 ≤ ρ(x) ≤ 1 for all x ∈ D and ρ(x) = 0 if and only if x ∈ Y . Moreover,
we require

ρ|α|−1∂αρ ∈ L∞(D) (2.1)

for all multi-indices α ∈ Zn≥0. Estimates (2.1) guarantee various important prop-

erties of weighted Sobolev spaces with weight function ρ. One may think of ρ(x)
as the distance from x to Y locally near Y in D. If the set Y is empty, we choose
ρ ≡ 1.

Remark 2.1. Our results apply also in the case where Y contains cuspidal points of
∂D, except for statements on traces, e.g., Theorems 4.12, 4.13 and Corollaries 5.6,
5.7.

Let s be a non-negative integer and γ ∈ R. On smooth functions with compact
support in D \ Y we introduce the scalar product

(u, v)Hs,γ(D) =

∫
D
ρ−2γ

∑
|α|≤s

ρ2|α|∂αu∂αv dx

and denote by Hs,γ(D) the completion of C∞comp(D \ Y ) with respect to the cor-
responding norm. By the very construction, Hs,γ(D) is a Hilbert space. Starting
from the scalar product

(u, v)H̃s,γ(D) =

∫
D

∑
|α|≤s

∂α(ρs−γu)∂α(ρs−γv) dx

in C∞comp(D \ Y ) we get similarly a Hilbert space H̃s,γ(D).

Remark 2.2. We emphasise that in order to define the spaces Hs,γ(D) and H̃s,γ(D)
for a fixed s ∈ Z≥0, one needs ρ ∈ Cs(D \ Y ) ∩ L∞(D) satisfying (2.1) for |α| ≤ s
only.

As we allow for the set Y to be empty, the standard Sobolev spaces are not
excluded from consideration. Obviously,

H0,γ(D) = H̃0,γ(D),

H̃s,s(D) = Hs(D, Y )

for all s ∈ Z≥0 and γ ∈ R.

Lemma 2.3. For a function u to belong to H0,γ(D) it is necessary and sufficient
that ρ−γu be in L2(D).
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Proof. If u ∈ H0,γ(D) then there is a sequence {ui} in C∞comp(D\Y ) which converges

to u in the H0,γ(D) -norm. This implies that {ρ−γui} is a Cauchy sequence in
L2(D). As the space L2(D) is complete, the sequence {ρ−γui} converges in it to a
function v ∈ L2(D). Obviously, v = ρ−γu. Conversely, suppose that ρ−γu belongs
to L2(D). As C∞comp(D) is dense in L2(D), there is a sequence {vi} in C∞comp(D)

converging to ρ−γu in this space. It follows that the sequence ui = ργvi lies in
C∞comp(D) ⊂ C∞comp(D \ Y ) and ρ−γui converges to ρ−γu in L2(D). Therefore, {ui}
converges to u in H0,γ(D). �

From the definition of Hs,γ(D) it follows readily that if u ∈ Hs,γ(D) then

∂αu ∈ H0,γ−|α|(D)

for all multi-indices α with |α| ≤ s.

Lemma 2.4. The space C∞comp(D) is dense in H0,γ(D).

Proof. This follows immediately from the fact that C∞comp(D) is dense in L2(D), cf.
the proof of Lemma 2.3. �

Although H0,0(D) = H0(D), the space Hs,0(D) does not coincide with Hs(D, Y )
for integer s > 0. Besides, Hs,γ(D) is continuously embedded into L2(D) for all
γ ≥ 0.

For particular configurations of singularities Y , if we choose as ρ the distance
from to Y in a suitable coordinate system, then the scale of Hilbert spaces Hs,γ(D)
coincides with that used in [BK06] for cone type singularities and [NP94] for edge
type singularities, the only difference being in indexing the spaces.

Let us also introduce an important re-indexation. Namely, for each s ∈ Z≥0 and

γ ∈ R, we have Hs,γ(D) = Hs,(γ−s)+s(D) and H̃s,γ(D) = H̃s,(γ−s)+s(D). Then we
set

H0,γ(D) =: H0,γ(D), Hs,γ(D) =: Hs,s+γ(D),

H̃0,γ(D) =: H̃0,γ(D), H̃s,γ(D) =: H̃s,s+γ(D),
(2.2)

for s ∈ Z≥0. The significance of this re-indexation will be clarified later. In any
case, it allows one to distinguish important natural embeddings.

Our primary interest consists in the study of boundary value problems in the
re-indexed scales Hs,γ(D) and H̃s,γ(D). We first describe basic properties of these
spaces. Notice that the scales under study possess embeddings similar to those for
Sobolev spaces.

Lemma 2.5. Suppose that s, s′ are non-negative integers with s ≥ s′ and the
function ρ ∈ Cs(D \ Y ) satisfies (2.1) for all α ∈ Zn≥0 with |α| ≤ s. If moreover

γ ≥ γ′, then
1) the space Hs,γ(D) is continuously embedded into Hs′,γ′(D);

2) the space Hs,γ(D) is continuously embedded into Hs′,γ′(D).

Proof. By definition,

‖u‖Hs−1,γ(D) ≤ ‖u‖Hs,γ(D)

for all u ∈ C∞comp(D \ Y ), i.e. Hs,γ(D) is continuously embedded into Hs−1,γ(D).

Since 0 < ρ ≤ 1 in D \ Y , we conclude that ρ−γ ≥ ρ−γ
′

in D \ Y , provided that
γ ≥ γ′. Hence, if γ ≥ γ′, then

‖u‖H0,γ′ (D) ≤ ‖u‖H0,γ(D)
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for all u ∈ C∞comp(D \ Y ), i.e. H0,γ(D) is continuously embedded into H0,γ′(D). It
follows that

‖∂αu‖H0,γ′−|α|(D) ≤ ‖∂
αu‖H0,γ−|α|(D)

whence
‖u‖Hs′,γ′ (D) ≤ ‖u‖Hs,γ(D)

for all u ∈ C∞comp(D \ Y ), i.e. Hs,γ(D) is continuously embedded into Hs′,γ′(D)
provided s ≥ s′ and γ ≥ γ′. In particular,

‖u‖Hs′,s′+γ′ (D) ≤ ‖u‖Hs,s+γ(D)

holds for all u ∈ C∞comp(D \ Y ), which proves the continuity of the embedding

Hs,γ(D) ↪→ Hs′,γ′(D). �

The following theorem states that the spaces Hs,γ(D) and H̃s,γ(D) and their
re-indexed versions are weighted indeed.

Theorem 2.6. Let ρ ∈ Cs(D \ Y ) and (2.1) hold for all multi-indices α with
|α| ≤ s, where s ∈ Z≥0. Then, for any δ ∈ R, the correspondence

Op (ρδ) : u 7→ ρδu (2.3)

induces bounded linear operators

Hs,γ(D) → Hs,γ+δ(D), Hs,γ(D) → Hs,γ+δ(D),

H̃s,γ(D) → H̃s,γ+δ(D), H̃s,γ(D) → H̃s,γ+δ(D).
(2.4)

Moreover, the operators in the first line are topological isomorphisms, the operators
in the second line are isometries.

Proof. As mentioned, all the spaces H0,γ(D), H0,γ(D), H̃0,γ(D) and H̃0,γ(D) co-
incide and

‖ρδu‖H0,γ+δ(D) = ‖u‖H0,γ(D),

which establishes the theorem in the case s = 0. For arbitrary s ∈ Z≥0, we obtain
immediately

‖ρδu‖H̃s,γ+δ(D) = ‖ρδ+s−(γ+δ)‖Hs(D) = ‖ρs−γ‖Hs(D) = ‖u‖H̃s,γ(D), (2.5)

showing that the operators in the second line of (2.4) are isometries.
Note that (2.1) implies ρ′ ∈ L∞(D), where u′ = (u′x1 , . . . , u′xn) is the gradient of

u. As (ρδu)′ = δρδ−1ρ′u+ ρδu′, we obtain

‖ρδu‖2H1,γ+δ(D) = ‖ρδu‖2H0,γ+δ(D) + ‖(ρδu)′‖2H0,γ−1+δ(D)

≤ ‖u‖2H0,γ(D) + 2δ2 ‖ρ′‖2L∞(D)‖ρ
δ−1u‖2H0,γ−1+δ(D) + 2 ‖ρδu′‖2H0,γ−1+δ(D)

= ‖u‖2H0,γ(D) + 2δ2 ‖ρ′‖2L∞(D)‖u‖
2
H0,γ(D) + 2‖u′‖2H0,γ−1(D)

≤ max{2, 1+2δ2 ‖ρ′‖2L∞(D)} ‖u‖
2
H1,γ(D)

for all u ∈ H1,γ(D). This proves the continuity of the operators in the first line of
(2.4) for s = 1.

To continue the proof we need an auxiliary assertion.

Lemma 2.7. If ρ ∈ Cs(D \ Y ) and (2.1) is fulfilled for all |α| ≤ s, where s ∈ Z≥0,
then

ρ|α|−δ∂αρδ ∈ L∞(D) (2.6)

whenever δ ∈ R and |α| ≤ s.
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Proof. If |α| = 1, then α = ek with k = 1, . . . , n, and so

ρ1−δ∂kρ
δ = δρ1−δρδ−1∂kρ = δ∂kρ ∈ L∞(D)

for all δ ∈ R, which is due to (2.1). Analogously, if |α| = 2, then α = ej + ek with
1 ≤ j, k ≤ n, and so

ρ2−δ∂j∂kρ
δ = δ(δ − 1) (∂jρ)(∂kρ) + δ ρ(∂j∂kρ) ∈ L∞(D)

for all δ ∈ R because of (2.1).
We now proceed by induction. Assume that (2.6) holds for all δ ∈ R and all multi-

indices α with |α| ≤ m, where m < s. If α is a multi-index of length |α| = m+ 1,

then ∂α = ∂α
′
∂k with some 1 ≤ k ≤ n and α′ ∈ Zn≥0, where |α′| = m. It follows

that

∂αρδ = ∂α
′
(∂kρ

δ) = ∂α
′
(δρδ−1∂kρ) = δ

∑
β≤α′

(
α′

β

)
∂β(ρδ−1)∂α

′−β(∂kρ)

whence

ρ|α|−δ∂αρδ = δ
∑
β≤α′

(
α′

β

)
(ρ|β|−(δ−1)∂βρδ−1) (ρ|α

′−β|∂α
′−β+ekρ)

which is in L∞(D) by (2.1) and inductive assumption. Thus, (2.6) holds for all
δ ∈ R and for all α ∈ Zn≥0 satisfying |α| ≤ m+ 1. �

Further, for any u ∈ Hs,γ(D) we have, by definition, ρ|α|−γ∂αu ∈ L2(D), pro-
vided that |α| ≤ s. If |α| ≤ s, then

ρ|α|−γ−δ∂α(ρδu) = ρ|α|−γ−δ
∑
β≤α

(
α
β

)
(∂βρδ)∂α−βu

=
∑
β≤α

(
α
β

)
ρ|β|−δ(∂βρδ) ρ|α−β|−γ∂α−βu.

Hence, combining Lemmas 2.5 and 2.7 yields

‖∂α(ρδu)‖H0,γ+δ−|α|(D) ≤
∑
β≤α

(
α
β

)
‖ρ|β|−δ(∂βρδ)‖L∞(D) ‖∂α−βu‖H0,γ−|α−β|(D)

for all u ∈ Hs,γ(D), i.e. ρδu ∈ Hs,γ+δ(D) and

‖ρδu‖Hs,γ+δ(D) ≤ c ‖u‖Hs,γ(D)

with c a constant independent of u. This establishes the continuity of the operator
Op (ρδ) acting asHs,γ(D)→ Hs,γ+δ(D), and hence its continuity as operator acting
as Hs,γ(D)→ Hs,γ+δ(D).

From what has already been proved it follows that for each δ ∈ R there is a
positive constant c = c(s, γ, δ), such that

1/c(s, γ+δ,−δ) ‖u‖Hs,γ(D) ≤ ‖ρδu‖Hs,γ+δ(D) ≤ c(s, γ, δ) ‖u‖Hs,γ(D) (2.7)

for all u ∈ Hs,γ(D). Indeed, we only need to clarify the left-hand side estimate. On
applying the argument to the multiplier ρ−γ we see that

‖u‖Hs,γ(D) = ‖ρ−δ (ρδu)‖Hs,γ+δ−δ(D) ≤ c(s, γ+δ,−δ) ‖ρδu‖Hs,γ+δ(D)

for all u ∈ Hs,γ(D), as desired. Substituting s + γ for γ in (2.7) we arrive readily
at the estimate

1/c(s, s+γ+δ,−δ) ‖u‖Hs,γ(D) ≤ ‖ρδu‖Hs,γ+δ(D) ≤ c(s, s+γ, δ) ‖u‖Hs,γ(D) (2.8)
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for all u ∈ Hs,γ(D).
Thus, when acting as in (2.4), the map Op (ργ) is bounded and invertible with

inverse Op (ρ−γ). �

Lemma 2.8. Assume that ρ ∈ Cs(D \ Y ) and (2.1) holds true for |α| ≤ s, where
s ∈ Z≥0. If δ ≥ 0, then the space Hs,s+δ(D) = Hs,δ(D) is continuously embedded

into Hs(D, Y ) = H̃s,0(D).

Proof. Indeed, if u ∈ C∞comp(D \ Y ), then

‖u‖2Hs(D) =
∑
|α|≤s

‖∂αu‖2L2(D) ≤
∑
|α|≤s

‖∂αu‖2H0,s+δ−|α|(D) = ‖u‖2Hs,s+δ(D),

because ρ−2(s+δ−|α|) ≥ 1 provided |α| ≤ s and δ ≥ 0. This establishes the continu-
ous embedding Hs,s+δ(D) ↪→ Hs(D, Y ). �

Lemma 2.9. Suppose that s, s′ are non-negative integers with s ≥ s′ and the
function ρ ∈ Cs(D \ Y ) satisfies (2.1) for all multi-indices α, such that |α| ≤ s.
Then

1) the space H̃s,γ(D) is continuously embedded into H̃s′,γ(D);

2) the space Hs,γ(D) is continuously embedded into H̃s′,γ(D).

Proof. Indeed,

‖u‖H̃s,γ(D) = ‖ρ−γu‖Hs(D) ≥ c ‖ρ−γu‖Hs′ (D) = c ‖u‖H̃s′,γ(D) (2.9)

for all u ∈ Cs(D, Y ), with c a constant which depends only on s and s′. This proves
the part 1).

By Lemma 2.8, the space Hs,0(D) is continuously embedded into H̃s,0(D).
Hence, there is a constant c > 0, such that

‖ρ−γu‖H̃s,0(D) ≤ c ‖ρ
−γu‖Hs,0(D) (2.10)

for all u ∈ C∞comp(D\Y ). Applying Theorem 2.6 we see that Hs,γ(D) is continuously

embedded into H̃s,γ(D). �

Lemma 2.10. Let ρ ∈ Cs(D\Y ) and (2.1) hold for |α| ≤ s, where s ∈ Z≥0. Then
any differential operator

A =
∑
|α|≤m

aα(x) ρ|α|−m(x) ∂α (2.11)

of order m ≤ s with coefficients aα of class Cs(D) maps Hs,γ(D) continuously to
Hs−m,γ−m(D) and Hs,γ(D) continuously to Hs−m,γ(D).

Proof. Combining Theorem 2.6 and Lemma 2.5 we conclude that the operator
Op (ρ−1) maps the space Hs,γ(D) continuously to Hs−1,γ−1(D). On the other
hand, if u ∈ Hs,γ(D), then

‖∂ju‖2Hs−1,γ−1(D) =

∫
D
ρ−2(γ−1)

∑
|α|≤s−1

ρ2|α||∂α∂ju|2 dx

≤
∫
D
ρ−2γ

∑
1≤|α|≤s

ρ2|α||∂αu|2 dx

≤ ‖u‖2Hs,γ(D)
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for all 1 ≤ j ≤ n. Hence, the derivative ∂j maps Hs,γ(D) continuously into

Hs−1,γ−1(D). As multiplication by a function from Cs(D) is a bounded opera-
tor on Hs(D), we see that the statement is true for all first order operators of type
(2.11). For higher order operators one may argue by induction with the use of The-
orem 2.6 and Lemmas 2.5, 2.7. The second statement follows from the definition
of the re-indexed scale. �

Lemma 2.11. Let ρ ∈ Cs(D \ Y ) and (2.1) hold true for |α| ≤ s, where s ∈ Z≥0.

Then u ∈ H̃s,γ(D) if and only if ρs−γu ∈ Hs(D). Moreover, if u ∈ Hs,γ(D) then
ρs−γu ∈ Hs(D, Y ).

Proof. This is a direct consequence of Theorem 2.6 and Lemma 2.8. �

3. Weighted Sobolev spaces of fractional and negative smoothness

Lemma 2.11 enables us to introduce weighted Sobolev spaces of fractional smooth-
ness s > 0. Namely, for functions u ∈ C∞comp(D \ Y ), we consider two norms

‖u‖Hs,γ(D) =
(
‖u‖2H[s],γ(D) + ‖ρs−γu‖2Hs(D)

)1/2
,

‖u‖H̃s,γ(D) = ‖ρs−γu‖Hs(D).

Write Hs,γ(D) for the completion of the space C∞comp(D \ Y ) with respect to the

norm ‖ · ‖Hs,γ(D), and H̃s,γ(D) for the completion of C∞comp(D \ Y ) with respect to
the norm ‖ · ‖H̃s,γ(D).

A scale similar to H̃s,γ(D) was used in [Kon66] to study boundary value problems
for parabolic equations. However, he restricted the study to resolved singularities
of transversal intersections, cf. Section 5.

Remark 3.1. We emphasise that in order to define the spaces Hs,γ(D) and H̃s,γ(D)
for a fixed s ≥ 0 one needs merely that ρ ∈ C [s]+1(D\Y ) and that (2.1) be fulfilled
for |α| ≤ [s] + 1.

From Lemma 2.8 it follows that, for s ≥ s′ ≥ 0, the embeddings

Hs,s(D) ↪→ H̃s,s(D) = Hs(D, Y ),
Hs,γ(D) ↪→ H[s],γ(D),

Hs,s(D) ↪→ Hs′,s′(D),

(3.1)

are continuous. As before, we set

Hs,γ(D) = Hs,s+γ(D)

H̃s,γ(D) = H̃s,s+γ(D)

for all fractional s ≥ 0 and γ ∈ R, thus extending the scales Hs,γ(D) and H̃s,γ(D)
from s ∈ Z≥0 to all real s ≥ 0.

As the realization of the dual space depends essentially on the pairing (see
Lemma 1.3), we should be motivated in the choice of paring to introduce weighted
Sobolev spaces of negative smoothness. In the study of boundary value problems for
second order differential operators in the scale Hs,γ(D) one denotes by H−s,γ(D)
the dual space of Hs,γ(D), s > 0, with respect to the pairing induced by the scalar
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product in H0,γ(D). In other words, H−s,γ(D) is the completion of C∞comp(D \ Y )
in the norm

‖u‖H−s,γ(D) = sup
v∈Hs,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖Hs,γ(D)

.

By H̃−s,γ(D) is meant the dual space of H̃s,γ(D), s > 0, with respect to the pairing

induced by the scalar product in H0,γ(D). Thus, H̃−s,γ(D) is the completion of
C∞comp(D \ Y ) in the norm

‖u‖H̃−s,γ(D) = sup
v∈H̃s,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖H̃s,γ(D)

.

This definition leads to a generalised setting of the mixed problem using the
pairing in the space H0,γ(D). The advantage of the approach is that it allows one
to argue as the classics did in the usual Sobolev spaces. In Lemma 3.5 we prove
that the definition is actually equivalent to the standard one using the pairing in
H0,0(D).

For the initial scalesHs,γ(D), H̃s,γ(D) one ought to use another duality. Namely,
H−s,γ(D) is defined to be the dual of Hs,−γ(D) with respect to the pairing induced

by the scalar product in H0,0(D), and similarly for H̃−s,γ(D), where s > 0. As
already noted, the representation of the dual space depends essentially on the pair-
ing. While all the realizations coincide as topological spaces, the routine calcula-
tions might be different. Thus the definition Hs,−γ(D) and H̃s,−γ(D), s > 0, needs
further clarification (see below).

The scales of function spaces just introduced are still scales of proper weighted
spaces.

Corollary 3.2. Let s ∈ R. Assume that ρ ∈ C [|s|]+1(D\Y )∩L∞(D) satisfies (2.1)
for all α ∈ Zn≥0 with |α| ≤ [|s|] + 1. Then, for any δ ∈ R, the operator Op (ρδ)
induces isometries

H̃s,γ(D) → H̃s,γ+δ(D), H̃s,γ(D) → H̃s,γ+δ(D).

Moreover,
‖u‖H̃s,γ(D) = ‖ρs−γu‖Hs(D),

‖u‖H̃s,γ(D) = ‖ρ−γu‖Hs(D)
(3.2)

for all u ∈ C∞comp(D \ Y ).

Proof. Note that for s ∈ Z≥0 the statement has already been proved, see Theorem
2.6. The mappings in question are actually isometries for all real s ≥ 0, for the
equality (2.5) still holds for any s ≥ 0. Moreover, the first equality of (3.2) follows
directly from the definition of the space for all real s ≥ 0. If s > 0, then, for each
u ∈ C∞comp(D \ Y ), we get

‖u‖H̃−s,γ(D) = sup
v∈H̃s,−γ(D)

v 6=0

|(v, u)L2(D)|
‖v‖H̃s,−γ(D)

= sup
v∈H̃s,−γ(D)

v 6=0

|(ρs+γv, ρ−s−γu)L2(D)|
‖ρs+γv‖Hs(D)

= ‖ρ−s−γu‖H−s(D),
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i.e. the first equality of (3.2) is valid for all s ∈ R. Hence it follows that identity

(2.5) holds true for all real s < 0, and so Op (ρδ) : H̃s,γ(D) → H̃s,γ+δ(D) is an
isometry for s < 0, too.

Similarly, for s ≥ 0, the second equality of (3.2) is an immediate consequence of
the definition of the space. Using the first equality of (3.2) we see that

‖u‖H̃−s,γ(D) = sup
v∈H̃s,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖H̃s,γ(D)

= sup
v∈H̃s,γ(D)

v 6=0

|(ρ−γv, ρ−γu)L2(D)|
‖ρ−γv‖Hs(D)

= ‖ρ−γu‖H−s(D)

holds for all u ∈ C∞comp(D \ Y ). Therefore, the second equality of (3.2) is still true

and the operator Op (ρδ) : H̃s,γ(D)→ H̃s,γ+δ(D) is an isometry for all real s < 0,
as desired. �

Corollary 3.3. Let s ∈ R and let ρ ∈ C [|s|]+1(D \ Y ) ∩ L∞(D) satisfy (2.1) for
all α ∈ Zn≥0 with |α| ≤ [|s|] + 1. Then, for any δ ∈ R, the operator Op (ρδ) induces
topological isomorphisms

Hs,γ(D) → Hs,γ+δ(D), Hs,γ(D) → Hs,γ+δ(D).

Proof. We first notice that, for s ∈ Z≥0, the statement is contained in Theorem
2.6.

Further, for 0 < s < 1 and δ ∈ R, we get

‖ρδu‖2Hs,γ+δ(D) = ‖ρ−(γ+δ)ρδu‖2L2(D) + ‖ρs−(γ+δ)ρδu‖2Hs(D)

= ‖u‖2H0,γ(D) + ‖ρs−γu‖2Hs(D)

= ‖u‖2Hs,γ(D),

and, in general, for non-integral s ≥ 0 and δ ∈ R, we obtain

‖ρδu‖2Hs,γ+δ(D) = ‖ρδu‖2H[s],γ(D) + ‖ρs−(γ+δ)ρδu‖2Hs(D)

≤ c ‖u‖2Hs,γ(D)

for all u ∈ Hs,γ(D), where c is a constant independent of u. Therefore, the operator
Op (ρδ) maps Hs,γ(D) continuously to Hs,γ+δ(D) for all s ≥ 0. In particular, it
maps Hs,γ(D) continuously to Hs,γ+δ(D) for all s ≥ 0. Our next objective is to
prove this for s < 0.
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Pick s > 0. Since the operator Op (ρ−δ) : Hs,γ+δ(D) → Hs,γ(D) is bounded, it
follows that

‖ρδu‖2H−s,γ+δ(D) = sup
v∈Hs,γ+δ(D)

v 6=0

|(v, ρδu)H0,γ+δ(D)|
‖v‖Hs,γ+δ(D)

= sup
v∈Hs,γ+δ(D)

v 6=0

|(ρ−δv, u)H0,γ(D)|
‖ρ−δv‖Hs,γ(D)

‖ρ−δv‖Hs,γ(D)

‖v‖Hs,γ+δ(D)

≤ c sup
w∈Hs,γ(D)

w 6=0

|(w, u)H0,γ(D)|
‖w‖Hs,γ(D)

= c ‖u‖2H−s,γ(D)

for all u ∈ C∞comp(D \ Y ), i.e. the operator Op (ρδ) : H−s,γ(D) → H−s,γ+δ(D) is
bounded, too.

Arguing as in Theorem 2.6 we easily obtain estimates (2.7) for all s ≥ 0 and
estimates (2.8) for all real s. This means that the maps Hs,γ(D) → Hs,γ+δ(D),
for s ≥ 0, and Hs,γ(D) → Hs,γ+δ(D), for s ∈ R, induced by the multiplication
operator Op (ρδ), are bounded and invertible and their bounded inverse maps are
induced by Op (ρ−δ).

To settle the question with the maps Op (ρδ) : Hs,γ(D) → Hs,γ+δ(D) we need
to clarify the pairing defining the space Hs,γ(D) for negative indices s. If s ≥ 0
and γ ≥ 0 then Hs,γ(D) is continuously embedded into L2(D) and we may realise
the scheme above with H0 = H0,0(D) = L2(D). According to it, H+ = Hs,γ(D)
produces the dual space H− = H−s,−γ(D) as the completion of C∞comp(D \ Y ) with
respect to the norm

‖u‖H−s,−γ(D) = sup
v∈Hs,γ(D)

v 6=0

|(v, u)L2(D)|
‖v‖Hs,γ(D)

.

Then, as the operator Op (ρδ) : Hs,γ−δ(D)→ Hs,γ(D) is bounded for all s > 0, we
have

‖ρδu‖2H−s,−γ+δ(D) = sup
v∈Hs,γ−δ(D)

v 6=0

|(v, ρδu)L2(D)|
‖v‖Hs,γ−δ(D)

= sup
v∈Hs,γ−δ(D)

v 6=0

|(ρδv, u)L2(D)|
‖ρδv‖Hs,γ(D)

‖ρδv‖Hs,γ(D)

‖v‖Hs,γ−δ(D)

≤ c sup
w∈Hs,γ(D)

w 6=0

|(w, u)L2(D)|
‖w‖Hs,γ(D)

= c ‖u‖2H−s,−γ(D)

for all u ∈ C∞comp(D \ Y ), provided that γ ≥ 0 and γ − δ ≥ 0. Hence, the operator

Op (ρδ) : H−s,−γ(D) → H−s,−γ+δ(D) is bounded. For γ < 0 we use the following
trick.
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Lemma 3.4. If s ≥ 0, then the norm in the space H−s,−γ(D) can be equivalently
described as

sup
v∈Hs,0(D)

v 6=0

|(v, ργu)L2(D)|
‖v‖Hs,0(D)

.

Proof. This follows from the fact that Op (ργ) : Hs,0(D)→ Hs,γ(D) is a topological
isomorphism for all s ≥ 0 and γ ∈ R. This has already been proved above, as
desired. �

Let us continue the proof of the corollary. By Lemma 3.4,

‖ρδu‖2H−s,−γ+δ(D) ∼ sup
v∈Hs,0(D)

v 6=0

|(v, ργ−δρδu)L2(D)|
‖v‖Hs,0(D)

= sup
v∈Hs,0(D)

v 6=0

|(v, ργu)L2(D)|
‖v‖Hs,0(D)

∼ ‖u‖2H−s,−γ(D)

for all u ∈ C∞comp(D \ Y ), i.e. the operator Op (ρδ) : H−s,−γ(D)→ H−s,−γ+δ(D) is
bounded.

Finally, the assertion about the isomorphisms follows by the same arguments as
those in the proof of Theorem 2.6. �

The re-indexing relation between the scales Hs,γ(D) and Hs,s+γ(D) still holds
for negative s.

Lemma 3.5. For each s > 0, the norms of the spaces H−s,γ(D) and H−s,−s+γ(D)
are equivalent on C∞comp(D\Y ). In particular, the spaces are isomorphic as Banach
spaces.

Proof. Let first s > 0 and s− γ > 0. Then, using Corollary 3.3, we get

‖u‖H−s,γ(D) = sup
v∈Hs,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖Hs,γ(D)

= sup
v∈Hs,s+γ(D)

v 6=0

|(ρ−2γv, u)L2(D)|
‖v‖Hs,s+γ(D)

= sup
v∈Hs,s+γ(D)

v 6=0

|(ρ−2γv, u)L2(D)|
‖ρ−2γv‖Hs,s−γ(D)

‖ρ−2γv‖Hs,s−γ(D)

‖v‖Hs,s+γ(D)

≤ sup
w∈Hs,s−γ(D)

w 6=0

|(w, u)L2(D)|
‖w‖Hs,s−γ(D)

sup
v∈Hs,s+γ(D)

v 6=0

‖ρ−2γv‖Hs,s−γ(D)

‖v‖Hs,s+γ(D)

≤ c ‖u‖H−s,−s+γ(D)
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for all u ∈ C∞comp(D\Y ), with c a positive constant independent of u. On the other
hand, in this case we have

‖u‖H−s,−s+γ(D) = sup
v∈Hs,s−γ(D)

v 6=0

|(v, u)L2(D)|
‖v‖Hs,s−γ(D)

= sup
v∈Hs,s−γ(D)

v 6=0

|(ρ2γv, u)H0,γ(D)|
‖ρ2γv‖Hs,s+γ(D)

‖ρ2γv‖Hs,s+γ(D)

‖v‖Hs,s−γ(D)

≤ sup
w∈Hs,γ(D)

w 6=0

|(w, u)H0,γ(D)|
‖w‖Hs,γ(D)

sup
v∈Hs,s−γ(D)

v 6=0

‖ρ2γv‖Hs,s+γ(D)

‖v‖Hs,s−γ(D)

≤ c ‖u‖H−s,γ(D)

for all u ∈ C∞comp(D \ Y ), which is due to Corollary 3.3.
If s− γ < 0 then

‖u‖H−s,γ−s(D) ∼ sup
v∈Hs,0(D)

v 6=0

|(v, ρs−γu)L2(D)|
‖v‖Hs,0(D)

= sup
v∈Hs,0(D)

v 6=0

|(ρs+γv, u)H0,γ(D)|
‖ρs+γv‖Hs,s+γ(D)

‖ρs+γv‖Hs,s+γ(D)

‖v‖Hs,0(D)

≤ sup
w∈Hs,γ(D)

w 6=0

|(w, u)H0,γ(D)|
‖w‖Hs,γ(D)

sup
v∈Hs,s−γ(D)

v 6=0

‖ρs+γv‖Hs,s+γ(D)

‖v‖Hs,0(D)

≤ c ‖u‖H−s,γ(D)

for all u ∈ C∞comp(D \ Y ), which is due to Corollary 3.3. Similarly,

‖u‖H−s,γ(D) = sup
v∈Hs,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖Hs,γ(D)

= sup
v∈Hs,s+γ(D)

v 6=0

|(ρ−(s+γ)v, ρs−γu)L2(D)|
‖ρ−(s+γ)v‖Hs,0(D)

‖ρ−(s+γ)v‖Hs,0(D)

‖v‖Hs,s+γ(D)

≤ sup
w∈Hs,0(D)

w 6=0

|(w, ρs−γu)L2(D)|
‖w‖Hs,0(D)

sup
v∈Hs,s+γ(D)

v 6=0

‖ρ−(s+γ)v‖Hs,0(D)

‖v‖Hs,s+γ(D)

≤ c ‖u‖H−s,−s+γ(D)

for all u ∈ C∞comp(D \ Y ) where c is a constant independent of u and different in
various applications.

Hence it follows that the spaces H−s,γ(D) and H−s,−s+γ(D) coincide as Banach
spaces for all s > 0. �

It is well known that the Sobolev spaces of fractional smoothness can be defined
with the aid of appropriate interpolation procedure. When the field of scalars is
the real numbers, one uses the so-called (real) trace method [Tri78, 4.3, 4.4] and
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(real) K -method [Tri78, 1.3, 1.18]. The two real interpolation methods are often
equivalent, see Theorem 1.8.2 of [Tri78].

We now wish to test interpolation properties of spaces Hs,γ(D) and H̃s,γ(D).
For 0 < θ < 1, we denote by Hθ = [H0, H1]θ the result of interpolation between
Banach spaces H0 and H1.

Lemma 3.6. Let s ∈ R≥0 be non-integral. Then

H̃s,s(D) = [H̃[s],[s](D), H̃[s]+1,[s]+1(D)]s−[s] = [H [s](D, Y ), H [s]+1(D, Y )]s−[s],

H̃s,γ(D) = [H̃ [s],γ(D), H̃ [s]+1,γ(D)]s−[s].

Proof. For non-integral s ≥ 0, the Sobolev space Hs(D) can be obtained as a
result of interpolation between the spaces H [s](D) and H [s]+1(D) by the (real)

trace method. Since the norm in H̃s,s(D) coincides with that in Hs(D) for all

s ∈ Z≥0, it follows that the space H̃s,s(D) = Hs(D, Y ) with fractional s > 0 may be

alternatively described as the completion of C∞comp(D\Y ) with respect to the norm

obtained as a result of interpolation between H̃[s],[s](D) and H̃[s]+1,[s]+1(D). Finally,
Corollary 3.2 implies that ‖u‖H̃s,γ(D) = ‖ρs−γu‖H̃s,s(D) for all u ∈ C∞comp(D \ Y ),

whence we get

‖u‖H̃s,γ(D) = ‖ρ−γu‖Hs(D).

On arguing as above we establish the second interpolation formula of the lemma,
as desired. �

For the scale Hs,γ(D) the arguments are much subtler.

Theorem 3.7. For any non-integral s ≥ 0, we get

Hs,s(D) = [H[s],[s](D),H[s]+1,[s]+1(D)]s−[s],
Hs,γ(D) = [H [s],γ(D), H [s]+1,γ(D)]s−[s].

Proof. We begin with an auxiliary result.

Lemma 3.8. Let γ ∈ R and 0 < θ < 1. Then

H0,γ+θ(D) = [H0,γ(D),H0,γ+1(D)]θ.

Proof. We exploit the (real) K -method mentioned above. According to it, the
norm in the space Hθ = [H0,γ(D),H0,γ+1(D)]θ is given by the integral

‖u‖Hθ =
(∫ ∞

0

t−2θ−1K2(t, u) dt
)1/2

,

where

K(t, u) = inf
u=u0+u1

(
‖u0‖H0,γ(D) + t‖u1‖H0,γ+1(D)

)
with u0 ∈ H0,γ(D) and u1 ∈ H0,γ+1(D). It is easily seen that

K(t, u) ∼ inf
u=u0+u1

(
‖u0‖2H0,γ(D) + t2‖u1‖2H0,γ+1(D)

)1/2
= inf

u=u0+u1

(∫
D
ρ−2γ

(
|u0|2 + (tρ−1)2|u1|2

)
dx

)1/2

,

and so

K(t, u) ∼
(∫
D
ρ−2γ |umin{1, tρ−1}|2dx

)1/2
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for all u ∈ C∞comp(D \ Y ), cf. [Tri78, 1.18]. Obviously,

min{1, tρ−1} =

{
t ρ(x), if t < ρ(x),
1, if t > ρ(x).

Now, by direct calculation with the use of Fubini’s theorem, we obtain

‖u‖2Hθ =

∫ ∞
0

t−2θ−1K2(t, u) dt

=

∫
D
ρ−2γ

(
ρ−2

∫ ρ(x)

0

t1−2θdt+

∫ ∞
ρ(x)

t−1−2θdt
)
|u|2 dx

=
1

2θ(1− θ)

∫
D
ρ−2(γ+θ)|u|2 dx

∼ ‖u‖2H0,γ+θ(D)

for all u ∈ C∞comp(D\Y ). Thus, the norms in Hθ and H0,γ+θ(D) are equivalent and
these spaces coincide as Banach spaces. �

Let us continue the proof of Theorem 3.7. To this end we note that

‖u‖2H0,0(D) ∼ ‖u‖2H0,0(D) + ‖u‖2L2(D),

‖u‖2H1,1(D) = ‖u‖2H0,1(D) + ‖u‖2H1(D)

whenever u ∈ C∞comp(D \ Y ). Using Lemmas 3.6 and 3.8, we readily deduce that,
given any 0 < s < 1,

‖u‖2Hs,s(D) ∼ ‖u‖
2
H0,s(D) + ‖u‖2Hs(D)

for all u ∈ C∞comp(D \ Y ).
For arbitrary fractional s > 0 we may argue in much the same way. Indeed, by

Lemma 2.8, we get

‖u‖2H[s],[s](D) =
∑
|α|≤[s]

‖∂αu‖2H0,[s]−|α|(D) + ‖u‖2H[s](D),

‖u‖2H[s]+1,[s]+1(D) =
∑

|α|≤[s]+1

‖∂αu‖2H0,[s]+1−|α|(D) + ‖u‖2H[s]+1(D)

on functions u ∈ C∞comp(D \ Y ). Again, applying Lemmas 3.6 and 3.8 we see that

‖u‖[H[s],[s](D),H[s]+1,[s]+1(D)]s−[s]
=

∑
|α|≤[s]

‖∂αu‖2H0,s−|α|(D) + ‖u‖2Hs(D)

= ‖u‖2Hs,s(D)

for all u ∈ C∞comp(D \ Y ).

Finally, Corollary 3.3 implies ‖u‖Hs,γ(D) = ‖ρs−γu‖Hs,s(D) on functions u of

C∞comp(D \ Y ). In particular, ‖u‖Hs,γ(D) = ‖ρ−γu‖Hs,s(D) and so we apply what
has already been proved to establish the second interpolation formula of Theorem
3.7. �
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Part 2. Embedding theorems

4. Embedding theorems for weighted Sobolev spaces

The proof of embeddings below is especially simple if one applies interpolation
arguments. To begin with, we mention an obvious fact.

Lemma 4.1. Let s be an integral number and let ρ ∈ C |s|(D \ Y ) satisfy (2.1)
for all |α| ≤ |s|. If γ ≥ γ′, then the space Hs,γ(D) is continuously embedded into

Hs,γ′(D).

Proof. For integer s ≥ 0, the assertion is contained in Lemma 2.5. As the embed-
ding Hs,γ(D) ↪→ Hs,γ′(D), γ ≥ γ′, is continuous and has dense range for s ∈ Z≥0,
we see that the embedding

H−s,−γ
′
(D) = (Hs,γ

′
(D))′ ↪→ (Hs,γ(D))′ = H−s,−γ(D)

is bounded, too, with −γ′ ≥ −γ. �

Theorem 4.2. Let s and s′ be real numbers with s ≥ s′, and ρ ∈ C [s]+1(D \ Y )
satisfy (2.1) for all multi-indices α with |α| ≤ [s] + 1. If s ≥ s′, then the space

Hs,γ(D) is continuously embedded into Hs′,γ(D).

Proof. Suppose s ≥ s′ ≥ 0. Using Corollary 3.3, Lemma 2.8 (for integer s′) and

the definition of the norm in Hs′,s′(D) (for non-integral s′), we obtain

‖ρs
′−γu‖Hs′ (D) ≤ ‖ρs

′−γu‖Hs′,s′ (D)

= ‖ρs−γρs
′−su‖Hs′,s′ (D)

≤ c ‖ρs−γu‖Hs′,s′−(s′−s)(D)

= c ‖ρs−γu‖Hs′,s(D)

(4.1)

for all C∞comp(D \ Y ), with c a constant independent of u. On the other hand, as
0 ≤ [s′] ≤ [s], from Lemma 2.5, Theorem 2.6 and the Sobolev embedding theorem
it follows that

‖ρs−γu‖2Hs′,s(D)
= ‖ρs−γu‖2H[s′],s(D)

+ ‖ρs−γu‖2
Hs′ (D)

≤ c (‖u‖2H[s′],γ(D)
+ ‖ρs−γu‖2Hs(D))

≤ c′ (‖u‖2H[s],γ(D) + ‖ρs−γu‖2Hs(D))

(4.2)

for all C∞comp(D \ Y ), where c and c′ are constants independent on u. Combining

(4.1), (4.2) and the definition of the space Hs′,γ(D) yields

‖u‖Hs′,γ(D) ≤ c ‖u‖Hs,γ(D)

for all C∞(D \ Y ), with c a constant independent on u. This establishes the con-

tinuous embedding Hs,γ(D) ↪→ Hs′,γ(D) for 0 ≤ s′ ≤ s.
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Assume that −s′ < 0 ≤ s and γ ≥ 0. Then

‖u‖H−s′,−γ(D) = sup
v∈Hs

′,γ(D)
v 6=0

|(v, u)L2(D)|
‖v‖Hs′,γ(D)

= sup
v∈Hs

′,γ(D)
v 6=0

|(ρ−γv, ργu)L2(D)|
‖v‖Hs′,γ(D)

= sup
v∈Hs

′,γ(D)
v 6=0

‖v‖H0,γ(D)

‖v‖Hs′,γ(D)

‖u‖H0,−γ(D)

≤ c ‖u‖Hs,−γ(D)

for all u ∈ C∞comp(D\Y ), the last estimate is a consequence of continuous embeddings

Hs,−γ(D) ↪→ H0,−γ(D) and Hs′,γ(D) ↪→ H0,γ(D). If still −s′ < 0 ≤ s but γ < 0,
then we obtain

‖u‖H−s′,−γ(D) = sup
v∈Hs

′,0(D)
v 6=0

|(v, ργu)L2(D)|
‖v‖Hs′,0(D)

= sup
v∈Hs

′,0(D)
v 6=0

‖v‖L2(D)

‖v‖Hs′,0(D)

‖ργu‖L2(D)

≤ c ‖u‖Hs,−γ(D)

for all u ∈ C∞comp(D \ Y ), the first equality being due to Lemma 3.4 and the last

estimate to the continuous embedding Hs′,0(D) ↪→ L2(D).
Finally, let −s′ ≤ −s < 0, i.e. s′ ≥ s. If γ ≥ 0, then

‖u‖H−s′,−γ(D) = sup
v∈Hs

′,γ(D)
v 6=0

|(v, u)L2(D)|
‖v‖Hs′,γ(D)

= sup
v∈Hs

′,γ(D)
v 6=0

|(v, u)L2(D)|
‖v‖Hs,γ(D)

‖v‖Hs,γ(D)

‖v‖Hs′,γ(D)

≤ c ‖u‖H−s,−γ(D)

for all u ∈ C∞comp(D\Y ), since Hs′,γ(D) is continuously embedded into Hs,γ(D). If
γ < 0, then

‖u‖H−s′,−γ(D) = sup
v∈Hs

′,0(D)
v 6=0

|(v, ργu)L2(D)|
‖v‖Hs′,0(D)

= sup
v∈Hs

′,0(D)
v 6=0

|(v, ργu)L2(D)|
‖v‖Hs,0(D)

‖v‖Hs,0(D)

‖v‖Hs′,0(D)

≤ c ‖u‖H̃−s,−γ(D)

for all u ∈ C∞comp(D \ Y ), where the first equality is due to Lemma 3.4 and the last

estimate due to the continuous embedding Hs′,0(D) ↪→ Hs,0(D).
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We have thus established the continuous embedding Hs,γ(D) ↪→ Hs′,γ(D) for all
s ≥ s′, as desired. �

We are in a position to say more about the re-indexed scales.

Lemma 4.3. If s ≥ 0, then the space Hs,γ(D) is continuously embedded into

H̃s,γ(D). On the contrary, if s ≤ 0, then the space H̃s,γ(D) is continuously embed-
ded into Hs,γ(D).

Proof. For s ∈ Z≥0 the statement is contained in Lemma 2.9. For non-integral
s ≥ 0, the lemma follows from inequality (2.10) which is still true in this case by
the definition of spaces in question. If s > 0, then

‖u‖H−s,γ(D) = sup
v∈Hs,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖Hs,γ(D)

≤ c sup
v∈H̃s,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖H̃s,γ(D)

= ‖u‖H̃−s,γ(D)

with c > 0 a constant independent on u, for Hs,γ(D) is continuously embedded

into H̃s,γ(D) provided s > 0. It follows that the space H̃s,γ(D) is continuously
embedded into Hs,γ(D) for s ≤ 0. For s = 0 the spaces coincide. �

Theorem 4.4. Suppose that s, s′ are real numbers, such that s ≥ s′, and ρ ∈
C [s]+1(D \ Y ) satisfies (2.1) for all α ∈ Zn≥0 with |α| ≤ [s] + 1. Then the space

H̃s,γ(D) is continuously embedded into H̃s′,γ(D). If s > s′, then the embedding is
actually compact.

Proof. To establish the continuous embedding H̃s,γ(D) ↪→ H̃s′,γ(D), one can ex-
ploit the same arguments as those in the proof of Lemma 2.9 (cf. inequality (2.9)
which is still true for all s ≥ s′ because of Corollary 3.2). Now we conclude, by

Corollary 3.2, that a sequence {uν} is bounded in H̃s,γ(D) if and only if the sequence
{ρ−γuν} is bounded in Hs(D). Then, by Rellich’s theorem, the sequence {ρ−γuν}
is precompact in Hs′(D), and so the sequence {uν} is precompact in H̃s′,γ(D),

provided that s > s′. This proves that the embedding H̃s,γ(D) ↪→ H̃s′,γ(D) is
compact for s > s′. �

Theorem 4.5. Let s, s′ ∈ R be such that s ≥ s′, and let ρ ∈ C [s]+1(D \ Y )
satisfy (2.1) for all multi-indices α with |α| ≤ [s] + 1. Then the space Hs,γ(D) is

continuously embedded into Hs′,γ(D). If moreover s > s′, then the embedding is
compact.

Proof. We will divide the proof into several steps.

Lemma 4.6. If s ≥ s′, then the space Hs,γ(D) is continuously embedded into

Hs′,γ(D).

Proof. It follows immediately from Lemma 3.4 and Theorem 4.2. �

Lemma 4.7. Suppose s > s′. Then the space Hs,γ(D) is compactly embedded into

Hs′,γ(D).

Proof. First let [s] = [s′] ≥ 0 or 0 ≤ s = [s′] + 1. If s′ < s and Σ is a bounded
subset of Hs,γ(D), then Σ is bounded in H[s],s+γ(D) and Op (ρ−γ)(Σ ) is bounded
in Hs(D), which is due to Theorem 2.6 and Lemma 2.8. By Rellich’s theorem,

Op (ρ−γ)(Σ ) is precompact in Hs′(D).
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By the weak compactness principle, there is a sequence {uν} in Σ weakly con-
vergent in Hs,γ(D) to an element u0 ∈ Hs,γ(D). Without loss of generality we may
certainly assume that u0 = 0. Then the sequence {ρ−γuν} contains a subsequence

which converges to zero in Hs′(D). Passing to a subsequence, if necessary, we may

actually assume that {ρ−γuν} converges to zero in Hs′(D) (and, in particular, in

H [s′](D)).

Hence it follows that {uν} converges to zero in H[s′],γ(D). Indeed, by construc-
tion, {ρ−γuν} converges to zero in L2(D), i.e. {uν} converges to zero in H0,γ(D).
This is enough, if [s′] = 0.

Suppose [s′] = 1. As the sequence (ρ−γuν)′ = −γρ−γ−1ρ′uν + ρ−γu′ν converges
to zero in L2(D), we see that the sequence

ρ(ρ−γuν)′ = −γρ−γρ′uν + ρ1−γu′ν

converges to zero in L2(D), too. This means that {u′ν} converges to zero in
H0,γ−1(D).

In general, for [s′] ≥ 1, let ∂αuν converge to zero in H0,γ−|α|(D) for all multi-
indices α satisfying 0 ≤ |α| ≤ m, where m ≤ [s′] − 1. If α is a multi-index of
|α| = m+ 1, then the sequence

∂α(ρ−γuν) = ρ−γ∂αuν +
∑
β≤α
β 6=α

(
α
β

)
∂α−βρ−γ ∂βuν

converges to zero in L2(D). From Lemma 2.7 it follows that ρ|α−β|+γ∂α−βρ−γ is
uniformly bounded in D. Hence the sequence

ρ|α|∂α(ρ−γuν) = ρ|α|−γ∂αuν +
∑
β≤α
β 6=α

(
α
β

)
ρ|α−β|+γ(∂α−βρ−γ) ρ|β|−γ∂βuν

converges to zero in L2(D), too. This means precisely that {∂αuν} converges to
zero in H0,γ−|α|(D). Summarizing we conclude by induction that {∂αuν} converges
to zero in H0,γ−|α|(D) for all α with |α| ≤ [s′], and hence {uν} converges to zero in

H[s′],γ(D), as desired.
On the other hand, {uν} is bounded in H[s],s+γ(D), and so an easy computation

shows that

‖uν‖2H[s′],δ(D)
=

∫
D
ρ−2δ

∑
|α|≤[s′]

ρ−s−γ+|α|∂αuν ρ
s+γ+|α|∂αuνdx

≤
∑
|α|≤[s′]

‖∂αuν‖H0,s+γ−|α|(D)‖∂αuν‖H0,2δ−s−γ−|α|(D)

≤ c ‖uν‖H[s′],2δ−s−γ(D),

which tends to zero, as ν → ∞, if 2δ − s− γ ≤ γ or, equivalently, δ ≤ (1/2)s + γ.
Now we see that

‖uν‖2H[s′],δ(D)
=

∫
D
ρ−2δ

∑
|α|≤[s′]

ρ(1/2)s+γ+|α|∂αuν ρ
−(1/2)s−γ+|α|∂αuνdx

≤
∑
|α|≤[s′]

‖∂αuν‖H0,2δ−(1/2)s−γ−|α|(D)‖∂αuν‖H0,(1/2)s+γ−|α|(D)

≤ c ‖uν‖H[s′],(1/2)s+γ(D)
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with c a constant independent of uν , provided that 2δ − (1/2)s − γ ≤ s + γ or,
equivalently, if δ ≤ (3/4)s + γ. From what has been proved above it follows that
the right-hand side tends to zero, as ν → ∞. On repeating the same arguments
once again we obtain

‖uν‖2H[s′],δ(D)
=

∫
D
ρ−2δ

∑
|α|≤[s′]

ρ(3/4)s+γ+|α|∂αuνρ
−(3/4)s−γ+|α|∂αuνdx

≤
∑
|α|≤[s′]

‖∂αuν‖H0,2δ−(3/4)s−γ−|α|(D)‖∂αuν‖H0,(3/4)s+γ−|α|(D)

≤ c ‖uν‖H[s′],(3/4)s+γ(D),

where c is a constant independent of uν , provided that 2δ − (3/4)s − γ ≤ s + γ
or, equivalently, if δ ≤ (7/8)s + γ. By the above, the right-hand tends to zero, as
ν →∞.

Now we may argue by the induction. Set

q0 = 1/2,
qj = (1 + qj−1)/2,

(4.3)

for j = 1, 2, . . .. Assume that ‖uν‖2H[s′],δ(D)
→ 0 for all δ satisfying δ ≤ qjs + γ.

Then

‖uν‖2H[s′],δ(D)
=

∫
D
ρ−2δ

∑
|α|≤[s′]

ρqjs+γ+|α|∂αuν ρ
−qjs−γ+|α|∂αuνdx

≤
∑
|α|≤[s′]

‖∂αuν‖H0,2δ−qjs−γ(D)‖∂
αuν‖H0,(qjs+γ(D)

≤ c ‖uν‖H[s′],qµs+γ(D)
,

the constant c being independent of uν , if 2δ − qjs− γ ≤ s+ γ or, equivalently, if
δ ≤ qj+1s+ γ. The right-hand side converges to zero, as ν →∞.

It is easily seen that {qj} is a decreasing sequence of positive numbers. Moreover,
it has the limit q = 1, as it follows from recurrent formula (4.3). Hence, {uν}
converges to zero in H[s′],s+γ(D), and so in the space Hs′,s′+γ(D), if s > s′ ≥ 0.

This just amounts to saying that Hs,γ(D) is compactly embedded into Hs′,γ(D), if
s > s′ ≥ 0.

Furthermore, if s > [s′] + 1 ≥ 0, then we have the following line of continuous
embeddings

Hs,γ(D) ↪→ H [s′]+1,γ(D) ↪→ Hs′,γ(D),

the first one being compact. Hence we conclude that the theorem is true for all
s ≥ 0 and s′ ≥ −1 satisfying s > s′.

If s′ < 0 ≤ s, then Lemmas 1.2 and 2.5 yield immediately the continuous em-
beddings

Hs,γ(D) ↪→ H [s],γ(D) ↪→ H0,γ(D) ↪→ Hs′,γ(D)

The last of these embeddings is compact because of Lemma 1.2 and the discussion
above. Hence the embedding Hs,γ(D) ↪→ Hs′,γ(D) is compact, too.

Finally, for s′ < s < 0 we may argue by duality. Namely, we have already proved
that the embedding e−s′,−s : H−s

′,γ(D) → H−s,γ(D) is compact (provided that

−s′ > −s > 0). As the spaces H−s,γ(D) and H−s
′,γ(D) are reflexive (see Remark

1.4), we see that the adjoint e′−s′,−s : Hs,γ(D) → Hs′,γ(D) is compact, too. If Σ
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is a bounded set in H−s,γ(D) then, by reflexivity, it contains a weakly convergent
sequence, say, {uν}. We get

‖uν − uµ‖Hs′,γ(D) = sup
v∈C∞comp(D\Y )

v 6=0

|(e−s′,−sv, uν − uµ)H0,γ(D)|
‖v‖H−s′,γ(D)

= sup
v∈C∞comp(D\Y )

v 6=0

|(v, e′−s′,−s(uν − uµ))H0,γ(D)|
‖v‖H−s′,γ(D)

= ‖e′−s′,−s(uν − uµ)‖Hs′,γ(D)

for all µ and ν. Since e′−s′,−s is compact, it follows that {e′−s′,−suν} is a Cauchy

sequence in Hs′,γ(D), and so {uν} is a Cauchy sequence in Hs′,γ(D) Hence, Σ is

precompact in Hs′,γ(D). �

Theorem 4.5 is proved. �

We are now in a position to establish embedding theorems for the initial scales
Hs,γ(D) and H̃s,γ(D).

Corollary 4.8. Let s, s′ ∈ Z, k = max{|s|, |s′|} and let ρ ∈ Ck(D\Y ) satisfy (2.1)
for all multi-indices α with |α| ≤ k. If s > s′ and γ > γ′, then Hs,γ(D) is compactly

embedded into Hs′,γ′(D).

Proof. By definition, Hs,γ(D) = Hs,γ−s(D). Under the hypothesis of the corollary
we have s ≥ s′ + 1. But then Theorem 4.5 yields the compact embedding

Hs,γ(D) ↪→ Hs−∆s,γ−s(D) = Hs−∆s,γ−∆s(D)

with any ∆s > 0. Choose ∆s ∈ (0, 1) in such a way that 0 < ∆s < γ − γ′. Then
Theorem 4.2 and Lemma 4.1 yield continuous embeddings

Hs−∆s,γ−∆s(D) ↪→ Hs−1,γ−∆s(D) ↪→ Hs−1,γ
′
(D) ↪→ Hs

′,γ′(D),

showing the corollary. �

Corollary 4.9. Let s ∈ R be non-integral and let ρ ∈ C [|s|]+1(D \ Y ) satisfy (2.1)

with |α| ≤ [|s|] + 1. If γ > γ′ then Hs,γ(D) is compactly embedded into H[s],γ′(D).

Proof. As we already mentioned, Hs,γ(D) = Hs,γ−s(D). Under the hypothesis of
the lemma we have [s] + 1 > s > [s]. But then Theorem 4.5 yields the compact
embedding

Hs,γ(D) ↪→ Hs−∆s,γ−s(D) = Hs−∆s,γ−∆s(D)

for all 0 < ∆s < s. Choose now ∆s in such a way that 0 < ∆s < s − [s] and
0 < ∆s < γ − γ′. Combining Theorem 4.5, Lemma 2.5 and Lemma 4.1 we get
continuous embeddings

Hs−∆s,γ−∆s(D) ↪→ H[s],γ−∆s(D) = H[s],γ′+(γ−γ′−∆s)(D) ↪→ H[s],γ′(D),

establishing the corollary. �

Lemma 4.10. Suppose s ∈ R≥0 and γ ≥ γ′. Then the following conditions are
equivalent:

1) Hs,γ(D) is continuously embedded into Hs,γ′(D);

2) Hs,γ(D) is continuously embedded into Hs,γ′(D);
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3) There is a constant c > 0, such that ‖ργ−γ′u‖Hs(D) ≤ c ‖u‖Hs,s(D) for all
u ∈ Hs,s(D).

4) There is a constant c > 0, such that ‖ργ−γ′u‖Hs(D) ≤ c ‖u‖Hs,0(D) for all

u ∈ Hs,0(D).

Proof. The equivalence of 1) and 3) follows immediately from the definition of the
spaces and Lemma 2.5, for

‖u‖2Hs,γ′ (D)
= ‖u‖2H[s],γ′ (D)

+ ‖ρs−γ
′
u‖2Hs(D) = ‖u‖2H[s],γ′ (D)

+ ‖ργ−γ
′
ρs−γu‖2Hs(D),

‖u‖2Hs,γ(D) = ‖u‖2H[s],γ(D) + ‖ρs−γu‖2Hs(D)

because ρs−γu ∈ Hs,s(D) for all u ∈ Hs,γ(D) (see Corollary 3.3).
Similarly, the equivalence of 2) and 4) follows immediately from the definition

of the spaces and Lemma 2.5. Indeed,

‖u‖2
Hs,γ′ (D)

= ‖u‖2H[s],s+γ′ (D)
+ ‖ρ−γ

′
u‖2Hs(D) = ‖u‖2H[s],s+γ′ (D)

+ ‖ργ−γ
′
ρ−γu‖2Hs(D),

‖u‖Hs,γ(D) = ‖u‖2H[s],s+γ(D) + ‖ρ−γu‖2Hs(D)

because ρ−γu ∈ Hs,0(D) for all u ∈ Hs,γ(D) (see Corollary 3.3).
Finally, the assertions 3) and 4) are equivalent for the spaces Hs,0(D) and

Hs,s(D) coincide. �

Thus, embeddings (3.1) allow one to establish natural embedding theorems for
the scales Hs,γ(D) and Hs,γ(D) with respect to the smoothness index s ∈ R. In
order to get analogous embedding theorems for the scales Hs,γ(D) and Hs,γ(D)
with respect to the weight index γ one needs to ensure an estimate

‖ρδu‖Hs(D) ≤ c ‖u‖Hs,s(D)

for all u ∈ Hs,s(D) with s ∈ R≥0 and δ > 0, where c is a constant depending on
s and δ but not on u. For integer s such an estimate follows from Lemma 2.5 and
Theorem 2.6 immediately. Our task is to derive the estimate for all non-integral s.
However, it may cause the function ρ to satisfy additional restrictions, cf. Section
5 below.

Lemma 4.11. Assume s ∈ R≥0 and γ ≥ γ′. Then H̃s,γ(D) is continuously em-

bedded into H̃s,γ′(D) if and only if there is a constant c > 0, such that

‖ργ−γ
′
u‖Hs(D) ≤ c ‖u‖Hs(D)

for all u ∈ C∞(D \ Y ).

Proof. The lemma follows from the definition of the spaces involved immediately,
for

‖u‖H̃s,γ′ (D) = ‖ρ−γ
′
u‖2Hs(D) = ‖ργ−γ

′
ρ−γu‖2Hs(D),

‖u‖2
H̃s,γ(D)

= ‖ρ−γu‖2Hs(D)

because ρ−γu ∈ H̃s,0(D) for all u ∈ H̃s,γ(D) (see Corollary 3.2). �

To finish the preliminary discussion, let us describe the boundary properties of
functions of the weighted spaces.
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For this purpose we assume that Y ∩ ∂D is situated on an (n− 2) -dimensional

surface in ∂D. Define the trace on ∂D for functions of Hs,γ(D) and H̃s,γ(D), where
1/2 < s < 3/2. As before, we require

ρ ∈ C1(D \ Y ),
ρ′ ∈ L∞(D),

(4.4)

if 1/2 < s ≤ 1, and

ρ ∈ C2(D \ Y ),
ρ′, ρρ′′ ∈ L∞(D),

(4.5)

if 1 < s < 3/2. These assumptions enable us to keep the definitions of spaces

Hs,γ(∂D) and H̃s,γ(∂D) with 0 ≤ s < 1 and all the statements proved above for

Hs,γ(D) and H̃s,γ(D), where 0 ≤ s ≤ 3/2.
More precisely, let ds stand for the area form on ∂D induced by the Lebesgue

measure in Rn. We introduce the scalar product

(u, v)H0,γ(∂D) =

∫
∂D

ρ−2γuv ds (4.6)

for u, v ∈ Ccomp(∂D \ Y ). Denote by H0,γ(∂D) the completion of Ccomp(∂D \ Y )
with respect to the norm

‖u‖H0,γ(∂D) =
(∫

∂D
ρ−2γ |u|2 ds

)1/2
induced by (4.6).

For 0 < s < 1, we write Hs,γ(∂D) for the completion of C0,1
comp(∂D \ Y ) with

respect to the norm

‖u‖Hs,γ(∂D) =
(
‖u‖2H0,γ(∂D) + ‖ρs−γu‖2Hs(∂D)

)1/2
.

Similarly, let H̃s,γ(∂D) denote the completion of C0,1
comp(∂D\Y ) with respect to the

norm

‖u‖H̃s,γ(∂D) = ‖ρs−γu‖2Hs(∂D).

Suppose u ∈ Hs,γ(D), where s ≥ 0. From Corollary 3.3 it follows that the
function v = ρs−γu belongs to Hs,s(D). By the above, Hs,s(D) is continuously
embedded into Hs(D), which is by the very definition for non-integral s ≥ 0 and
due to Lemma 2.8 for s ∈ Z≥0. Since for the Sobolev spaces Hs(D) with s > 1/2
there is well-defined bounded linear trace operator ts : Hs(D) → L2(∂D) (see for
instance [Tri78, § 4.7]), we define

tsu := ργ−sts(ρ
s−γu) (4.7)

to be the trace of a function u ∈ Hs,γ(D) on the boundary. For the re-indexed scale
Hs,γ(D) we introduce the trace operator by

tsu := ργts(ρ
−γu), (4.8)

if u ∈ Hs,γ(D) with s > 1/2.

On arguing in much the same way we define the traces of functions of H̃s,γ(∂D)

and H̃s,γ(∂D) at the surface ∂D.
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Theorem 4.12. Let Y ∩ ∂D be situated on an (n− 2) -dimensional surface in ∂D,
1/2 < s < 3/2, and (4.4) or (4.5) be fulfilled. Then formulas (4.7) and (4.8) induce
bounded trace operators

H̃s,γ(D) → H̃s−1/2,γ−1/2(∂D),

H̃s,γ(D) → H̃s−1/2,γ(∂D)

provided s > 1/2. Moreover, these trace operators possess bounded right inverses.

Proof. From the trace theorem for Sobolev spaces it follows that the operator ts
maps Hs(D) continuously to Hs−1/2(∂D), if 1/2 < s < 3/2 (see for instance
[McL00]). And Corollary 3.2 yields the desired continuity of the trace operator,
showing the first part of the theorem.

Pick u0 ∈ H̃s−1/2,γ−1/2(∂D). By definition, the function v0 = ρs−γu0 belongs to

H̃s−1/2,s−1/2(∂D) = Hs−1/2(∂D). By the trace theorem for Sobolev spaces, there
is a function v ∈ Hs(D), such that ts(v) = v0 on ∂D and

‖v‖Hs(D) ≤ c ‖v0‖Hs−1/2(∂D)

= c ‖v0‖H̃s−1/2,s−1/2(∂D) (4.9)

= c ‖ρs−γu0‖H̃s−1/2,s−1/2(∂D),

where the constant c is independent of u0. Moreover, Corollary 3.2 implies readily
that

‖ρs−γu0‖H̃s−1/2,s−1/2(∂D) = ‖u0‖H̃s−1/2,γ−1/2(∂D). (4.10)

As the function u0 is the limit of a sequence {uν} ⊂ C0,1
comp(D \ Y ) in the

H̃s−1/2,γ−1/2(∂D) -norm, we see that v0 is the limit of vν = ρs−γuν ∈ C0,1
comp(D\Y )

in the Hs−1/2(∂D) -norm. By (4.9), the sequence {vν} converges to v in Hs(D). In
particular, v ∈ Hs(D, Y ).

Now we set u = ργ−sv. As H̃s,s(D) = Hs(D, Y ), the function v actually belongs
to Hs,s(D) and

‖u‖H̃s,γ(D) = ‖ργ−sv‖H̃s,γ(D) = ‖v‖Hs(D),

which is due to Corollary 3.2. Combining this equality with (4.9) and (4.10) yields
the second part of the theorem. �

Theorem 4.13. Let Y ∩ ∂D be situated in an (n− 2) -dimensional surface in ∂D,
1/2 < s < 3/2 and (4.4) or (4.5) be fulfilled. Then formulas (4.7) and (4.8) induce
bounded trace operators

Hs,γ(D) → Hs−1/2,γ−1/2(∂D),
Hs,γ(D) → Hs−1/2,γ(∂D).

Proof. From the trace theorem for Sobolev spaces we deduce that the operator
ts maps Hs(D) continuously to Hs−1/2(∂D), if 1/2 < s < 3/2 (see for instance
[McL00]).

Using Theorem 2.6 and Lemma 2.8 we see that ρ−γu ∈ H1,0(D) ⊂ H1(D), and so
ρ−γts(u) ∈ H1/2(∂D) for all u ∈ H1,γ(D). According to Lemma 2.8 and Theorem
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2.6, we obtain

‖ρ−γts(u)‖H1/2(∂D) = ‖ts(ρ−γu)‖H1/2(∂D)

≤ c ‖ρ−γu‖H1(D)

≤ c ‖ρ−γu‖H1,0(D)

≤ c ‖u‖H1,γ(D)

(4.11)

for all u ∈ C0,1
comp(D \ Y ), where c stands for a constant independent of u and

different in diverse applications.
If 1/2 < s < 3/2 is non-integral, i.e. different from 1, then, by definition,

ρ−γu ∈ Hs(D) for all u ∈ Hs,γ(D). Hence it follows that ρ−γτs(u) ∈ Hs−1/2(∂D).
Furthermore,

‖ρ−γts(u)‖Hs−1/2(∂D) = ‖ts(ρ−γu)‖Hs−1/2(∂D)

≤ c ‖ρ−γu‖Hs(D) (4.12)

≤ c ‖u‖Hs,γ(D)

for all u ∈ C∞comp(D\Y ), with c a constant independent of u and different in diverse
applications.

Let 1 ≤ j ≤ n and φ a smooth function in D. For any u ∈ C∞comp(D \ Y ), the
Gauß-Ostrogradskii formula yields∫
∂D

ρ−(2s+2γ−1)|u|2φ νjds =

∫
D
∂j

(
ρ−(2s+2γ−1)|u|2φ

)
dx

=

∫
D

(−2s− 2γ + 1)|ρ−(s+γ)u|2 (∂jρ)φdx+

∫
D

(ρ−(s+γ−1)∂ju)(ρ−(s+γ)u)φdx

+

∫
D

(ρ−(s+γ)u)(ρ−(s+γ−1)∂ju)φdx+

∫
D
|ρ−(s+γ)u|2ρ(∂jφ)dx.

(4.13)

To continue the proof we need several lemmas.

Lemma 4.14. If 1 ≤ s < 3/2, then formula (4.8) induces a bounded trace operator
ts : Hs,γ(D)→ Hs−1/2,γ(∂D).

Proof. Choose a coordinate neighborhood Uν of a boundary point, such that Uν∩D
is given by xn > fν(x′), where fν is a Lipschitz function on Rn−1. Then the part
of the surface ∂D in Uν is given as the graph of the function xn = fν(x′), cf.
the beginning of Section 1. A finite number of such Uν cover all of ∂D. Choose
a partition φν ∈ C∞comp(Uν) of unity on ∂D which is subordinate to the covering
{Uν}.

By the Rademacher theorem, each Lipschitz function is differentiable almost
everywhere and its derivatives are bounded. Hence, using (4.13) we arrive in a
familiar manner at an estimate∫

∂D
ρ−(2s+2γ−1)|u|2ds =

∑
ν

∫
∂D∩Uν

ρ−(2s+2γ−1)|u|2φνds

≤ c ‖u‖2H1,s+γ(D) (4.14)

= c ‖u‖2H[s],s+γ(D)
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for all u ∈ C∞comp(D \ Y ), with c a constant independent of u.
Combining (4.11), (4.12) and (4.14) we see that

‖ts(u)‖2Hs−1/2,γ(∂D) = ‖ts(u)‖2Hs−1/2,s−1/2+γ(∂D)

= ‖ts(u)‖2H0,s−1/2+γ(∂D) + ‖ts(u)‖2Hs−1/2(∂D)

≤ c ‖u‖2Hs,γ(D)

for all u ∈ C∞comp(D \ Y ). It follows that (4.8) induces a bounded trace operator

Hs,γ(D)→ Hs−1/2,γ(∂D) for 1 ≤ s < 3/2. �

In order to proceed with 1/2 < s < 1 we need the following lemma similar to
Lemma 1.5.

Lemma 4.15. If 1/2 < s < 1 then the total derivative operator maps Hs,γ(D)
continuously to Hs−1,γ(D,Cn).

Proof. By definition, Hs−1,γ(D) is the dual space of H1−s,γ(D) = H1−s,1−s+γ(D)
with respect to the pairing in H0,γ(D). Therefore, given any u ∈ C∞(D \ Y ), we
get

‖u′‖Hs−1,γ(D,Cn) = sup
v∈H1−s,γ(D,Cn)

v 6=0

|(v, u′)H0,γ(D,Cn)|
‖v‖H1−s,γ(D,Cn)

.

On the other hand,

(v, u′)H0,γ(D,Cn) = (ρ−γv, ρ−γu′)L2(D,Cn) = (ρ−γv, (ρ−γu)′ + γρ−γ−1ρ′u)L2(D,Cn).

By definition, (ρ−γu) ∈ Hs(D) for any u ∈ Hs,γ(D). Hence, using Lemma 1.5 we
see that

|(ρ−γv, (ρ−γu)′)L2(D,Cn)| ≤ ‖ρ−γv‖H1−s(D,Cn)‖(ρ−γu)′‖Hs−1(D,Cn)

≤ c ‖ρ−γv‖H1−s(D,Cn)‖ρ−γu‖Hs(D).

(4.15)

Moreover, since u ∈ H0,s+γ(D) for all u ∈ Hs,γ(D), and ρ′ ∈ L∞(D), we conclude
that

|(ρ−γv, ρ−γ−1ρ′u)L2(D,Cn)| = |(ρs−1−γv, ρ−s−γρ′u)L2(D,Cn)|
≤ ‖ρ′‖L∞(D,Cn)‖ρs−1−γv‖L2(D)‖ρ−s−γu‖L2(D)

= ‖ρ′‖L∞(D,Cn)‖v‖H0,1−s+γ(D)‖u‖H0,s+γ(D)

(4.16)

provided that v ∈ H1−s,γ(D,Cn) = H1−s,1−s+γ(D,Cn).
Finally, (4.15) and (4.16) along with the Schwarz type inequality for the pairing

in H0,γ(D) imply that

|(v, u′)H0,γ(D,Cn)| ≤ c ‖v‖H1−s,γ(D,Cn)‖u‖Hs,γ(D)

for all u ∈ C∞comp(D \ Y ) and v ∈ Hs−1,γ(D,Cn), with c a constant independent on
u and v. Hence

‖u′‖Hs−1,γ(D,Cn) ≤ c ‖u‖Hs,γ(D)

for all u ∈ C∞comp(D \ Y ), as desired. �

Lemma 4.16. If 1/2 < s < 1, then (4.8) induces a bounded trace operator
Hs,γ(D)→ Hs−1/2,γ(∂D).
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Proof. It is clear that the first and the last integrals on the right-hand side of
formula (4.13) are dominated by

c ‖u‖2H0,s+γ(D)

for all u ∈ C∞comp(D \ Y ), with c a constant independent of u.
On the other hand, using Corollary 3.3 we conclude that the multiplication by

ρ1−2s maps Hs,γ(D) continuously to the space Hs,1−2s+γ(D) = Hs,1−s+γ(D). As
0 < 1− s < 1/2 < s, Theorem 4.2 yields a continuous embedding

Hs,1−s+γ(D) ↪→ H1−s,1−s+γ(D) = H1−s,γ(D).

Hence it follows that the multiplication by ρ1−2s maps Hs,γ(D) continuously to the
space H1−s,γ(D).

It is known that multiplication by a smooth function is a bounded operator in
Hs(D) for |s| ≤ 1/2 (see for instance [Agr02, p. 865]). Hence,

‖φv‖2H1−s,γ(D) = ‖φv‖2H0,1−s+γ(D) + ‖φ(ρ−γv)‖2H1−s(D)

≤ c
(
‖v‖2H0,1−s+γ(D) + ‖ρ−γv‖2H1−s(D)

)
= c ‖v‖2H1−s,γ(D)

for all v ∈ C∞comp(D \ Y ), where c is a constant independent of v. In particular,
since 0 < 1− s < s, we get

‖φ(ρ1−2su)‖H1−s,γ(D) ≤ c ‖ρ1−2su‖H1−s,γ(D) ≤ c ‖u‖Hs,γ(D)

for all u ∈ C∞comp(D \ Y ), the constant c being independent on u and different
in diverse applications. On combining this estimate with Lemma 4.15 we readily
deduce that∣∣∣ ∫

D
(ρ−(s+γ−1)∂ju)(ρ−(s+γ)u)φdx

∣∣∣ = |(∂ju, φ(ρ1−2su))H0,γ(D)|

≤ c ‖∂ju‖Hs−1,γ(D)‖φ(ρ1−2su)‖H1−s,γ(D)

≤ c ‖u‖2Hs,γ(D)

(4.17)

for all u ∈ C∞comp(D \ Y ).
Arguing as in the proof of Lemma 4.14 and using equality (4.13) and estimate

(4.17), we obtain ∫
∂D

ρ−(2s+2γ−1)|u|2ds ≤ c ‖u‖2Hs,γ(D) (4.18)

for all u ∈ C∞comp(D \ Y ), with c a constant independent of u. From (4.12) and
(4.18) it follows that (4.8) induces a bounded trace operator

ts : Hs,γ(D)→ Hs−1/2,γ−1/2(∂D) = Hs−1/2,γ(∂D),

provided that 1/2 < s < 1. �

Finally, as Hs,γ(D) = Hs,γ−s(D), we derive immediately a bounded trace oper-
ator Hs,γ(D)→ Hs−1/2,γ−1/2(∂D), thus completing the proof of Theorem 4.13, as
desired. �
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Remark 4.17. For s ≥ 3/2, one needs to increase the smoothness of ∂D \ Y in
order to obtain adequate trace theorems, for, in general, there is no way to define a
bounded trace operator H3/2(D)→ H1(∂D) for domains with Lipschitz boundary
(see for instance [McL00]).

5. Regular singularities at the boundary

Clearly, the properties of weighted spaces essentially depend on the asymptotic
behavior of the weight function ρ near Y . Hence, in order to discuss further prop-
erties of the scales Hs,γ(D) and H̃s,γ(D), we need to impose additional conditions
on the function ρ. Actually this will lead us to typical situations of analysis on
manifolds with singularities.

Assume that there is a neighbourhood U of the set Y in D and smooth functions
ρ1, . . . , ρn−1 in U , such that

|dρ1(x) ∧ . . . ∧ dρn−1(x) ∧ dρ(x)| ≥ c (5.1)

for all x ∈ U \ Y , where c > 0 is a constant independent of x. Note that the
differential form in (5.1) has the form (det J(x))dx, where J(x) is the Jacobi matrix
of the functional system ρ1, . . . , ρn−1, ρ. Hence, condition (5.1) means that the
modulus of det J is bounded away from zero in U \ Y . Thus, ρ can be completed
to a coordinate system in U .

Theorem 5.1. Let s be a natural number and ρ ∈ Cs(D \ Y ) satisfy (2.1) for all
multi-indices α with |α| ≤ s. If (5.1) holds then the normed spaces Hs,0(D) and
Hs(D, Y ) are isomorphic.

Proof. Using a suitable partition of unity near the boundary, we can restrict our-
selves to those functions u ∈ C∞comp(D\Y ) whose supports are contained in a small

neighborhood U of a point x0 ∈ Y in D. Shrinking U , if necessary, we introduce
the new coordinates

y1 = ρ1(x),
. . .

yn−1 = ρn−1(x),
r = ρ(x)

in U . By assumption, there is a constant c > 0, such that

|det J | =
∣∣∣ det

∂(y, r)

∂x

∣∣∣ ≥ c (5.2)

in U \ Y
The summands involving the derivatives of order s in the norms ‖u‖Hs,s(D) and

‖u‖Hs(D) coincide. To handle lower order terms, we fix a multi-index α ∈ Zn≥0 with

|α| ≤ s− 1 and set uα(r) = ∂αu (y, r).
Since u vanishes in a neighbourhood of Y , it follows that the support of u is

contained in a set of the form U ′ × (0, R) in the new coordinates (y, r), where U ′

is an open set in the hyperplane Rn−1 of variables y. Then, by Fubini theorem, we
obtain

c

∫
U

ρ2(|α|−s)|∂αu|2dx ≤
∫
U

ρ2(|α|−s)|∂αu|2|det J(x)|dx

=

∫
U ′

∫ R

0

|r|α|−suα(r)|2dr dy.

(5.3)
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We next make use of the Hardy-Littlewood inequality for measurable functions
on the half-axis with values in a normed space. Namely,

‖rp−1
∫ r

0

f(%)d%‖Lq(R≥0) ≤
(

1

q′
− p
)−1
‖rp f(r)‖Lq(R≥0), (5.4)

where 1 ≤ q ≤ ∞, 1/q + 1/q′ = 1, and p < 1/q′. Take f(r) = (∂/∂r)uα(r) and
q = 2, p = |α| − s+ 1, and observe that

|f(r)| =
∣∣∣ n∑
j=1

∂j (∂αu)
∂xj

∂r

∣∣∣ ≤ c n∑
j=1

|∂j∂αu|, (5.5)

which is due to (5.1). It follows from Hardy-Littlewood inequality (5.4) and (5.2),
(5.5) that ∫

U

ρ2(|α|−s)|∂αu|2dx ≤ c
∑

|β|=|α|+1

‖∂βu‖2H0,s−|β|(D),

for all u under consideration, with c a constant independent of u.
Repeated application of Hardy-Littlewood inequality (5.4) and (5.2), (5.5) there-

fore yields ∑
|α|≤s−1

∫
U

ρ2(|α|−s)|∂αu|2dx ≤ c
∑
|β|=s

‖∂βu‖2L2(U)

for all u supported in U and vanishing in a neighborhood of Y , where c is a constant
independent of u.

Summarizing we conclude that the Hs,s(D) -norm (or, equivalently, Hs,0(D) -
norm) is majorised by the Hs(D) -norm on functions vanishing near Y . This com-
pletes the proof. �

To clarify the geometric nature of regularity condition (5.1), we consider several
examples.

Example 5.2. Let D be the cube (0, 1)n in Rn and Y be the q -dimensional edge
of the cube given by

Y = {x ∈ [0, 1]n : xq+1 = . . . = xn = 0},

where 0 ≤ q ≤ n − 1. By construction, the set Y contains the origin. Obviously,
the function

ρ(x) =
( n∑
j=q+1

(xj)2
)1/2

is continuous in the closure of D and satisfies 0 ≤ ρ(x) ≤
√
n− q in D.

Furthermore, it is easy to see that

∂αρ(x) =

|α|∑
k=0

pα,k(x)

ρ|α|+k−1(x)
, (5.6)

where pα,k(x) are homogeneous polynomials of degree k. Indeed, we argue by
induction with respect to |α|. For |α| = 1 the statement follows from the obvious
formulas ∂jρ(x) = 0, if 1 ≤ j ≤ q, and ∂jρ(x) = xj/ρ(x), if q+ 1 ≤ j ≤ n. Suppose
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(5.6) holds for |α| = l. If now |α| = l + 1, then one can write ∂α = ∂j∂
β , where

|β| = l and 1 ≤ j ≤ n. Hence

∂αρ(x) = ∂j

|β|∑
k=0

pβ,k(x)

ρ|β|+k−1(x)

=

|β|∑
k=0

∂jpβ,k(x)

ρ|β|+k−1(x)
+

|β|∑
k=0

(1− k − |β|)xj pβ,k(x)

ρ|β|+k+1(x)

=

|α|∑
k=0

pα,k(x)

ρ|α|+k−1(x)
,

for ∂jpβ,k(x) and xjpβ,k(x) are homogeneous polynomials of degrees k−1 and k+1,
respectively.

We have thus proved (5.6) for all multi-indices α. From (5.6) it follows immedi-
ately that (2.1) is fulfilled for all α ∈ Zn≥0.

Obviously, |ρ′| = 1 holds in D \ Y . Our next objective is to show that there are
smooth functions ρ1, . . . , ρn−1 in D, such that

|dρ1 ∧ . . . ∧ dρn−1 ∧ dρ| ≥ c

in D \ Y , where c is a positive constant, cf. (5.1). We argue by induction in q. For
q = n − 1, we get ρ(x) = xn. On choosing ρj(x) = xj , for j = 1, . . . , n − 1, one
obtains

|dρ1 ∧ . . . ∧ dρn−1 ∧ dρ| ≡ 1

in D, as desired. If q = n − 2, then we have dρ = (xn−1dxn−1 + xndxn)/ρ. On
choosing

ρj(x) = xj , for j = 1, . . . , n− 2,
ρn−1(x) = xn−1 − xn,

we get

|dρ1 ∧ . . . ∧ dρn−1 ∧ dρ| = (xn−1 + xn)/ρ ≥ 1

in D \ Y . Now, for arbitrary 1 ≤ q ≤ n− 3, one verifies that

dρ =
( n∑
j=q+1

xjdxj
)
/ρ.

On choosing

ρj(x) = xj , for j = 1, . . . , q,
ρq+1(x) = xq+1 − xn,

. . .
ρn−1(x) = xn−1 − xn,

we get

|dρ1 ∧ . . . ∧ dρn−1 ∧ dρ| = (xq+1 + . . .+ xn)/ρ ≥ 1

in D \ Y .
Thus, (5.1) holds for the domain D and the function ρ(x) under consideration,

i.e., Y is a regular singular set in D.
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Example 5.3. Let D be the cube (0, 1)3 in R3 and Y the boundary of the face
{x ∈ [0, 1]3 : x3 = 0} on ∂D. In other words, Y is the boundary of the square [0, 1]2

in the plane of variables x′ = (x1, x2) The function

ρ(x) =


((x2)2 + (x3)2)1/2, if x1 − x2 ≥ 0, x1 + x2 ≤ 1,
((1− x1)2 + (x3)2)1/2, if x1 − x2 ≥ 0, x1 + x2 ≥ 1,
((1− x2)2 + (x3)2)1/2, if x1 − x2 ≤ 0, x1 + x2 ≥ 1,
((x1)2 + (x3)2)1/2, if x1 − x2 ≤ 0, x1 + x2 ≤ 1,

just amounts to the distance from a point x ∈ R3 to Y . This function is continuous
in D, takes on its values in the interval [0,

√
5/2] and vanishes on Y . Moreover, ρ

is C∞ in all of D except for Y and the diagonal hyperplanes {x1 − x2 = 0} and
{x1 + x2 = 1}. The singularities of ρ at the hyperplanes are caused by the corner
points of Y .

It is easy to verify that

ρ′(x) =


(0, x2, x3)/ρ(x), if x1 − x2 ≥ 0, x1 + x2 ≤ 1,
(x1 − 1, 0, x3)/ρ(x), if x1 − x2 ≥ 0, x1 + x2 ≥ 1,
(0, x2 − 1, x3)/ρ(x), if x1 − x2 ≤ 0, x1 + x2 ≥ 1,
(x1, 0, x3)/ρ(x), if x1 − x2 ≤ 0, x1 + x2 ≤ 1,

whence |ρ′(x)| = 1 for all x ∈ D at which ρ is differentiable.
Moreover, let α ∈ Z3

≥0 be an arbitrary multi-index. In the domain x1 − x2 > 0,

x1 + x2 < 1 the power ρ|α|−1 is a homogeneous function of degree |α| − 1 in x2

and x3, while the derivative ∂αρ is homogeneous of degree 1 − |α|. It follows that
ρ|α|−1∂αρ is a homogeneous function of degree zero in x2 and x3, and so it is
bounded. The same reasoning shows that ρ|α|−1∂αρ is bounded in the other three
domains of function ρ. Hence, inequalities (2.1) are fulfilled for all multi-indices
α ∈ Z3

≥0.

Our next objective is to show that there are smooth functions ρ1, ρ2 in D, such
that

|dρ1 ∧ dρ2 ∧ dρ| ≥ c

in D \ Y , where c is a positive constant. To this end, we consider two piecewise
affine functions

ρ1(x) =


x1 − x3, if x1 − x2 ≥ 0, x1 + x2 ≤ 1,
1− x2 − x3, if x1 − x2 ≥ 0, x1 + x2 ≥ 1,
1− x1 − x3, if x1 − x2 ≤ 0, x1 + x2 ≥ 1,
x2 − x3, if x1 − x2 ≤ 0, x1 + x2 ≤ 1,

and

ρ2(x) =


x2 − x3, if x1 − x2 ≥ 0, x1 + x2 ≤ 1,
1− x1 − x3, if x1 − x2 ≥ 0, x1 + x2 ≥ 1,
1− x2 − x3, if x1 − x2 ≤ 0, x1 + x2 ≥ 1,
x1 − x3, if x1 − x2 ≤ 0, x1 + x2 ≤ 1,

for x ∈ D. Obviously, they are continuous in the closure of D and smooth away
from the diagonal hyperplanes {x1−x2 = 0} and {x1 +x2 = 1}. A straightforward
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calculation shows that

dρ1 ∧ dρ2 ∧ dρ =


((x2 + x3)/ρ(x))dx, if x1 − x2 ≥ 0, x1 + x2 ≤ 1,
−(((1− x1) + x3)/ρ(x))dx, if x1 − x2 ≥ 0, x1 + x2 ≥ 1,
(((1− x2) + x3)/ρ(x))dx, if x1 − x2 ≤ 0, x1 + x2 ≥ 1,
−((x1 + x3)/ρ(x))dx, if x1 − x2 ≤ 0, x1 + x2 ≤ 1,

whence |dρ1∧dρ2∧dρ| ≥ 1 for all x ∈ D except for those in the diagonal hyperplanes
of D.

We thus conclude that the function ρ possesses the desired properties except for
the differentiability in the complement of Y in D. This function can be certainly
smoothen away from Y in D, however, the smoothing might lead to the violation
of uniform estimate |dρ1 ∧ dρ2 ∧ dρ| ≥ c with c > 0 at the corner points of Y . This
actually reflects the fact that the corner points are of higher order than the smooth
edges approaching them in the hierarchy of singularities of the stratified manifold
D.

One may ask what singularities of smooth structure of the closure of D survive
under the analytical condition (5.1). By the very nature they seem to be a kind
of singularities of transversal intersection like conic points or edges. The function
ρ(x) enters itself into the new smooth structure of D as a new singular coordinate.
The hypersurface {ρ(x) = 0} intersects the boundary of D along the closed set Y .
Depending on D the intersection might be a manifold with boundary which bears
singularities itself, cf. Example 5.2. We restrict our discussion to those Y which
are closed manifolds of dimension 0 ≤ q < n − 1. For q = 0, we think of Y as a
conic point of the surface ∂D. For q ≥ 1, we think of Y as an edge which is locally
a cone bundle over Rq. Then, near Y , the function ρ(x) can be thought of as the
distance from x to Y .

In the case where Y is a smooth edge of dimension 0 ≤ q ≤ n−1 on the boundary
of D Theorem 5.1 is well known, see for instance Theorem 2.1 of [SST03].

Corollary 5.4. Let the hypotheses of Theorem 5.1 hold. Then the spaces Hs,γ(D)

and H̃s,γ(D) coincide for all s ∈ R.

Proof. If s is a non-negative integer, then

Hs,γ(D) = Op (ρs−γ)Hs,s(D)

= Op (ρs−γ)Hs,0(D)

= Op (ρs−γ)Hs(D, Y )

= Op (ρs−γ)H̃s,s(D)

= H̃s,γ(D),

where the first and the fifth equalities are consequences of Theorem 2.6, the second
and the fourth equalities hold by definition, and the third equality is due to Theorem
5.1. For negative integral s the equality follows from what has already been proved
by duality.

For all real s ≥ 0, the assertion follows from Lemma 3.6, Theorem 3.7 and what
has been shown for integral s ≥ 0. To complete the proof for real s < 0, it suffices
to exploit duality. �

Under reasonable assumptions on coefficients, partial differential operators act
properly in weighted Sobolev spaces Hs,γ(D) of fractional smoothness, too.
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Theorem 5.5. Let s ∈ R≥0 and ρ ∈ C [s]+1(D \ Y ) satisfy (2.1) for |α| ≤ [s] + 1.
If the norms of the spaces Hk,k(D) and Hk(D, Y ) are equivalent for all integer k
with [s] −m ≤ k ≤ [s] + 1, then any differential operator of order m ≤ s of type
(2.11) maps

1) Hs,γ(D) continuously to Hs−m,γ(D);

2) H̃s,γ(D) continuously to H̃s−m,γ(D).

Proof. By Corollary 3.3 and Theorem 4.2, the operator ρ−1 maps Hs,γ(D) continu-
ously to Hs−1,γ−1(D). Hence, it maps Hs,γ(D) continuously to Hs−1,γ(D) because

of (2.2). Of course, a similar statement holds for the scale H̃s,γ(D), for we may
apply Corollary 3.2 and Theorem 4.4.

Under the hypotheses of the theorem the norms of the spaces Hk,γ(D) and

H̃k,γ(D) are equivalent for [s] −m ≤ k ≤ [s] + 1, which is due to Corollaries 3.2
and 3.3. Then, for s ∈ Z≥0, the statement follows from Corollary 5.4 and Lemma
2.10. For fractional s, on applying Lemma 2.10 we conclude immediately that the
operators

∂j : H̃ [s],γ(D) → H̃ [s]−1,γ(D),

∂j : H̃ [s]+1,γ(D) → H̃ [s],γ(D)

are bounded. By Lemma 3.6, the space H̃s,γ(D) can be obtained as the result of

interpolation between H̃ [s+1],γ(D) and H̃ [s],γ(D). Then, familiar interpolation argu-

ments show (see for instance [Tri78]) that the operator ∂j : H̃s,γ(D)→ H̃s−1,γ(D)
is bounded.

Since Lemma 2.10 implies the boundedness of the operator ∂j acting from

H [s],γ(D) to H [s]−1,γ(D), we see that ∂j maps Hs,γ(D) continuously to Hs−1,γ(D),
too, by the definition of the norms included. This establishes the theorem for the
first order differential operators, for multiplication by a function from C [s],s−[s](D)
induces a bounded operator on the scale Hs(D) of Sobolev space of smoothness
s ∈ R≥0.

For higher order partial differential operators one may argue by induction, com-
pleting the proof. �

Corollary 5.6. Suppose that ∂D be a Lipschitz surface, and ρ ∈ C1(D \ Y ) and
ρ′ ∈ L∞(D). If the norms of the spaces H1,1(D) and H1(D, Y ) are equivalent then
the bounded trace operator t1 : H1,γ(D) → H1/2,γ−1/2(∂D) has a bounded right
inverse.

Proof. Pick u0 ∈ H1/2,γ−1/2(∂D). By definition, the function v0 = ρ1−γu0 belongs
to H1/2,1/2(∂D) ⊂ H1/2(∂D). By the trace theorem for Sobolev spaces, there is a
function v ∈ H1(D), such that t1(v) = v0 on ∂D and

‖v‖H1(D) ≤ c ‖v0‖H1/2(∂D) ≤ c ‖v0‖H1/2,1/2(∂D) (5.7)

where the constant c and c̃ is independent of v0 and can be different in diverse
applications. The right-hand side of (5.7) is majorised by

‖ρ1−γu0‖H1/2,1/2(∂D) ≤ c ‖u0‖H1/2,γ−1/2(∂D), (5.8)

which is due to Corollary 3.3.
As u0 is the H1/2,γ−1/2(∂D) -limit of a sequence uν ∈ C∞comp(D \ Y ), it follows

that v0 is the H1/2(∂D) -limit of the sequence vν = ρ1−γuν ∈ C∞comp(D \ Y ). By

(5.7), the sequence {vν} converges to v in the space H1(D). Therefore, we get
v ∈ H1(D, Y ).
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Set now u = ργ−1v. As the norms of the spaces H1,1(D) and H1(D, Y ) are
equivalent, v belongs to H1,1(D) whence, by Corollary 3.3,

‖u‖H1,γ(D) ≤ c ‖v‖H1,1(D) ≤ c ‖v‖H1(D) (5.9)

with c a constant independent of v.
Combining inequalities (5.7), (5.8) and (5.9) we arrive readily at the desired

assertion. �

Corollary 5.7. Let ∂D be a Lipschitz surface and (4.4), (4.5) be fulfilled. If the
norms of the spaces H1,1(D) and H1(D, Y ) are equivalent, then the trace operator
Hs,γ(D) → Hs−1/2,γ−1/2(∂D) has a bounded right inverse for 1/2 < s ≤ 1. If,
in addition, the norms of H2,2(D) and H2(D, Y ) are equivalent then the statement
holds for 1/2 < s < 3/2.

Proof. This follows from Corollary 5.4 and Theorem 4.12. �

Remark 5.8. If s ≥ 3/2, then one needs to increase the smoothness of ∂D \ Y (see
Remark 4.17).

We finish this section by shortly discussing singularities of non-transversal in-
tersections. Choosing ρ(x) as a singular coordinate, we regularise the singularity
at the boundary, still making the coefficients of differential operators under consid-
erations singular with respect to the new smooth structure. This motivates hard
analysis of singularities.

Example 5.9. Consider the planar domain D ⊂ R2 with a cuspidal point at the
origin given by

D = {(x1, x2) : −(x2)2 < x1 < (x2)2, 0 < x2 < 1}.
Thus, Y = {0} and we take ρ(x) = (x2)2, so that |ρ′(x)| = 2x2 and ρ fails to satisfy
regularity condition (5.1). The change of variables

y1 = x1,
y2 = (x2)2

transforms D into the cone D̃ = {(y1, y2) : |y1| < y2, 0 < y2 < 1} with Lipschitz
boundary. The new function ρ̃(y) = y2 satisfies |ρ̃′(y)| = 1, i.e. regularity condition
(5.1) is fulfilled. From

det J(y) = det
∂x

∂y
=

1

2

1√
ρ(y)

we see immediately that the space H0,γ(D) = H̃0,γ(D) is pulled back under the

change x = x(y) to the space H0,γ+1/4(D̃) = H̃0,γ+1/4(D̃). On the other hand, we
have

∂x1 = ∂y1 ,

∂x2 = 2
√
y2 ∂y2

under the change of variables. It is easily verified that the degenerate elliptic
operator

∂2x1 +
1

4

1

ρ(x)
∂2x2

in D transforms to the degenerate elliptic operator

∂2y1 + ∂2y2 +
1

2

1

ρ̃(y)
∂y2 =

1

(y2)2

(
(y2∂y1)2 + (y2∂y2)2 − 1

2
(y2∂y2)

)
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in D̃. This latter is specified within the framework of Fuchs-type operators in D̃
developed in Section 8 below.

Part 3. Meromorphic families of compact operators

We begin with the discussion of main tools in the study of spectral properties of
compact operators.

6. Weak perturbations of compact selfadjoint operators

Let H be a separable (complex) Hilbert space and A : H → H a linear operator.
As usual, λ ∈ C is said to be an eigenvalue of A if there is a non-zero element u ∈ H,
such that (A − λI)u = 0, where I is the identity operator in H. The element u is
called an eigenvector of A corresponding to the eigenvalue λ. When supplemented
with the zero element, all eigenvectors corresponding to an eigenvalue λ form a
vector subspace E(λ) in H. It is called an eigenspace of A corresponding to λ,
and the dimension of E(λ) is called the (geometric) multiplicity of λ. The famous
spectral theorem of Hilbert and Schmidt asserts that the system of eigenvectors of
a compact selfadjoint operator in H is complete.

Theorem 6.1. Let A : H → H be compact and selfadjoint. Then all eigenvalues
of A are real, each non-zero eigenvalue has finite multiplicity, and the system of
all eigenvalues counted with their multiplicities is countable and has the only accu-
mulation point λ = 0. Moreover, there is an orthonormal basis in H consisting of
eigenvectors of A.

As already mentioned, a non-selfadjoint compact operator might have no eigen-
values. However, each non-zero eigenvalue (if exists) is of finite multiplicity, see
for instance [DS63]. Similarly to the Jordan normal form of a linear operator on a
finite-dimensional vector space one uses the more general concept of root functions
of operators.

More precisely, an element u ∈ H is called a root vector of A corresponding to
an eigenvalue λ ∈ C if (A− λI)mu = 0 for some natural number m. The set of all
root vectors corresponding to an eigenvalue λ form a vector subspace in H whose
dimension is called the (algebraic) multiplicity of λ.

If the linear span of the set of all root elements is dense in H one says that
the root elements of A are complete in H. Aside from selfadjoint operators, the
question arises under what conditions on a compact operator A the system of its
root elements is complete.

If the dimension of H is finite then the completeness is equivalent to the possi-
bility of reducing the matrix A to the Jordan normal form. Of course, this is always
the case for linear operators in complex vector spaces, see, for instance, [VdW67,
§ 88].

In order to formulate the simplest completeness result for Hilbert spaces we need
the definition of the order of a compact operator A. Since A : H → H is compact,
the operator A∗A is compact, selfadjoint and non-negative. Hence it follows that
A∗A possesses a unique non-negative selfadjoint compact square root (A∗A)1/2

often denoted by |A|. By Theorem 6.1 the operator |A| has countable system of
non-negative eigenvalues sν(A) which are called the s -numbers of A. It is clear
that if A is selfadjoint then sν = |λν |, where {λν} is the system of eigenvalues of
A.
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Definition 6.2. The operator A is said to belong to the Schatten class Sp, with
0 < p <∞, if ∑

ν

|sν(A)|p <∞.

Note that S2 is the set of all Hilbert-Schmidt operators while S1 is the ideal of
all trace class operators.

The following lemma will be very useful in the sequel; it is taken from [DS63]
(see also [GK69, Ch. 2, § 2]).

Lemma 6.3. Let A be a compact operator of class Sp, with 0 < p < ∞, in a
Hilbert space H, and B be a bounded operator in H. Then the compositions BA
and AB belong to Sp.

After M.V. Keldysh a compact operator A is said to be of finite order if it belongs
to a Schatten class Sp. The infimum of such numbers p is called the order of A.
The following result is usually referred to as theorem on weak perturbations of
compact selfadjoint operators. It was first proved in [Kel51], see also [Kel71]. Here
we present its formulation from [GK69, Ch. 5, § 8].

Theorem 6.4. Let A0 be a compact selfadjoint operator of finite order in H. If
δA is a compact operator and the operator A0(I + δA) is injective, then the system
of root elements of A0(I + δA) is complete in H and, for any ε > 0, all eigenvalues
of A0(I + δA) (except for a finite number) belong to the angles | arg λ| < ε and
| arg λ− π| < ε. Moreover,

1) If A0 has only a finite number of negative eigenvalues, then A0(I + δA) has
at most a finite number of eigenvalues in the angle | arg λ− π| < ε.

2) If A0 has only a finite number of positive eigenvalues, then A0(I + δA) has
at most a finite number of eigenvalues in the angle | arg λ| < ε.

As is easy to see, both operators A0(I + δA) and A0 are in fact injective under
the hypothesis of Theorem 6.4.

However there is a more general concept than the notion of a root element of
a linear operator. It is the concept of a characteristic function for a meromorphic
family of linear operators.

7. Characteristic values of meromorphic families

Now let B be a Banach space and L(B) the algebra of all bounded linear oper-
ators acting in B.

Suppose λ0 ∈ C and F (λ) is a holomorphic function in a punctured neighborhood
of λ0 which takes on its values in L(B).

The point λ0 is called a characteristic point of F (λ) if there exists a holomorphic
function u(λ) in a neighborhood of λ0 with values in B, such that u(λ0) 6= 0 but
F (λ)u(λ) extends to a holomorphic function near λ0 and vanishes at this point.
We call u(λ) a root function of F (λ) at λ0.

Assume that λ0 is a characteristic point of F (λ) and u(λ) a root function at λ0.
The order of λ0 as a zero of F (λ)u(λ) is called the multiplicity of u(λ), and the
vector u0 = u(λ0) an eigenvector of F (λ) at λ0. If supplemented by the zero vector,
the eigenvectors of F (λ) at λ0 form a vector space. The closure of the set of all
eigenvectors of F (λ) at λ0 is called the kernel of F (λ) at λ0, and it is denoted by
kerF (λ0).
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By the rank of an eigenvector u0 ∈ B is meant the maximum of the multiplicities
of all root functions u(λ) such that u(λ0) = u0, if the set of multiplicities of these
functions is bounded. If this set is unbounded, the rank of u0 is taken to be infinity.

Suppose that kerF (λ0) is of finite dimension I and that the ranks of all eigen-
vectors u0 ∈ kerF (λ0) are finite. By a canonical system of eigenvectors of F (λ)
at λ0 we mean any system of eigenvectors u0,1, . . . , u0,I with the property that the
rank of u0,1 is maximal among the ranks of all eigenvectors of F (λ) at λ0 and the
rank of u0,i is maximal among the ranks of all eigenvectors of F (λ) at λ0 in any
direct complement in kerF (λ0) of the linear span of the vectors u0,1, . . . , u0,i−1, for
i = 2, . . . , I.

Let ri be the rank of u0,i. It is easy to see that the rank of any eigenvector u0
corresponding to the characteristic point λ0 is equal to one of the ri. Consequently,
the numbers r1, . . . , rI are uniquely determined by the function F (λ). Note that
a canonical system of eigenvectors is not uniquely determined in general. The
numbers ri are said to be partial null multiplicities of the characteristic point λ0
of F (λ). Following [GS71], we call n(F (λ0)) = r1 + . . . + rI the null multiplicity
of the characteristic point λ0 of F (λ). If F (λ) has no root functions at λ0, we set
n(F (λ0)) = 0.

We now apply these arguments again, with F (λ) replaced by the inverse family
F−1(λ). Suppose that λ0 ∈ C is a characteristic point of F−1(λ) and the kernel of
F−1(λ) at λ0 is of finite dimension J . If %1, . . . , %J are the partial null multiplicities
of this characteristic point of F−1(λ), then we call %1, . . . , %J the partial polar
multiplicities of the characteristic point λ0 of F (λ). Moreover, we call the number
n(F−1(λ0)) = %1 + . . . + %J the polar multiplicity of the characteristic point λ0
of F (λ) and denote it by p(F (λ0)). If F−1(λ) has no root functions at λ0, we set
p(F (λ0)) = 0.

The quantity m(F (λ0)) = n(F (λ0)) − p(F (λ0)) is called the multiplicity of the
characteristic point λ0 of F (λ).

If F (λ) is holomorphic at the point λ0 and the operator F (λ0) is invertible, then
λ0 is called a regular point of F (λ). Note that the multiplicity of any regular point
of F (λ) is equal to zero.

In the scalar case it is evident that the multiplicity of a characteristic point λ0
of a function F (λ) is equal to the multiplicity of the zero if λ0 is a zero of F (λ),
and is equal to the order of the pole if λ0 is a pole.

Assume that λ0 is a pole of the operator-valued function F (λ). In some neigh-
borhood of λ0 we get an expansion

F (λ) =

∞∑
j=−m

Fj(λ− λ0)j , (7.1)

where Fj ∈ L(B).
If the operators F−1, . . . , F−m in (7.1) are of finite rank, then F (λ) is called

finitely meromorphic at λ0.
The operator-valued function F (λ) is said to be of Fredholm type at the point λ0

if the operator F0 in the expansion (7.1) is Fredholm. This is equivalent to saying
that the value of F at λ0 is a Fredholm operator.

A point λ0 is called a normal point of F (λ) if F (λ) is finitely meromorphic and
of Fredholm type at λ0 and if all points of some punctured neighborhood of λ0 are
regular for F (λ).
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By [GS71], each normal point λ0 of F (λ) is a normal point of F−1(λ). If, in
addition, λ0 is a pole of either F (λ) or F−1(λ), then it is a characteristic point of
finite multiplicity of the other.

Expanding F (λ) and u(λ) as Laurent series (7.1) and

u(λ) =

∞∑
k=0

uk (λ− λ0)k,

respectively, we get

F (λ)u(λ) =

r−1∑
n=−m

( ∑
j+k=n

Fjuk

)
(λ− λ0)n +O

(
|λ− λ0|r

)
for λ close to λ0. It follows that for u(z) to be a root function of F (λ) at λ0 of
multiplicity r ≥ 1 it is necessary and sufficient that

n+m∑
k=0

Fn−kuk = 0

for all n = −m, . . . , r − 1.
The derivatives

uk =
1

k!
u(k)(λ0),

k = 1, . . . , r− 1, are said to be associated vectors for the eigenvector u0 = u(λ0) of
F (λ) at λ0. Any subsystem u0, u1, . . . , us with s ≤ r − 1 is called a Jordan chain
of length s+ 1 of F (λ) at λ = λ0.

Suppose u0,1, . . . , u0,I is a canonical system of eigenvectors of F (λ) at λ0, I being
the dimension of kerF (λ0). Denote by ri the rank of u0,i. If, for every i = 1, . . . , I,
the vectors u0,i, . . . , uri−1,i form a Jordan chain consisting of an eigenvectors and
associated vectors of F (λ) at λ0, then the system(

u0,i, u1,i, . . . , uri−1,i

)
i=1,...,I

is called a canonical system of Jordan chains corresponding to the characteristic
point λ0 of F (λ).

Let F (λ) be a holomorphic function in a punctured neighborhood of λ0 with
values in L(B). Then we define the transposed family F ′(λ) with values in L(B′),
where B′ is the dual of B, by the equality 〈F ′g, u〉 = 〈g, Fu〉 for all g ∈ B′ and
u ∈ B.

The following result is proved by Gokhberg and Sigal [GS71] for meromorphic
operator-valued functions as a consequence of their normal factorisation theorem.
They refer to Keldysh [Kel51] for the case of polynomials with values in operators
on a Hilbert space.

Theorem 7.1. Let λ0 be a characteristic point of the operator-valued function
F (λ), which is a normal point of F (λ). Then there are biorthonormal canonical
systems

(u0,i, u1,i, . . . , uri−1,i)i=1,...,I ,

(g0,i, g1,i, . . . , gri−1,i)i=1,...,I
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of eigenvectors and associated vectors of F (λ) and F ′(λ) at λ0, respectively, such
that

p.p. F−1(λ) =

I∑
i=1

−1∑
j=−ri

(λ− λ0)j
ri+j∑
k=0

〈gk,i, ·〉uri+j−k,i.

Here, the abbreviation p.p. indicates the principal part of the Laurent expansion
around λ0.

Part 4. Spectral properties of Sturm-Liouville problems

By a Sturm-Liouville problem in Rn we mean any boundary value problem for so-
lutions of second order elliptic partial differential equation with Robin-type bound-
ary condition. The coefficients of the Robin boundary condition are allowed to have
discontinuities of the first kind on the boundary of a connected open subset of ∂D.
The boundary of this domain is assumed to be a subset of Y . Thus, mixed bound-
ary conditions are included as well. We are interested in studying the spectrum
of such problems in weighted Sobolev spaces. For this purpose, we fix a function
ρ ∈ C1(D \ Y )∩C(D), such that ρ′ ∈ L∞(D). As before, we define ρ ≡ 1 if the set
Y is empty.

8. The Sturm-Liouville problem

Using Lemma 2.10 and Theorem 5.5, we consider a second order partial differ-
ential operator A of divergence form

A(x, ∂)u = −
n∑

i,j=1

∂i(ai,j(x)∂ju) +

n∑
j=1

aj(x)∂ju+ a0(x)u

in the domain D. The coefficients ai,j are assumed to be complex-valued functions
of class L∞(D), and ρ aj ∈ L∞(D), ρ2a0 ∈ L∞(D).

Let v(x) = (v1(x), . . . , vn(x)) be a vector field in Rn defined at the surface ∂D.
The coordinates v1(x), . . . , vn(x) are assumed to be bounded measurable functions
on ∂D.

Denote by ∂v the oblique derivative

∂v =

n∑
j=1

vj(x)∂j

and introduce a first order boundary operator B = ∂v + B0. We allow the vector
v(x) to vanish on a closed subset S of ∂D. Our focus will be upon the case where S
is the closure of an open connected subset of ∂D with piecewise smooth boundary
and Y = ∂S. Similar considerations apply to the case where the boundary of S is
a part of Y .

Concerning the summand B0 we assume that it is a densely defined linear op-
erator in H0,γ(∂D) whose domain contains C∞comp(∂D \ Y ). Moreover, we require
that

kerB0 ⊂ H0,γ(∂D, S). (8.1)

In the simplest case, the operator B0 is given by multiplication B0u := b0u with a
function b0 ∈ L∞loc(∂D \ Y ) which does not vanish on S.
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Consider the following boundary value problem with Robin-type condition on
the surface ∂D. Given data f in D and u0 on ∂D, find a distribution u in D which
satisfies {

A(x, ∂)u = f in D,
B(x, ∂)u = u0 at ∂D. (8.2)

In order to get substantial results, we put specific restrictions on the operators
A and B.

Suppose that the matrix

(ai,j(x))i=1,...,n
j=1,...,n

is Hermitian and satisfies
n∑

i,j=1

ai,j(x)wiwj ≥ 0 (8.3)

for all (x,w) ∈ D × Cn, and

n∑
i,j=1

ai,j(x)ξiξj ≥ m |ξ|2 (8.4)

for all (x, ξ) ∈ D × (Rn \ {0}), where m is a positive constant independent of x
and ξ. Estimate (8.4) is nothing but the statement that the operator A is strongly
elliptic. It should be noted that, since the coefficients of the operator and the
functions under consideration are complex-valued, inequalities (8.3) and (8.4) are
weaker than the (strong) coercivity of the Hermitian form, i.e. the existence of a
constant m such that

n∑
i,j=1

ai,j(x)wiwj ≥ m |w|2 (8.5)

for all (x,w) ∈ D × (Cn \ {0}).
To specify the choice of the boundary operator we assume for a moment that

ai,j are continuous up to the boundary of D. Consider the complex vector field c
at ∂D, whose components are

cj(x) =

n∑
i=1

ai,j(x)νi(x),

where ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector of ∂D at x ∈ ∂D.
From condition (8.4) it follows that there is a complex-valued function b1(x) on the
boundary with the property that the difference v(x) − b1(x)c(x) is orthogonal to
ν(x) for almost all x ∈ ∂D. In fact, the pointwise equality (v − b1c, ν)x = 0 just
amounts to

b1(x) =
(v(x), ν(x))x
(c(x), ν(x))x

for x ∈ ∂D. Obviously, b1(x) is a bounded measurable function on ∂D and the
vector field t(x) = v(x)− b1(x)c(x) takes on its values in the complexified tangent
hyperplane Tx(∂D) of ∂D at x. Summarizing we conclude that if ∂D is a Lipschitz
surface then

B(x, ∂) = b1(x)∂c + ∂t +B0,

where t(x) is a tangential vector field on ∂D whose components belong to L∞(∂D).
By assumption, both b1 and t vanish on S. Concerning the behavior of b1 in ∂D\S
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we require that b1(x) 6= 0 for almost all x ∈ ∂D \ S and 1/b1 is integrable away
from Y on ∂D \ S.

From now on we drop the continuity assumption for the coefficients ai,j(x) and
we keep the same choice for B. Note that in this case the Shapiro-Lopatinskii
condition can be violated on the smooth part of ∂D \ S unless the coefficients
ai,j(x) are real-valued.

As we wish to study the spectral properties of problem (8.2) we will mostly be
concentrated on the case where u0 = 0. Then, since on S the boundary operator
reduces to B = B0 satisfying (8.1), the functions of H0,γ(D), satisfying Bu = 0 at
∂D, actually vanish on S.

Since we want to apply standard perturbation arguments, we split the coefficient
a0 into two parts

a0 = a0,0 + ∆a0,

where a0,0 is a non-negative function satisfying ρ2a0,0 ∈ L∞(D). In order to split
the operator B0 we denote by χS the characteristic function of the set S on ∂D.
Set

B0 = B0,0 + ∆B0,

where

B0,0u = χSu+ b1ρ
γΨ∗Ψ(ρ−γu)

with a bounded linear operator Ψ : Hr(∂D)→ L2(∂D) and −1/2 ≤ r ≤ 1/2. The
range of r is motivated by trace and duality arguments, cf. Theorem 4.13. It might
be more natural to think of Ψ as a bounded operator Hr,r(∂D)→ H0,0(∂D), but for
coercive forms and regular singularities it is the same anyway. As but one example
of Ψ we show a pseudodifferential operator of order r on ∂D. As b1 ≡ 0 on S we
conclude that condition (8.1) is fulfilled for B0,0. Note that the pair {1, ∂c} is the
so-called Dirichlet system of order 1 on ∂D, and so the pair {χS , ∂c} is a Dirichlet
system of order one on S. Furthermore, {Ψ∗Ψ , ∂c} inherits the surjectivity property
of Dirichlet systems on ∂D\S, at least if the operator Ψ∗Ψ has an inverse in L2(D)
(cf. Theorem 8.4 and Example 8.8).

For r = 0, a typical operator Ψ is given by Ψu = ψu, where ψ is a function
on ∂D locally bounded away from Y . Then (Ψ∗Ψu)(x) = |ψ(x)|2u(x) is invertible
provided that |ψ(x)| ≥ c > 0. If ∂D is C2 -smooth then a model operator Ψ is
Ψ = (1 + ∆∂D)r/2 where ∆∂D is the Laplace-Beltrami operator on the boundary
(see Example 8.8).

If the functional

‖u‖+,γ =
( n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D) + ‖√a0,0u‖2H0,γ(D) + ‖Ψ(ρ−γu)‖2L2(∂D)

)1/2
defines a norm on H1,γ(D, S), we denote by H+,γ(D) the completion of H1,γ(D, S)
with respect to this norm. Obviously, H+,γ(D) is a Hilbert space with scalar
product

(u, v)+,γ =

n∑
i,j=1

(ai,j∂ju, ∂iv)H0,γ(D)+(a0,0u, v)H0,γ(D)+(Ψ(ρ−γu),Ψ(ρ−γv))L2(∂D).

From now on we assume that the space H+,γ(D) is continuously embedded into
the space H0,γ(D), i.e.,

‖u‖H0,γ(D) ≤ c ‖u‖+,γ (8.6)
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for all u ∈ H1,γ(D, S), where c is a constant independent of u. This condition is
not particularly restrictive.

Lemma 8.1. Let there be δ ≥ 0 and c(δ) > 0, such that

a0,0 ≥ c(δ) ρ−2δ (8.7)

in D. Then the space H+,γ(D) is continuously embedded into H0,γ+δ(D). In par-
ticular, (8.6) holds with c = (c(δ))−1.

Proof. From (8.7) it follows that the norm ‖√a0,0 · ‖H0,γ(D) is not weaker than the

norm ‖ · ‖H0,γ+δ(D) on H1,γ(D, S). This establishes the continuous embedding

H+,γ(D) ↪→ H0,γ+δ(D),

for the norm ‖ · ‖+,γ is not weaker than ‖√a0,0 · ‖H0,γ(D). Now, (8.6) follows from
Lemma 2.5. �

Write ι for the inclusion

H+,γ(D) ↪→ H0,γ(D), (8.8)

which is continuous by (8.6).
The sesquilinear form (·, ·)+,γ is said to be coercive if there is a constant c > 0,

such that
‖u‖H1,γ(D) ≤ c ‖u‖+,γ (8.9)

for all u ∈ H1,γ(D, S), that is the space H+,γ(D) is continuously embedded into
H1,γ(D, S).

Our next concern will be adequate embedding theorems for the space H+,γ(D).
To this end, denote by H−,γ(D) be the completion of H1,γ(D, S) with respect to
the norm

‖u‖−,γ = sup
v∈H+,γ(D)

v 6=0

|(v, u)H0,γ(D)|
‖v‖+,γ

.

As explained in Lemma 1.3, the space H−,γ(D) can be specified as the dual of
H+,γ(D) with respect to the pairing

(v, u)γ = lim
ν→∞

(v, uν)H0,γ(D).

According to Lemma 1.2, the spaceH0,γ(D) is continuously embedded intoH−,γ(D);
we write ι′ for this embedding.

Since the norm ‖ · ‖H0,γ(D) majorises the norm ‖ · ‖−,γ , we deduce from Lemma

2.4 that C∞comp(D) is dense in H−,γ(D), too.
The following lemma is contained in [ST12, Lemma 6.1]. It corresponds to

Y = ∅, i.e., ρ ≡ 1. In [ST12], we write HSL(D) for the space H+,γ(D) =: H+(D)
and H−SL(D) for H−,γ(D) =: H−(D).

Lemma 8.2. Let Y = ∅. Suppose estimate (8.5) is fulfilled. Then there are
continuous embeddings

H+(D) ↪→ H1(D, S),
H−1(D) ↪→ H−(D)

if at least one of the following conditions holds:
1) S is not empty;

2)

∫
D
a0,0(x)dx > 0;
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3) ‖Ψ(1)‖L2(∂D) > 0.

In particular, the form (·, ·)+ is coercive and in either of the cases inclusion (8.8)
is compact.

Lemma 8.3. Assume that Y = ∅ and S = ∂D. Then there are continuous embed-
dings

H+(D) ↪→ H1(D, ∂D),
(H1(D, ∂D))′ ↪→ H−(D).

In particular, the sesquilinear form (·, ·)+ is coercive and inclusion (8.8) is com-
pact.

Proof. The lemma follows from the G̊arding inequality. The compactness of inclu-
sion (8.8) is due to the Rellich theorem. �

The following theorem will be used to include into consideration the non-coercive
forms, too.

Theorem 8.4. Suppose Y = ∅, the coefficients ai,j are smooth in a neighborhood

of D, and there is r ∈ [−1/2, 1/2] and a constant c > 0, such that

‖Ψu‖L2(∂D) ≥ c ‖u‖Hr(∂D) (8.10)

for all u ∈ H1(∂D, S). If moreover a0,0 ≥ c1 > 0 in D or the operator A is strongly

elliptic in a neighbourhood X of D and∫
X

n∑
i,j=1

ai,j∂ju∂iu dx ≥ m ‖u‖2L2(X ) (8.11)

for all u ∈ C∞comp(X ), with m > 0 a constant independent of u, then the space

H+(D) is continuously embedded into Hs(D), where s is given by

s =

 1/2− ε with ε > 0, if r = 0,
1/2, if r = 0 and ∂D ∈ C2,
1/2 + r, if 0 < |r| ≤ 1/2.

(8.12)

Proof. By shrinking X , if necessary, we may assume that the coefficients ai,j are

continuous in X . As the operator

A0 = −
n∑

i,j=1

∂i(ai,j∂j)

is strongly elliptic on X , the classical G̊arding inequality yields the existence of a
Hodge parametrix G for the Dirichlet problem related to A0 in X (see for instance

[LU73] or [Sch60]). To formulate this more precisely, we define H̃−1(X ) to be the
dual space of H1(X , ∂X ) with respect to the L2(X ) -pairing, as discussed above.

Clearly, H−1(X ) is continuously embedded into H̃−1(X ). As usual, the operator

A0 is given the domain H1(X , ∂X ) to map it to H̃−1(X ). Then there are bounded
linear operators

G : H̃−1(X ) → H1(X , ∂X ),

H : H̃−1(X ) → H(X )

satisfying
GA0 = I −H,
A0G = I −H (8.13)
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on H1(X , ∂X ) and H̃−1(X ), respectively, where H(X ) ⊂ H1(X , ∂X ) ∩ C∞(X )
stands for the null space of the Dirichlet problem in X . The dimension of H(X ) is
finite and H is actually the L2(X ) -orthogonal projection onto H(X ). Moreover, H
maps Hs(X ) continuously to C∞(X ) for all s ≥ −1.

On applying the trace theorem for Sobolev spaces we introduce the so-called
Poisson operator P : H1/2(∂X )→ H1(X ) to satisfy

P ◦ t1 + GA0 = I −H,

where t1 stands for the trace operator H1(X )→ H1/2(∂X ). In particular, the range
of P is L2(X ) -orthogonal to H(X ). If the boundary of X is a Lipschitz surface
then the Green and Poisson operators bear adequate regularity properties. More
precisely,

G : H̃s−1(X ) → Hs+1(X ),
∂jG : Hs−1(X ) → Hs(X ),
P : Hs+1/2(∂X ) → Hs+1(X )

(8.14)

for all 0 ≤ s < 1/2 (see for instance [Agr11a, § 12]). If ∂X is C2 -smooth, then the
mappings

G : L2(X ) → H2(X ),
P : H3/2(∂X ) → H2(X )

are continuous, too. We need subtler properties of the operators G and P.

Lemma 8.5. If 0 < r ≤ 1/2 then the operator ∂cG extends to map H−r−1/2(X )
continuously to H−r(∂X ).

It should be noted that invoking the space H−r−1/2(X ) instead of H̃−r−1/2(X )
is of crucial importance here.

Proof. If f ∈ H−r−1/2(X ), then Gf is known to be a strong solution of the Dirichlet
problem, i.e. there is a sequence {uν} of functions in H2(X ) vanishing at the
boundary and satisfying

‖uν − Gf‖H−r+3/2(X ) → 0,
‖A0uν − f‖H−r−1/2(X ) → 0

(8.15)

as ν → ∞, see [Sch60], [ST03]. In particular, using (8.14) we deduce that, for
each 1 ≤ j ≤ n, the operator ∂jG maps the space H−r−1/2(X ) continuously to

H−r+1/2(X ) and

‖∂juν − ∂jGf‖H−r+1/2(X ) → 0

when ν →∞.
Let u ∈ H2(X ) vanish at ∂X . From the existence of a continuous right inverse

t−1r+1/2 for the trace operator

tr+1/2 : Hr+1/2(X )→ Hr(∂X )
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it follows that

‖∂cu‖H−r(∂X ) = sup
v∈Hr(∂X )

v 6=0

|(v, ∂cu)L2(∂X )|
‖v‖Hr(∂X )

= sup
v∈H1(∂X )

v 6=0

|(tr+1/2t
−1
r+1/2v, ∂cu)L2(∂X )|
‖v‖Hr(∂X )

= sup
v∈H1(∂X )

v 6=0

lim
ν→∞

|(tr+1/2gν , ∂cu)L2(∂X )|

‖v‖Hr(∂X )

where {gν} is a sequence of smooth functions on X approximating g := t−1r+1/2v in

Hr+1/2(X ). Furthermore,

(tr+1/2gν , ∂cu)L2(∂X ) = (

n∑
i,j=1

ai,j∂jgν , ∂iu)L2(X ) + (gν , A0u)L2(X ),

which is due to Stokes’ formula and (8.13). Since r+1/2 > 1/2, for r > 0, it follows
from Lemma 1.5 that there is a constant c, such that

‖∂jgν‖Hr−1/2(X ) ≤ c ‖gν‖Hr+1/2(X )

for all ν, and

lim
ν→∞

∂jgν = ∂jg

in Hr−1/2(X ). As ai,j ∈ L∞(X ), formula (8.14) implies that

|
n∑

i,j=1

ai,j∂jgν , ∂iu)L2(X )| ≤ c

n∑
i,j=1

‖∂jgν‖Hr−1/2(X )‖∂iu‖H−r+1/2(X )

≤ c

n∑
j=1

‖∂jgν‖Hr−1/2(X ) ‖u‖H−r+3/2(X )

with c a constant independent of u and ν and different in diverse applications. On
the other hand,

|(gν , A0u)L2(X )| ≤ ‖gν‖Hr+1/2(X )‖A0u‖H−r−1/2(X )

and therefore

‖∂cu‖H−r(∂X ) ≤ c
(
‖u‖H−r+3/2(X ) + ‖A0u‖H−r−1/2(X )

)
, (8.16)

where c is a constant independent of u.
In particular, we get

‖∂c(uµ − uν)‖H−r(∂X ) ≤ c
(
‖uµ − uν‖H−r+3/2(X ) + ‖A0(uµ − uν)‖H−r−1/2(X )

)
for all ν and µ. From (8.15) it follows readily that the sequence {∂cuν} converges in
H−r(∂X ). We write ∂cGf for the limit, which is thus well defined for any function
f ∈ H−r−1/2(X ). By construction and (8.16),

‖∂cGf‖H−r(∂X ) ≤ c
(
‖Gf‖H−r+3/2(X ) + ‖f‖H−r−1/2(X )

)
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for all f ∈ H−r−1/2(X ). Finally, (8.14) with s = −r + 1/2 implies the continuity
of the operator ∂cG : H−r−1/2(X ) → H−r(∂X ) constructed above, provided that
0 < r ≤ 1/2. �

Lemma 8.6. If 0 < r ≤ 1/2, then the operator P maps Hr(∂X ) continuously to
Hr+1/2(X ). If, moreover, ∂D ∈ C2, then the operator P maps L2(∂X ) continuously
to H1/2(X ).

Proof. Indeed, fix 0 < r ≤ 1/2. On arguing as in (8.15) we obtain

‖Pu‖Hr+1/2(X ) = sup
v∈H−r−1/2(X )

v 6=0

|(v,Pu)L2(X )|
‖v‖H−r−1/2(X )

= sup
v∈H−r−1/2(X )

v 6=0

|(A0Gv +Hv,Pu)L2(X )|
‖v‖H−r−1/2(X )

= sup
v∈H−r−1/2(X )

v 6=0

|(A0Gv,Pu)L2(X )|
‖v‖H−r−1/2(X )

= sup
v∈H−r−1/2(X )

v 6=0

limν→∞ |(∂cgν , u)L2(∂X )|
‖v‖H−r−1/2(X )

for all u ∈ Hr(∂X ), where {gν} is a sequence of functions in H2(X ) vanishing at
the boundary and satisfying

‖gν − Gv‖H−r+3/2(X ) → 0,
‖A0gν − v‖H−r−1/2(X ) → 0

as ν →∞. Applying Lemma 8.5 yields

lim
ν→∞

|(∂cgν , u)L2(∂X )| ≤ c ‖v‖H−r−1/2(X ) ‖u‖Hr(∂X )

whence

‖Pu‖Hr+1/2(X ) ≤ c ‖u‖Hr(∂X )

with c a constant independent of u. This proves the continuity of the operator
P : Hr(∂X )→ Hr+1/2(X ), for 0 < r ≤ 1/2.

Finally, if r = 0 and ∂X ∈ C2, then we can exploit the familiar regularity theorem
for the Dirichlet problem in X . Our task is to show that the Poisson integral P maps
L2(∂X ) continuously into H1/2(X ). For this purpose, given any u ∈ H−1/2(∂X ),
we choose a sequence {uν} in H1/2(∂X ) converging to u in H−1/2(∂X ). Integrating
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by parts we get

‖Puν‖L2(X ) = sup
v∈L2(X )
v 6=0

|(v,Puν)L2(X )|
‖v‖L2(X )

= sup
v∈L2(X )
v 6=0

|(A0Gv +Hv,Puν)L2(X )|
‖v‖L2(X )

= sup
v∈L2(X )
v 6=0

|(A0Gv,Puν)L2(X )|
‖v‖L2(X )

≤ sup
v∈L2(X )
v 6=0

|(∂cGv, uν)L2(∂X )|
‖v‖L2(X )

≤ sup
v∈L2(X )
v 6=0

‖∂cGv‖H1/2(∂X )‖uν‖H−1/2(∂D)

‖v‖L2(X )

≤ c ‖uν‖H−1/2(∂X )

for all ν, where the constant c does not depend on ν. It follows that the sequence
{Puν} converges in L2(X ), and so the Poisson integral P induces a bounded linear
operator H−1/2(∂X ) → L2(X ). We now use a familiar interpolations argument
(see [LM72], [Tri78]). By interpolation, the Poisson integral P induces bounded
linear operators

Pθ : [H−1/2(∂X ), H1/2(∂X )]θ → [L2(X ), H1(X )]θ

for all 0 < θ < 1, where [H0, H1]θ means the interpolation space for a pair H0 ↪→ H1

of Hilbert spaces. As is known,

[L2(X ), H1(X )]θ = Hθ(X ),
[H−1/2(∂X ), H1/2(∂X )]θ = H1/2−θ(∂X ),

see for instance Theorems 9.6 and 12.5 of [LM72, Ch. I]. Therefore, choosing θ = 1/2
we deduce that P induces a bounded linear operator L2(∂X )→ H1/2(X ), as desir-
ed. �

Having disposed of this preliminary step we can now return to the proof of
Theorem 8.4. Denote by e+ the operator of extension by zero from D to X , and
by r+ the restriction from X to the domain D. Obviously, e+ is a bounded linear
operator from L2(D) to L2(X ) and r+ a bounded linear operator from Hs(X ) to
Hs(D), for any s ∈ R.

Clearly, H ≡ 0 if (8.11) is fulfilled. On the other hand, if condition (8.7) holds
true then H+,γ(D) is continuously embedded into L2(D). Hence the norm ‖ · ‖+,γ
is not weaker than the norm ‖ · ‖a on H1(D, S) defined by

‖u‖a =
(∫
D

n∑
i,j=1

ai,j∂ju∂iu dx+ ‖u‖2Hr(∂D) + ‖He+u‖2L2(X )

)1/2
. (8.17)
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As the coefficients ai,j(x) are continuous up to the boundary of D, the Stokes
formula yields ∫

∂D
∂cuv ds =

∫
D

n∑
i,j=1

(
ai,j∂ju∂iv + ∂i(ai,j∂ju)v

)
dx. (8.18)

for all u ∈ H2(D) and v ∈ H1(D).
Denote by

GD : H̃−1(D) → H1(D, ∂D),

HD : H̃−1(D) → H(D)

the Green operator and projection onto the null space of the Dirichlet problem for
A0 in the D. The properties of GD and HD are similar to those of the operators G
and H considered above for the domain X , cf. (8.13). This enables us to introduce
the Poisson operator PD.

Note that e+h ∈ H(X ) for each h ∈ H(D), i.e. the image of H(D) by e+ can
be thought of as a closed subspace of H(X ). Choose an L2(D) -orthonormal basis
{ek} inH(D). Then there is an L2(X ) -orthonormal system {fl} inH(X ), such that
{e+(ek)} ∪ {fl} is an L2(X ) -orthonormal basis in H(X ). By the very construction
we get

He+u =
∑
k

(u, ek)L2(D)e
+(ek) +

∑
l

(e+u, fl)L2(X )fl

= e+(HDu) +
∑
l

(e+u, fl)L2(X )fl

whence

‖He+u‖2L2(X ) = ‖HDu‖2L2(D) +
∑
l

|(e+u, fl)L2(X )|2 (8.19)

for all u ∈ L2(D).
On combining formulas (8.13), (8.18) and (8.19) one deduces by an easy compu-

tation that

‖u‖2a ≥
n∑

i,j=1

(ai,j∂jGDA0u, ∂iGDA0u)L2(D) +

n∑
i,j=1

(ai,j∂jPDu, ∂iPDu)L2(D)

+ ‖PDu‖2Hr(∂D) + ‖HDu‖2L2(D)

(8.20)

whenever u ∈ H1(D, S). As HD is the projection onto the finite-dimensional sub-
space H(D), we conclude that

‖HDu‖H1(D) ≤ c ‖HDu‖L2(D) (8.21)

for all u ∈ H1(D, S), with c a constant independent of u.
On the other hand, the G̊arding inequality yields

‖GDA0u‖2H1(D) ≤ c
n∑

i,j=1

(ai,j∂jGDA0u, ∂iGDA0u)L2(D) (8.22)

for all u ∈ H1(D, S).
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Using (8.13), (8.20), (8.21) and (8.22) we conclude readily that any sequence
{uν} ⊂ H1(D, S) converging to a function u in the space H+,γ(D) can be presented
as

uν = HDuν + GDA0uν + PDuν ,
where the sequences {HDuν} and {GDA0uν} converge in H1(D, ∂D) ⊂ H1(D, S)
to elements uH and uG, respectively. Hence it follows that the sequence {PDuν}
converges to an element uP in H+,γ(D), and so

u = uH + uG + uP = HDu+ GDA0u+ PDu, (8.23)

where PDu is the Poisson integral of the “trace” u �∂D∈ Hr(∂D) of u ∈ H+,γ(D).
Thus, the embedding theorem is completely determined by the behavior of the
element uP = PDu at the boundary.

Suppose −1/2 ≤ r < 0. As the coefficients ai,j are smooth in a neighbourhood

of D, we can assume without loss of generality that X is a domain with smooth
boundary. In this case any solution of the Dirichlet problem with A0u ∈ L2(X )
and zero data on ∂X belongs actually to H2(X ). Therefore, by a priori estimates,
G and H give rise to the bounded operators

r+Ge+ : L2(D) → H2(D),
r+He+ : L2(D) → H2(D),

the operators r+ and e+ being defined above.
Let s ≥ 0. It is clear that any element u ∈ H−s(D) extends to an element

U ∈ H−s(X ) by

〈U, v〉X = 〈u, v〉D
for all v ∈ Hs(X ). Since U vanishes in X \D, it is natural to denote it by e+u. The
linear operator e+ : H−s(D)→ H−s(X ) obtained in this way is bounded, provided
that s ≥ 0.

The distribution e+u is supported in D. So, using the continuity properties
of pseudodifferential operators on compact closed manifolds we deduce that both
r+Ge+ and r+He+ extend to bounded linear operators

r+Ge+ : H−r−1/2(D) → H−r+3/2(D),
r+He+ : H−r−1/2(D) → H2(D),

with −1/2 ≤ r ≤ 1/2. Hence, the operators

∂j (r+Ge+) : H−r−1/2(D) → H−r+1/2(D),
∂c (r+Ge+) : H−r−1/2(D) → H−r(∂D)

(8.24)

are bounded, too, if −1/2 ≤ r < 0, which is due to the trace theorem for Sobolev
spaces in Lipschitz domains. Notice that for r = 0 the arguments fail, for the
elements of H1/2(D) need not have traces on ∂D.

Formula (8.18) and continuity properties (8.24) imply that

(v, u)L2(D) = (H(e+v) +A0G(e+v), u)L2(D)

= (H(e+v), u)L2(D) +

n∑
i,j=1

∫
D
ai,j∂jG(e+v)∂iu dx+ (∂c(r

+Ge+)v, u)L2(∂D)

(8.25)

for all u ∈ H1(D, S) and v ∈ L2(D).
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We next claim that the norm ‖ · ‖a is not weaker than the norm ‖ · ‖Hr+1/2(D)

on H1(D, S). Indeed,

‖u‖Hr+1/2(D) = sup
v∈H−r−1/2(D)

v 6=0

|(v, u)L2(D)|
‖v‖H−r−1/2(D)

= sup
v∈H−r−1/2(D)

v 6=0

lim
ν→∞

|(vν , u)L2(D)|

‖v‖H−r−1/2(D)

(8.26)

for all u ∈ H1(D, S), where {vν} is a sequence of smooth functions on D approx-
imating v in the space H−r−1/2(D). Using formula (8.25) for u and v = vν , we
evaluate the nominator on the right-hand side of (8.26) to be∣∣∣(H(e+v), u)L2(D) +

n∑
i,j=1

∫
D
ai,j∂jG(e+v)∂iu dx+ (∂c(r

+Ge+)v, u)L2(∂D)

∣∣∣.
As H is an orthogonal projection in L2(X ), we get

|(H(e+v), u)L2(D) = |(H(e+v), e+u)L2(X )|
= |(H(e+v), (H(e+u))L2(X )|
≤ c ‖v‖H−r−1/2(D) ‖(H(e+u)‖L2(X )

(8.27)

and

|(∂c(r+Ge+)v, u)L2(∂D)| ≤ ‖∂c(r+Ge+)v‖H−r(D)‖u‖Hr(∂D)

≤ c ‖v‖H−r−1/2(D) ‖u‖Hr(∂D)

(8.28)

for all u ∈ H1(D, S) and v ∈ H−r−1/2(D), the last inequality being a consequence
of (8.24). Here, c stands for a constant independent of u and v and different in
diverse applications.

As the matrix

(ai,j(x))i=1,...,n
j=1,...,n

is Hermitian and non-negative, we get a generalised Cauchy inequality∣∣∣ n∑
i,j=1

ai,j(x)ziζj

∣∣∣2 ≤ ( n∑
i,j=1

ai,j(x)zizj

)( n∑
i,j=1

ai,j(x)ζiζj

)
(8.29)

for all z, ζ ∈ Cn. On applying (8.29) we see that∣∣∣ n∑
i,j=1

∫
D
ai,j∂jG(e+v)∂iu dx

∣∣∣ ≤ c( n∑
i,j=1

∫
D
ai,j∂ju∂iu dx

)1/2
‖v‖H−r−1/2(D) (8.30)

with c a constant independent of u and v.
Combining (8.26), (8.27), (8.28) and (8.30) we deduce that there are positive

constants c and C, such that

c ‖u‖Hr+1/2(D) ≤ ‖u‖a ≤ C ‖u‖+,γ
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for all u ∈ H1(D, S), where −1/2 ≤ r < 0. In particular, this establishes a
continuous embedding H+,γ(D) ↪→ Hr+1/2(D), provided that −1/2 ≤ r < 0, as
desired.

Consider now the case of Lipschitz domain and r = 0. Then (8.10) is fulfilled for
r = −ε with any ε > 0, too. Hence, from what has already been proved it follows
immediately that the space H+,γ(D) is continuously embedded into H1/2−ε(D) for
all ε > 0.

Finally, let 0 < r ≤ 1/2 or r = 0 and ∂D ∈ C2. Since the sequence {uν} behind
(8.23) converges in H+,γ(∂D) and the norm of this space is not weaker than the
auxiliary norm ‖ · ‖a, the sequence converges in Hr(∂D), too. From Lemma 8.6 it
follows that the sequence {PDuν} converges to an element uP in Hr+1/2(D). Hence,
(8.23) gives a continuous embedding H+,γ(D) ↪→ Hr+1/2(D) in this case. �

Remark 8.7. Denote by SA0(D) the space of all generalised solutions to the equation
A0u = 0 in the sense of distributions in D. As the sequence {PDuν} of (8.23)
converges to an element uP in Hs(D), with s ≥ 0 given by (8.12), the Stieltjes-
Vitali theorem implies that uP satisfies A0uP = 0 in the sense of distributions in
D. Thus, it follows from (8.23) that, under the hypothesis of Theorem 8.4, there is
a continuous embedding

H+,γ(D) ↪→ H1(D, ∂D)⊕
(
SA0

(D) ∩Hs(D)
)
.

Example 8.8. If r = 0 and (Ψu)(x) = ψ(x)u(x) with a function ψ ∈ L∞loc(∂D\Y )
then (8.10) is fulfilled if

|ψ| ≥ c > 0 (8.31)

in ∂D \ S. For arbitrary r in the interval −1/2 ≤ r ≤ 1/2, an invertible operator
Ψ : Hr(∂D) → L2(∂D) satisfying (8.10) is specified within the so-called order-
reducing operators. Suppose ∂D is a smooth hypersurface in Rn. Denote by ∆∂D
the (non-negative) Laplace-Beltrami operator on ∂D. Then the pseudodifferential
operator Ψ = (1 + ∆∂D)r/2 maps Hs(∂D) continuously to Hs−r(∂D) for all s ∈ R.
Moreover, the operator Ψ is continuously invertible with inverse (1+∆∂D)−r/2 and
hence (8.10) holds true. It is clear that the operator Ψ∗Ψ is continuously invertible,
too. In particular, the operator ∆B0 := Ψ maps Hs(∂D) compactly to H−s(∂D)
if r < 2s.

Our next goal is to describe the properties of the space H+,γ(D) in the case
where Y is a non-empty subset of ∂D. We first observe that H+,γ(D) is really a
weighted space.

Lemma 8.9. Let Y 6= ∅, ρ′ ∈ L∞(D) and (8.7) hold with δ = 1. Then, for any
δ ∈ R, the correspondence Op (ρδ) : u 7→ ρδu (cf. (2.3)) induces bounded linear
operators

H+,γ(D) → H+,γ+δ(D),
H−,γ(D) → H−,γ+δ(D),

which are actually topological isomorphisms.
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Proof. By definition, we have

‖ρδu‖2+,γ+δ

=

n∑
i,j=1

(ai,j∂j(ρ
δu), ∂i(ρ

δu))H0,γ+δ(D)+‖
√
a0,0ρ

δu‖2H0,γ+δ(D)+‖Ψ(ρ−γ)u)‖2L2(∂D)

(8.32)

for all u ∈ H1,γ(D, S). Obviously,

‖√a0,0ρδu‖H0,γ+δ(D) = ‖√a0,0u‖H0,γ(D). (8.33)

On the other hand, we get

(ai,j∂j(ρ
δu), ∂i(ρ

δu))H0,γ+δ(D)

= (ai,jρ
δ∂ju, ρ

δ∂iu)H0,γ+δ(D) + δ2 (ai,jρ
δ−1(∂jρ)u, ρσ−1(∂iρ)u)H0,γ+δ(D)

+ δ (ai,jρ
δ−1(∂jρ)u, ρδ∂iu)H0,γ+δ(D) + δ (ai,jρ

δ(∂ju, ρ
δ−1(∂iρ)u)H0,γ+δ(D).

(8.34)

Clearly,

(ai,jρ
δ∂ju, ρ

δ∂iu)H0,γ+δ(D) = (ai,j∂ju, ∂iu)H0,γ(D),
|(ai,jρδ−1(∂jρ)u, ρδ−1(∂iρ)u)H0,γ+δ(D)| ≤ c ‖√a0,0u‖2H0,γ(D)

(8.35)

for all u ∈ H1,γ(D, S), with c a constant independent on u because ρ′ ∈ L∞(D)
and ai,j ∈ L∞(D).

Hence, by (8.29),

∣∣∣ n∑
i,j=1

(ai,jρ
δ−1(∂jρ)u, ρδ∂iu)H0,γ+δ(D)

∣∣∣2
=

∣∣∣ n∑
i,j=1

(ai,jρ
−1(∂jρ)u, ∂iu)H0,γ(D)

∣∣∣2
≤

( n∑
i,j=1

ai,j∂ju, ∂iu
)
H0,γ(D)

( n∑
i,j=1

ai,j(∂jρ)u, (∂iρ)u
)
H0,γ+1(D)

≤ c
( n∑
i,j=1

ai,j∂ju, ∂iu
)
H0,γ(D)

‖√a0,0u‖2H0,γ(D)

and similarly

∣∣∣ n∑
i,j=1

(ai,jρ
δ∂ju, ρ

δ−1(∂iρ)u)H0,γ+δ(D)

∣∣∣2
≤ c

( n∑
i,j=1

ai,j∂ju, ∂iu
)
H0,γ(D)

‖√a0,0u‖2H0,γ(D),
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where c is a constant independent of u and different in diverse applications. Now,
using (8.34) and (8.35), we see that∣∣∣ n∑

i,j=1

(ai,j∂j(ρ
δu), ∂i(ρ

δu))H0,γ+δ(D)

∣∣∣
≤ c

(( n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D)

)1/2
+ ‖√a0,0u‖H0,γ(D)

)2
(8.36)

for all u ∈ H1,γ(D, S), with c a constant independent of u.
It follows from (8.32), (8.33) and (8.36) that

‖ρδu‖+,γ+δ ≤ c ‖u‖+,γ
for all u ∈ H1,γ(D, S), where c is a constant independent of u. This shows that
Op (ρδ) maps H+,γ(D) continuously to H+,γ+δ(D). Then, the bounded inverse
operator is given by Op (ρ−δ).

Finally, the assertion on the operator Op (ρδ) : H−,γ(D) → H−,γ+δ(D) follows
by duality because

‖ρδu‖−,γ+δ = sup
v∈H+,γ+δ(D)

v 6=0

|(v, ρδu)H0,γ+δ(D)|
‖v‖+,γ+δ

= sup
v∈H+,γ+δ(D)

v 6=0

|(ρ−δv, u)H0,γ(D)|
‖ρ−δv‖+,γ

‖ρ−δv‖+,γ
‖v‖+,γ+δ

≤ c ‖u‖−,γ‖
for all u ∈ H1,γ(D, S). Once again the inverse operator is given by Op (ρ−δ) which
is bounded by the above. �

Let us indicate some important cases where there are reasonable embedding
theorems for the spaces H+,γ(D) and H−,γ(D) with Y 6= ∅.

Lemma 8.10. Suppose Y 6= ∅. If (8.5) is fulfilled and inequality (8.7) holds with
δ = 1, then there are continuous embeddings

H+,γ(D) ↪→ H1,γ(D, S),
H−1,γ(D) ↪→ H−,γ(D).

Moreover the embedding H+,γ(D) ↪→ H0,γ(D) is compact and the form (·, ·)+,γ is
coercive.

Proof. Inequality (8.5) implies

‖u′‖2H0,γ(D) ≤ c
n∑

i,j=1

(ai,j(x)∂ju, ∂iu)H0,γ(D), (8.37)

where by u′ is meant the gradient of u. Now it follows from Lemma 8.1 that
the coercive estimate (8.9) is fulfilled. This establishes the continuous embedding
H+,γ(D) ↪→ H1,γ(D, S). Since H1,γ(D, S) ↪→ H1,γ(D), the second embedding
follows by duality. Finally, on applying Theorem 4.5 we get the compact embedding
H1,γ(D) ↪→ H0,γ(D) and hence the compact embedding H+,γ(D) ↪→ H0,γ(D), as
desired. �
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Lemma 8.11. Let Y 6= ∅, S = ∂D and inequality (8.7) hold with δ = 1. Then
there is continuous embedding

H+,γ(D) ↪→ H1,γ(D, ∂D).

Moreover, the embedding H+,γ(D) ↪→ H0,γ(D) is compact and the form (·, ·)+,γ is
coercive.

Proof. The G̊arding inequality for strongly elliptic systems gives

‖u′‖2L2(D) ≤ c
n∑

i,j=1

(ai,j∂ju, ∂iu)L2(D) + ‖u‖2L2(D) (8.38)

for all u ∈ H1
comp(D). Hence,

‖(ρ−γu)′‖2L2(D) ≤ c
n∑

i,j=1

(ai,j∂j(ρ
−γu), ∂i(ρ

−γu))L2(D) + ‖ρ−γu‖2L2(D) (8.39)

for u ∈ H1
comp(D), with c a constant independent on u.

It is easy to see that
n∑

i,j=1

(ai,j∂j(ρ
−γu), ∂i(ρ

−γu))L2(D)

=

n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D) + γ2
n∑

i,j=1

(ai,j(∂jρ)u, (∂iρ)u)H0,γ+1(D)

− γ

n∑
i,j=1

(
(ai,j(∂jρ)ρ−1u, ∂iu)H0,γ(D) + (ai,j∂ju, (∂iρ)ρ−1u)H0,γ(D)

)
for all u ∈ H1

comp(D). Using the generalised Cauchy inequality we conclude that
there is a constant c > 0, such that

n∑
i,j=1

(ai,j∂j(ρ
−γu), ∂i(ρ

−γu))L2(D) ≤ c
( n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D) + ‖u‖2H0,γ+1(D)

)
(8.40)

for all u ∈ H1
comp(D).

Furthermore,

‖ρ−γu′‖2L2(D) ≤ 2
(
‖(ρ−γu)′‖2L2(D) + γ2 ‖ρ−(γ+1)ρ′u‖2L2(D)

)
(8.41)

for all u ∈ H1
comp(D). Combining (8.39), (8.40), (8.41) and estimate (8.7) with

δ = 1, we conclude that

‖ρ−γu′‖2L2(D) ≤ c
( n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D) + ‖u‖2H0,γ+1(D)

)
≤ c

( n∑
i,j=1

(ai,j∂ju, ∂iu)H0,γ(D) + ‖√a0,0u‖2H0,γ(D)

)
≤ c ‖u‖2+,γ

and

‖ρ−(γ+1)u‖2L2(D) ≤ c ‖
√
a0,0u‖2H0,γ(D)
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for all u ∈ H1
comp(D), the constant c does not depend on u and need not be the same

in diverse applications. These two inequalities establish the continuous embedding
H+,γ(D) ↪→ H1,γ(D, S). In particular, the embedding H+,γ(D) ↪→ H0,γ(D) is
compact due to Theorem 4.5. �

Corollary 8.12. Assume that (8.7) is fulfilled with δ = 1 and the coefficients ai,j
are smooth in a neighbourhood of D. If |r| ≤ 1/2 and (8.10) holds, then the space
H+,γ(D) is continuously embedded into Hs,γ(D), where s is given by (8.12).

Proof. Consider the norm u 7→ ‖ρ−γu‖a on H1,γ(D, S), see (8.17). According to
Theorem 8.4, there is c > 0 such that

‖ρ−γu‖Hs(D) ≤ c ‖u‖a (8.42)

for all u ∈ H1,γ(D, S), where s is given by (8.12). On the other hand, estimate
(8.10) implies

‖ρ−γu‖Hr(∂D\S) ≤ c ‖Ψ(ρ−γ)‖L2(∂D)

for all u ∈ H1,γ(D, S) Besides, as a0,0 ≥ c(1) ρ−2, we get

‖He+(ρ−γu)‖L2(X ) ≤ c ‖u‖H0,γ(D) ≤ c (c(1))−1/2 ‖√a0,0u‖H0,γ(D)

and ∫
D

n∑
i,j=1

ai,j∂j(ρ
−γu)∂i(ρ−γu) dx

≤ c
(( n∑

i,j=1

(ai,j∂ju, ∂iu)H0,γ(D)

)1/2
+ ‖√a0,0u‖H0,γ(D)

)2
for all u ∈ H1,γ(D, S), the last inequality being the consequence of (8.36) with
δ = −γ. From these estimates it follows that there is a constant c > 0 with the
property that

‖ρ−γu‖a ≤ c ‖u‖+,γ ,

for u ∈ H1,γ(D, S). Now (8.42) implies that the embedding H+,γ(D) ↪→ H̃s,γ(D)
is continuous.

Finally, for 0 ≤ s ≤ 1, we have

‖u‖H0,s+γ(D) ≤ ‖u‖H0,1+γ(D) ≤ (c(1))−1/2 ‖√a0,0u‖H0,γ(D) ≤ (c(1))−1/2 ‖u‖+,γ ,

for u ∈ H1,γ(D, S). This yields the continuous embedding H+,γ(D) ↪→ Hs,γ(D)
for all s satisfying 0 ≤ s ≤ 1. For s < 0 corresponding to r = 0 and ε > 1/2, the
embedding follows by duality. �

From now on we assume that (8.7) is fulfilled with δ = 1, provided that Y 6= ∅.
If

∆A =

n∑
j=1

aj∂j + a0,

∆B = ∂t + ∆B0
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then integrating by parts with the use of (8.18) yields readily that

(Au, v)H0,γ(D)

=

n∑
i,j=1

(ai,j∂ju, ∂iv)H0,γ(D) − 2γ

∫
D
ρ−(2γ+1)

n∑
i,j=1

ai,j∂ju(∂iρ)v dx

+ (∆Au, v)H0,γ(D) + (Ψ(ρ−γu),Ψ(ρ−γv))L2(∂D) + (b−11 ∆Bu, v)H0,γ(∂D\S)

for all functions u ∈ H1,γ(D, S) and v ∈ H1,γ(D, S) satisfying the boundary condi-
tion of (8.2).

It follows from the generalised Cauchy inequality (8.29) (and Lemma 8.1 if Y is
non-empty) that∣∣∣ ∫
D
ρ−(2γ+1)

n∑
i,j=1

ai,j∂ju(∂iρ)v dx
∣∣∣2 ≤ c

n∑
i,j=1

(ai,j(x)∂ju, ∂iu
)
H0,γ(D)

‖v‖2H0,γ+1(D)

= c ‖u‖2+,γ ‖v‖2H0,γ+1(D)

≤ c c(1) ‖u‖2+,γ‖v‖2+,γ
(8.43)

for all u, v ∈ H1,γ(D, S), where c is a positive constant independent of u and v.
Suppose∣∣∣(∆Au, v)H0,γ(D) + (b−11 ∆Bu, v)H0,γ(∂D\S)

∣∣∣ ≤ c ‖u‖+,γ‖v‖+,γ (8.44)

for all u, v ∈ H1,γ(D, S), with c a constant independent of u and v. Then, for each
fixed u ∈ H+,γ(D), the sesquilinear form

Q(u, v)

:=

n∑
i,j=1

(ai,j∂ju, ∂iv)H0,γ(D) − 2γ

∫
D
ρ−(2γ+1)

n∑
i,j=1

ai,j∂ju(∂iρ)v dx

+ (∆Au, v)H0,γ(D) + (Ψ(ρ−γu),Ψ(ρ−γv))L2(∂D) + (b−11 ∆Bu, v)H0,γ(∂D\S)

determines a continuous linear functional f on H+,γ(D) by f(v) := Q(u, v) for
v ∈ H+,γ(D).

In the following lemma by c is meant a constant which is independent on u and
v and may be different in diverse applications.

Lemma 8.13. Suppose Y = ∅ or (8.7) holds with δ = 1.
1) If ρ2a0 ∈ L∞(D) then |(a0u, v)H0,γ(D)| ≤ c ‖u‖+,γ‖v‖+,γ for all functions

u, v ∈ H1,γ(D).
2) If ρaj ∈ L∞(D) then |(aj∂ju, v)H0,γ(D)| ≤ c ‖∂ju‖H0,γ(D)‖v‖+,γ is valid for

all u, v ∈ H1,γ(D).
3) If r = 0 and the operators Ψ and ∆B0 are given by multiplication with func-

tions ψ and ∆b0, respectively, satisfying

|b−11 ∆b0| ≤ c |ψ|2 (8.45)

on ∂D \ S, then |(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ for all u, v ∈ H1,γ(D).

4) If (8.10) is fulfilled and the operator ρ−γb−11 ∆B0ρ
γ maps Hr(∂D, S) con-

tinuously into H−r(∂D), then |(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ for all

u, v ∈ H1,γ(D).
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Proof. For ρ ≡ 1 the lemma follows immediately from the Cauchy inequality. If
Y 6= ∅, the Cauchy inequality should be combined with Lemma 8.1. For instance,
we get

|(b−11 ∆B0u, v)H0,γ(∂D\S)| = |(ρ−γb−11 ∆B0ρ
γρ−γu, ρ−γv)L2(∂D\S)|

≤ ‖ρ−γb−11 ∆B0ρ
γ(ρ−γu)‖H−r(∂D)‖ρ−γv‖Hr(∂D)

≤ c ‖Ψ(ρ−γu)‖L2(∂D) ‖Ψ(ρ−γv)‖L2(∂D)

≤ c ‖u‖+,γ ‖v‖+,γ

for all u, v ∈ H1,γ(D, S), as desired. �

Lemma 8.13 and estimate (8.43) suggest that under condition (8.7) with δ = 1
estimate (8.44) focuses upon the terms

n∑
j=1

(aj∂ju, v)H0,γ(D) and (b−11 ∂tu, v)H0,γ(∂D\S)

in the form Q(u, v). In the general case no substantial results are possible. However,
we can say much more under reasonable conditions discussed in Sections 11 and
12) below.

Thus, if estimate (8.44) holds true, then, by Lemma 1.3, for each u ∈ H+,γ(D)
there is a unique element in H−,γ(D), which we denote by Lu, such that

f(v) = (v, Lu)γ

for all v ∈ H+,γ(D). We have thus introduced a linear operator L acting as
H+,γ(D)→ H−,γ(D). From (8.43), (8.44) it follows that L is bounded.

The bounded linear operator L0 : H+,γ(D)→ H−,γ(D) defined in the same way
via the sesquilinear form (·, ·)+,γ , i.e.

(v, u)+,γ = (v, L0u)γ (8.46)

for all u ∈ H+,γ(D) and v ∈ H+,γ(D), corresponds to the case A = A0, B = B0,
where

A0(x, ∂) = −
n∑

i,j=1

∂i(ai,j∂j ·) + 2γ ρ−1
n∑

i,j=1

ai,j(∂iρ)∂j + a0,0,

B0(x, ∂) = b1 ∂c + χS + b1 ρ
γΨ∗Ψρ−γ .

We are thus lead to a weak formulation of problem (8.2). Given f ∈ H−,γ(D),
find u ∈ H+,γ(D), such that

Q(u, v) = (v, f)γ (8.47)

for all v ∈ H+,γ(D).
Now one can handle problem (8.47) by standard techniques of functional analysis,

see for instance [LM72, Ch. 2, § 9], [LU73, Ch. 3, §§ 4-6]) for the coercive case.

Lemma 8.14. Let A = A0, B = B0. Then for each f ∈ H−,γ(D) there is a unique
solution u ∈ H+,γ(D) to (8.47), i.e. the operator L0 : H+,γ(D) → H−,γ(D) is
continuously invertible. Moreover, the norms of both L0 and its inverse L−10 are
equal to 1.
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Proof. Under the hypotheses of the lemma, (8.47) is just a weak formulation of
problem (8.2) with A and B replaced by A0, B0, respectively. The corresponding
bounded operator in Hilbert spaces just amounts to L0 : H+,γ(D) → H−,γ(D)
defined by (8.46). Its norm equals 1, for, by Lemma 1.3, we get

‖L0u‖−,γ = sup
v∈H+,γ(D)

v 6=0

|(v, L0u)γ |
‖v‖+,γ

= sup
v∈H+,γ(D)

v 6=0

|(v, u)+,γ |
‖v‖+,γ

= ‖u‖+,γ (8.48)

whenever u ∈ H+,γ(D).
The existence and uniqueness of solutions to problem (8.47) follows immediately

from the Riesz theorem on the general form of continuous linear functionals on
Hilbert spaces. From (8.48) we conclude that L0 is actually an isometry of H−,γ(D)
onto H+,γ(D), as desired. �

Consider the sesquilinear form on H−,γ(D) given by

(u, v)−,γ := (L−10 u, v)γ

for u, v ∈ H−,γ(D). Since

(L−10 u, v)γ = (L−10 u, L0L
−1
0 v)γ = (L−10 u, L−10 v)+,γ (8.49)

for all u, v ∈ H−,γ(D), the last equality being due to (8.46), this form is Hermitian.
Combining (8.48) and (8.49) yields√

(u, u)−,γ = ‖u‖−,γ

for all u ∈ H−,γ(D). From now on we endow the space H−,γ(D) with the scalar
product (·, ·)−,γ .

Lemma 8.15. Let estimate (8.44) be fulfilled with constant c < 1. Then, for each
f ∈ H−,γ(D), there exists a unique solution u ∈ H+,γ(D) to problem (8.47), i.e.
the operator L : H+,γ(D)→ H−,γ(D) is continuously invertible.

Proof. If (8.44) holds with c < 1 then the operator L : H+,γ(D)(D) → H−,γ(D)
corresponding to problem (8.47) is easily seen to differ from L0 by a bounded
operator ∆L : H+,γ(D) → H−,γ(D) whose norm does not exceed c < 1. As L0

is invertible and the inverse operator L−10 has norm 1, a familiar argument shows
that L is invertible, too. �

Lemma 8.16. Assume that Y = ∅ or estimate (8.7) holds with δ = 1. Let the map
ι : H+,γ(D)→ H0,γ(D) be compact. If moreover

ρa0 ∈ L∞(D),

aj = 2γ ρ−1
n∑
i=1

ai,j∂iρ

for 1 ≤ j ≤ n and t = 0, ∆B0 = 0, then the operator ∆L = L − L0 acting as
H+,γ(D)→ H−,γ(D) is compact.
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Proof. Indeed, in this case the multiplication operator by a0 maps the spaceH+,γ(D)
continuously to H0,γ(D), for

‖a0u‖2H0,γ(D) =

∫
D
ρ−2(γ+1)|ρa0|2|u|2 dx

≤ c ‖u‖2H0,γ+1(D)

≤ c ‖u‖2+,γ ,

the last inequality being a consequence of Lemma 8.1, if Y 6= ∅. According to
Lemma 1.2, if the map ι : H+,γ(D) → H0,γ(D) is compact then the embedding
ι′ : H0,γ(D)→ H−,γ(D) is compact, too. As ∆L = ι′a0, the proof is complete. �

As mentioned, we can say much more on compact perturbation of the operator
L0 under additional restrictions of Sections 11 and 12.

Since C∞comp(D) ↪→ H+,γ(D) ↪→ H0,γ(D), the elements of H−,γ(D) are distribu-
tions in D and any solution to problem (8.2) satisfies Au = f in D in the sense
of distributions. Though the boundary conditions are interpreted in a weak sense,
they agree with those in terms of restrictions to ∂D if the solution is sufficiently
smooth up to the boundary, e.g. belongs to C1(D). Suppose for instance that
the coefficients ai,j are smooth in D and f ∈ L2

loc(D). Since A is elliptic, we de-
duce readily that u ∈ H2

loc(D) and the equality Au = f is actually satisfied almost
everywhere in D. If, in addition, u ∈ H2,γ(D) then

((∂c + b−11 (∂t +B0))u, v)H0,γ(∂D\S) = 0

for all v ∈ H+,γ(D). As any smooth function v in D whose support does not meet
S belongs to H+,γ(D), we conclude that (b1∂c + ∂t +B0)u = 0 on ∂D \ S. Hence,
in this case Bu = 0 on ∂D, for u = 0 and b1 = 0 on S. If Au = f is not sufficiently
regular in the closure of D, then f may behave wildly at the boundary which may
cause Bu = u0 in some very implicit sense at ∂D, with u0 = u0(f) different from
zero.

9. Completeness of root functions for weak perturbations

We are now in a position to study the completeness of root functions related to
problem (8.47). We begin with the selfadjoint operator L0. To this end we write
ι′ for the continuous embedding of H0,γ(D) into H−,γ(D), as it is described by
Lemma 1.2.

Lemma 9.1. Suppose that estimate (8.6) is fulfilled and inclusion (8.8) is con-
tinuous. Then the inverse L−10 of the operator given by (8.46) induces positive
selfadjoint operators

Q1 = ι′ι L−10 : H−,γ(D) → H−,γ(D),
Q2 = ι L−10 ι′ : H0,γ(D) → H0,γ(D),
Q3 = L−10 ι′ι : H+,γ(D) → H+,γ(D)

which have the same systems of eigenvalues and eigenvectors. If the inclusion
ι is compact then the operators are compact and there are orthonormal bases in
H+,γ(D), H0,γ(D) and H−,γ(D) consisting of the eigenvectors.

Proof. Easily, if ι is compact then, as ι′, L−10 are bounded, all the operators Q1,
Q2, Q3 are compact.
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Recall that we endow the space H−,γ(D) with the scalar product (·, ·)−,γ . Then,
by (8.49),

(Q1u, v)−,γ = (v, ι′ι L−10 u)−,γ

= (L−10 v, ι′ι L−10 u)γ

= (ιL−10 u, ιL−10 v)H0,γ(D),

(9.1)

and

(u,Q1v)−,γ = (Q1v, u)−,γ

= (ιL−10 u, ιL−10 v)H0,γ(D)

for all u, v ∈ H−,γ(D), i.e. the operator Q1 is selfadjoint and non-negative.
Using (8.46) we get

(Q2u, v)H0,γ(D) = (ι(L−10 (ι′u)), v)H0,γ(D)

= (L−10 (ι′u), ι′v)γ

= (L−10 (ι′u), L−10 (ι′v))+,γ

and

(u,Q2v)H0,γ(D) = (Q2v, u)H0,γ(D)

= (L−10 (ι′u), L−10 (ι′v))+,γ

for all u, v ∈ H0,γ(D), i.e. the operator Q2 is selfadjoint and non-negative.
On applying (8.46) once again we obtain

(Q3u, v)+,γ = (L−10 (ι′ι u), v)+,γ

= (ι′ι u, v)γ

= (ιu, ιv)H0,γ(D)

(9.2)

and

(u,Q3v)+,γ = (Q3v, u)+,γ

= (ιu, ιv)H0,γ(D)

for all u, v ∈ H+,γ(D), which shows that Q3 is a non-negative selfadjoint operator.
Finally, as the operator L−10 is injective, so are the operators Q1, Q2 and Q3.

Hence, all these operators are actually positive. Moreover, all their eigenvectors
{uν} belong to the space H+,γ(D), for L−10 uν lies in H+,γ(D). From the injectivity
of ι and ι′ we conclude immediately that the systems of eigenvalues and eigenvectors
of Q1, Q2 and Q3 coincide. The last part of the lemma follows from Theorem
6.1. �

Our next goal is to apply Theorem 6.4 to investigate the completeness of root
functions of weak perturbations of Qj . Lemmas 8.2, 8.3, 8.10, 8.11, Theorem 8.4
and Corollary 8.12 give sufficient conditions for the inclusion (8.8) to be compact.
However, we need to describe typical situations where the operators Q1, Q2, Q3

have finite order. With this purpose, we present a broad class of finite order compact
operators acting in spaces of integrable functions. The following result goes back
at least as far as [Agm62].
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Theorem 9.2. Let s ∈ R and A : Hs(D)→ Hs(D) be a compact operator. If there
is ∆s > 0 such that A maps Hs(D) continuously to Hs+∆s(D), then it belongs to
Schatten class Sn/∆s+ε for each ε > 0.

Proof. For the case s ∈ Z≥0 see [Agm62]. For the case s ∈ R and Sobolev spaces on
a compact closed manifold D see e.g. Proposition 5.4.1 in [Agr90]. For the general
case we have not been able to find a proper reference and so we refer to our paper
[ST12].

We indicate crucial steps of the proof for the completeness of exposition. Let Q
be the cube

Q = {x ∈ Rn : |xj | < π, j = 1, . . . , n}
in Rn. Given a function u ∈ L2(Q), we consider the Fourier series expansion

u(x) ∼
∑
k∈Zn

ck(u) eı(
∑n
j=1 kjxj)

and introduce the norm

‖u‖2H(s) = |a0(u)|2 +
∑

k∈Zn\{0}

|k|2s |ck(u)|2,

where s is a non-negative real number. The subspace of functions for which this
norm is finite is denoted by H(s). Obviously, H(s) is a Hilbert space which, for
non-negative integral s, can be regarded as a closed subspace of the Sobolev space
Hs(Q). We see readily that Hs

comp(Q) ↪→ H(s). For s < 0, we write H(s) for

the dual of H(−s) with respect to the sesquilinear pairing 〈·, ·〉(0) induced by the

inner product (·, ·)H (see Lemma 1.3). The norm in H(s) is still given by the same
formula, as is easy to check.

Without loss of the generality we can assume that the closure of D is situated
in the cube Q. For s ≥ 0, we denote by rs,D the restriction operator from Hs(Q)

to Hs(D). By the above, rs,D acts to the elements of H(s), too, mapping these
continuously to Hs(D). As the boundary of D is Lipschitz, for each s ∈ Z≥0
there is a bounded extension operator es,D : Hs(D) → Hs

comp(Q) (see for instance
[Bur98, Ch. 6]). We will think of es,D as bounded linear operator from Hs(D) to

H(s), provided that s ∈ Z≥0.
Given any non-negative integer s, an interpolation procedure applies to the pair

(Hs(D), Hs+1(D)), thus giving a family of function spaces inD of fractional smooth-
ness (1 − θ)s + θ(s + 1) = s + θ with 0 < θ < 1. The Banach spaces obtained in
this way coincide with Hs+θ(D) up to equivalent norms. Thus, we can apply inter-
polation arguments to conclude that there is a bounded linear extension operator
es,D : Hs(D)→ H(s) for all real s ≥ 0. By construction,

rs,D es,Du = u (9.3)

holds for each u ∈ Hs(D) with s ≥ 0.
For s < 0 we introduce the mappings

rs,D : H(s) → Hs(D),
es,D : Hs(D) → H(s),

using the duality between the spaces H(s) and H(−s). Namely, if s < 0 we set

〈rs,Du, v〉(0) := 〈u, e−s,Dv〉(0),
〈es,Du, v〉(0) := 〈u, r−s,Dv〉(0)

(9.4)
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for all u ∈ H(s), v ∈ H−s(D) and for all u ∈ Hs(D), v ∈ H(−s), respectively. As

|〈u, e−s,Dv〉(0)| ≤ ‖u‖H(s) ‖e−s,D‖ ‖v‖H−s(D)

for all u ∈ H(s) and v ∈ H−s(D), which is a consequence of duality between the
spaces H(s) and H(−s), the first identity of (9.4) defines a bounded linear operator
rs,D : H(s) → Hs(D) indeed. Similarly, by the duality between Hs(D) and H−s(D)
(cf. Lemma 1.3), the second identity of (9.4) defines a bounded linear operator
es,D : Hs(D)→ H(s).

On applying equality (9.3) we get 〈rs,D es,Du, v〉(0) = 〈u, v〉(0) for all u ∈ Hs(D)

and v ∈ H−s(D) with real s < 0. In other words, the operators rs,D and rs,D
satisfy (9.3) for all s ∈ R, i.e.,

rs,D es,D = IHs(D). (9.5)

For t > s we denote by

ιt,s,D : Ht(D) → Hs(D),
ιt,s : H(t) → H(s)

the natural inclusion mappings. If t < 0, by this is meant

〈ιt,s,Du, v〉(0) = 〈u, ι−s,−t,Dv〉(0),
〈ιt,su, v〉(0) = 〈u, ι−s,−t,Dv〉(0)

(9.6)

for all u ∈ Ht(D), v ∈ H−s(D) and u ∈ H(t), v ∈ H(−s), respectively. It is clear
that

rs,D ιt,s = ιt,s,D rt,D,
ιt,s et,D = es,D ιt,s,D,

rs,D ιt,s et,D = ιt,s,D

(9.7)

provided t ≥ 0. If t < 0 then combining (9.4), (9.6) and (9.7) yields

〈rs,D ιt,su, v〉(0) = 〈u, ι−s,−t e−s,Dv〉(0)
= 〈u, e−t,D ι−s,−t,Dv〉(0)
= 〈ιt,s,D rt,Du, v〉(0)

for all u ∈ H(t) and v ∈ H−s(D), and

〈ιt,s et,Du, v〉(0) = 〈u, r−t,D ι−s,−tv〉(0)
= 〈u, ι−s,−t r−s,Dv〉(0)
= 〈es,D ιt,s,Du, v〉(0)

for all u ∈ Ht(D) and v ∈ H(−s), whence rs,D ιt,s et,D = ιt,s,D. Therefore, equalities
(9.7) are valid not only for real t ≥ 0 but also for all t ∈ R.

Lemma 9.3. Let s ∈ R and K : H(s) → H(s) be a compact operator. If there is
∆s > 0 such that K maps H(s) continuously to H(s+∆s), then K is of Schatten
class Sn/∆s+ε for each ε > 0.

Proof. Put

Λru (x) =
∑
k∈Zn

(1 + |k|2)r/2 ck(u) eı(
∑n
j=1 kjxj).



70 A. SHLAPUNOV AND N. TARKHANOV

Obviously, Λr maps H(s) continuously to H(s−r) for all s ∈ R. For each fixed s,
the operator Λ−r ιs+r,s is selfadjoint and compact in H(s+r). Its eigenvalues are

(1 + |k|2)−r/2 and the corresponding eigenfunctions are eı(
∑n
j=1 kjxj). The series∑

k∈Zn
(1 + |k|2)−pr/2

(counting the eigenvalues with their multiplicities) converges for all p > n/r, and
so Λ−r ιs+r,s is of Schatten class Sn/r+ε for any ε > 0.

Obviously, Λ−rΛr = I holds for all r > 0. By assumption, the operator K factors
through the embedding ιs+∆s,s : H(s+∆s) → H(s), i.e., there is a bounded linear

operator K0 : H(s) → H(s+∆s) such that K = ιs+∆s,sK0. Then

K = Λ−∆s Λ∆sK

= Λ−∆s Λ∆s ιs+∆s,sK0

= Λ−∆s ιs+∆s,s Λ∆sK0.

Since the operator Λ∆sK0 : H(s) → H(s) is bounded, Lemma 6.3 implies that K
belongs to the Schatten class Sn/∆s+ε for any ε > 0. �

We are now in a position to complete the proof of Theorem 9.2. Suppose that
A0 : Hs(D) → Hs+∆s(D) is a bounded linear operator, such that A = ιs+∆s,sA0.
Set

K0 = es+∆s,D A0 rs,D,

then K0 maps H(s) continuously to H(s+∆s). By Lemma 9.3, the composition
K = ιs+∆s,sK0 is of Schatten class Sn/∆s+ε for any ε > 0. Besides, we get

rs+∆s,DK0 = A0 rs,D (9.8)

because of (9.5).
Let λ be a non-zero eigenvalue of A and u ∈ Hs(D) a root function corresponding

to λ, i.e. (A−λI)mu = 0 for some natural number m. Then, using (9.7) and (9.8),
we conclude that

(K − λI)m es,Du = es,D (A− λI)mu

= 0,

that is each non-zero eigenvalue of A is actually an eigenvalue for K of the same
multiplicity. Therefore, A belongs to the Schatten class Sn/∆s+ε for any ε > 0,
too. �

Corollary 9.4. Suppose that ρ′ ∈ L∞(D) and the coercive estimate (8.9) holds.
Then any compact operator R : H−,γ(D) → H−,γ(D) which maps H−,γ(D) con-
tinuously to H+,γ(D) is of Schatten class Sn/2+ε for any ε > 0. In particular, its
order is finite.

Proof. We first observe that C∞comp(D) is dense in L2(D) and the norm ‖ · ‖L2(D)

majorises the norm ‖ · ‖H−1(D). Hence, C∞comp(D) is dense in H−s(D), too, i.e.

each equivalence class of H−s(D) contains a Cauchy sequence consisting of smooth
functions with compact support in D.

As the coercive estimate (8.9) holds, the space H+,γ(D) is continuously em-
bedded into H1,γ(D). On the other hand, it follows from Lemma 2.8 that the



STURM-LIOUVILLE PROBLEMS 71

embedding ι(1,0),1,D : H1,1(D) = H1,0(D) → H1(D) is continuous. Now using

Theorem 2.6 we define the continuous map S+ : H+,γ(D)→ H1(D) via

S+u = ι(1,0),1,Dρ
−γu

for any u ∈ H+,γ(D). For v ∈ C∞comp(D), set

S−v = ργv.

Then Theorem 2.6 and Lemmas 2.8 and 8.10 yield

|(S−v, u)H0,γ(D)| = |(v, ρ−γu)L2(D)|
≤ ‖v‖H−1(D)‖ρ−γu‖H1(D)

≤ ‖v‖H−1(D)‖ρ−γu‖H1,0(D)

≤ c ‖v‖H−1(D)‖u‖H1,γ(D)

≤ c ‖v‖H−1(D)‖u‖+,γ

for all u ∈ H+,γ(D), where the constant c does not depend on u and v. Therefore,
we get

‖S−v‖−,γ ≤ c ‖v‖H−1(D),

i.e. S− maps H−1(D) continuously to H−,γ(D).
Denote by R0 the operator R which is thought of as a bounded map of H−,γ(D)

to H+,γ(D). Then the composition S+R0S− maps H−1(D) continuously to H1(D).
Write i : H1(D) ↪→ L2(D) for the natural inclusion and i′ : L2(D) ↪→ H−1(D) for
the corresponding operator induced by duality. It follows from Theorem 9.2 that
the operator i′iS+R0S− : H−1(D)→ H−1(D) is of Schatten class Sn/2+ε for any
ε > 0. By the very construction,

S−i′ iS+ = ι′ι

whence R = ι′ι R0 = S−i′iS+R0.
Let now λ be a non-zero eigenvalue of R and u be a root function of R corre-

sponding to λ, i.e. (R − λI)mu = 0 for a natural number m. Then it follows from
the binomial formula that u belongs to the image of the operator S−, i.e. u = S−u0
for some u0 ∈ H−1(D). Hence

(R− λI)mu = (R− λI)mS−u0
= S− (i′iS+R0S− − λI)mu0

= 0.

As the operator S− is obviously injective, each eigenvalue of the operator R is
in fact an eigenvalue of i′iS+R0S− of the same multiplicity. Therefore, R lies in
Sn/2+ε for any ε > 0, too. �

Corollary 9.5. If for some 0 < s < 1 there is a continuous embedding

ιs : H+,γ(D) ↪→ Hs,γ(D, S), (9.9)

then any compact operator R : H−,γ(D)→ H−,γ(D) which maps H−,γ(D) contin-
uously to H+,γ(D) is of Schatten class Sn/2s+ε for any ε > 0. In particular, its
order is finite.
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Proof. The proof generalises that of Corollary 9.4 in obvious way.
We first observe that C∞comp(D) is dense in L2(D) and the norm ‖·‖L2(D) majorises

the norm ‖·‖H−s(D). Hence, C∞comp(D) is dense inH−s(D), too, i.e. each equivalence

class of H−s(D) contains a Cauchy sequence consisting of smooth functions with
compact support in D. Thus, the operator ιs induces via composition a bounded
inclusion operator ι′s : H−s,γ(D)→ H−,γ(D). This latter is actually the transpose
of ιs.

By definition there is a continuous embedding ι(s,0),s,D : Hs,0(D) → Hs(D).

Using Corollary 3.3 we may define a continuous map S+ : Hs,γ → Hs(D) by means
of

S+u = ι(s,0),s,Dρ
−γu

for u ∈ Hs,γ(D). Moreover, set

S−v = ργv

for v ∈ C∞comp(D). Then Corollary 3.3 yields

|(S−v, u)H0,γ(D)| = |(v, ρ−γu)L2(D)|
≤ ‖v‖H−s(D)‖ρ−γu‖Hs(D)

≤ c ‖v‖H−s(D)‖ρ−γu‖Hs,0(D)

= c ‖v‖H−s(D)‖u‖Hs,γ(D)

for all u ∈ Hs,γ(D). Therefore, we get

‖S−v‖H−s,γ(D) ≤ c ‖v‖H−s(D),

i.e. S− extends to a continuous mapping of H−s(D) to H−s,γ(D).
Let R0 stand for the operator R regarded as a bounded map of H−,γ(D) to

H+,γ(D). Then the operator S+ιsR0ι
′
sS
− maps the space H−s(D) continuously to

Hs(D).
Write i : Hs(D) ↪→ L2(D) for the natural inclusion and i′ : L2(D) ↪→ H−s(D)

for the corresponding map induced by duality. It follows from Theorem 9.2 that
the operator i′iS+ιsR0ι

′
sS− : H−s(D)→ H−s(D) is of Schatten class Sn/2s+ε for

any ε > 0. By construction,

ι′sS−i′ iS+ιs = ι′ ι,

and so R = ι′ι R0 = ι′sS−i′ iS+ιsR0.
Let now λ be a non-zero eigenvalue of R and u be a root function of R cor-

responding to λ, i.e. (R − λI)mu = 0 for a natural number m. Then it follows
from the binomial formula that u belongs to the image of the operator ι′sS−, i.e.
u = ι′sS−u0 for some u0 ∈ H−s(D). Hence

(R− λI)mu = (R− λI)mι′sS−u0
= ι′sS− (i′ iS+ιsR0ι

′
sS− − λI)mu0

= 0.

As the operator ι′S− is injective, each eigenvalue of the operator R is in fact an
eigenvalue of i′ iS+ιsR0ι

′
sS− of the same multiplicity. Therefore, R lies in Sn/2s+ε

for any ε > 0, as desired. �

Corollary 9.6. If for some 0 < s < 1 there is a continuous embedding

ι̃s : H+,γ(D) ↪→ H̃s,γ(D, S), (9.10)
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then any compact operator R : H−,γ(D)→ H−,γ(D) which maps H−,γ(D) contin-
uously to H+,γ(D) is of Schatten class Sn/2s+ε for any ε > 0. In particular, its
order is finite.

Corollary 9.7. Suppose ρ′ ∈ L∞(D) and the coercive estimate (8.9) holds. Then
the operators Q1, Q2 and Q3 are of Schatten class Sn/2+ε for any ε > 0 (and so
they are of finite order).

Proof. Since Q1 = ι′ι L−10 and L−10 maps H−,γ(D) continuously to H+,γ(D), the
operator Q1 is of Schatten class Sn/2+ε for any ε > 0, which is due to Corollary 9.4.
On the other hand, Lemma 9.1 shows that the operators Q1, Q2 and Q3 have the
same eigenvalues. Hence, all these operators belong to the Schatten class Sn/2+ε

for any ε > 0, as desired. �

Corollary 9.8. Suppose there is a continuous embedding (9.9) with some s > 0.
Then the operators Q1, Q2 and Q3 are of Schatten class Sn/2s+ε for any ε > 0
(and so they are of finite order).

Proof. Since Q1 = ι′ι L−10 and L−10 maps H−,γ(D) continuously to H+,γ(D), the
operator Q1 is of Schatten class Sn/2s+ε for any ε > 0, which is due to Corollary
9.5. On the other hand, Lemma 9.1 shows that the operators Q1, Q2 and Q3

have the same eigenvalues. Hence, all these operators belong to the Schatten class
Sn/2s+ε for any ε > 0, as desired. �

Corollary 9.9. Suppose there is a continuous embedding (9.10) with some s > 0.
Then the operators Q1, Q2 and Q3 are of Schatten class Sn/2s+ε for any ε > 0
(and so they are of finite order).

Lemmas 8.2, 8.3, 8.10, 8.11, Theorem 8.4 and Corollary 8.12 provide sufficient
conditions for a continuous embedding (9.9) to be true with s = 1 and 0 < s < 1/2,
respectively.

Theorem 9.10. If the operator Q1 : H−,γ(D) → H−,γ(D) is of finite order then,
for any invertible operator of the type L0 + ∆L : H+,γ(D) → H−,γ(D) with a
compact operator ∆L : H+,γ(D) → H−,γ(D), the system of root functions of the
compact operator

P1 = ι′ι (L0 + ∆L)−1 : H−,γ(D)→ H−,γ(D)

is complete in the spaces H−,γ(D), H0,γ(D) and H+,γ(D).

Proof. By assumption, there is a bounded inverse

(L0 + ∆L)−1 : H−,γ(D)→ H+,γ(D).

Since
I − L0(L0 + ∆L)−1 = ∆L (L0 + ∆L)−1,

we conclude that

L−10 − (L0 + ∆L)−1 = L−10

(
∆L (L0 + ∆L)−1

)
,

Q1 − P1 = Q1

(
∆L (L0 + ∆L)−1

)
.

(9.11)

From the compactness of ∆L and boundedness of (L0 + ∆L)−1 it follows that the
operator

∆L (L0 + ∆L)−1 : H−,γ(D)→ H−,γ(D)

is compact.
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Hence, P1 is an injective weak perturbation of the compact selfadjoint operator
Q1. If in addition the order of Q1 is finite then Theorem 6.4 implies that the
countable system {uν} of root functions related to the operator P1 is complete in
the Hilbert space H−,γ(D).

Pick a root function uν of the operator P1 corresponding to an eigenvalue λν .
Note that λν 6= 0, for the operator (L0 + ∆L)−1 is injective. By definition there
is a natural number m, such that (P1 − λνI)muν = 0. Using the binomial formula
yields

m∑
j=0

(
m
j

)
λm−jν P j1uν = 0.

In particular, since λν 6= 0, we get

uν =
m∑
j=1

(
m
j

)
λ−jν (ι′ι (L0 + ∆L)−1)juν .

Hence, uν ∈ H+,γ(D) because the range of the operator (L0 + ∆L)−1 lies in the
space H+,γ(D).

We have thus proved that {uν} ⊂ H+,γ(D). Our next concern will be to show
that the linear span L({uν}) of the system {uν} is dense in H+,γ(D) (cf. Propo-
sition 6.1 of [Agr11a] and [Agr11c, p. 12]). For this purpose, pick u ∈ H+,γ(D).
As L0 + ∆L maps H+,γ(D) continuously onto H−,γ(D), we get (L0 + ∆L)u ∈
H−,γ(D). Hence, there is a sequence {fk} ⊂ L({uν}) converging to (L0 + ∆L)u in
H−,γ(D). On the other hand, the inverse (L0 +∆L)−1 maps H−,γ(D) continuously
to H+,γ(D), and so the sequence

(L0 + ∆L)−1fk = (L0 + ∆L)−1ι′ι fk

converges to u in H+,γ(D).
If now uν0 ∈ L({uν}) corresponds to an eigenvalue λ0 of multiplicity m0, then

the vector vν0 = P1uν0 satisfies

(P1 − λ0I)m0vν0 = (P1 − λ0I)m0+1uν0 + λ0(P1 − λ0I)m0uν0 = 0.

Thus, the operator P1 maps L({uν}) to L({uν}) itself. Therefore, the sequence
{ι′ι (L0 + ∆L)−1fk} still belongs to L({uν}) and we can think of {(L0 + ∆L)−1fk}
as sequence of linear combinations of root functions of P1 converging to u. These
arguments show that the subsystem (L0 + ∆L)−1 L({uν}) ⊂ L({uν}) is dense in
H+,γ(D).

Finally, since C∞comp(D) ⊂ H+,γ(D) and C∞comp(D) is dense in the weighted

Lebesgue space H0,γ(D), the space H+,γ(D) is dense in H0,γ(D) as well. This
proves the completeness of the system of root functions in H0,γ(D). �

Similar assertions are also true for the weak perturbations of the operators Q2

and Q3.
The operator L0 + ∆L : H+,γ(D)→ H−,γ(D) with a compact operator ∆L fails

to be injective in general, and so Theorem 9.10 does not apply. However, as L0 is
continuously invertible, we conclude that L = L0 + ∆L is Fredholm. In particular,
there is a constant c, such that

‖u‖+,γ ≤ c (‖Lu‖−,γ + ‖u‖−,γ) (9.12)

for all u ∈ H+,γ(D).
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We next extend Theorem 9.10 to Fredholm operators. To this end denote by T
the unbounded linear operator H−,γ(D) → H−,γ(D) with domain DT = H+,γ(D)
which maps an element u ∈ DT to Lu. The operator T is clearly closed because
of inequality (9.12). It is densely defined as H1,γ(D, S) ⊂ H+,γ(D) is dense in
H−,γ(D). It is well known that the null space of T is finite dimensional in H+,γ(D)
and its range is closed in H−,γ(D).

When speaking on eigen- and root functions u of the operator T we always
assume that u ∈ DT and (T − λI)ju ∈ DT for all j = 1, . . . ,m− 1.

Let T0 : H−,γ(D) → H−,γ(D) correspond to the selfadjoint operator L0. The
operator T0 is obviously continuously invertible and the inverse operator coincides
with ι′ι L−10 = Q1.

Lemma 9.11. The spectrum of the operator T0 consists of the points µν = λ−1ν in
R>0, where λν are the eigenvalues of Q1.

Proof. Recall that all λν are positive, which is due to Lemma 9.1, and so µν > 0.
If λ 6= 0 then

(T0 − λI)u = (I − λ ι′ι L−10 )T0u = −λ
(
Q1 −

1

λ
I
)
T0u

for all u ∈ H+,γ(D), showing the lemma. �

If the spectrum of T is different from the whole complex plane, i.e., if the resolvent
R(λ;T ) = (T − λI)−1 exists for some λ = λ0, then it follows from the resolvent
equation (since R(λ0;T ) is compact) that R(λ;T ) exists for all λ ∈ C except for a
discrete sequence of points {λν} which are the eigenvalues of T (see [Kel71, p. 17].
In the general case, however, one cannot exclude the situation where the spectrum
of T is all of C.

Theorem 9.12. Assume that ∆L : H+,γ(D) → H−,γ(D) is a compact operator
and Q1 : H−,γ(D) → H−,γ(D) is of finite order. Then the spectrum of the closed
operator T : H−,γ(D)→ H−,γ(D) corresponding to L = L0 + ∆L, is different from
C and the system of root functions of T is complete in the spaces H−,γ(D), H0,γ(D)
and H+,γ(D). Moreover, for any ε > 0, all eigenvalues of T (except for a finite
number) belong to the corner | arg λ| < ε.

Proof. First we note that

T − λI = L− λ ι′ι (9.13)

on H+,γ(D)) for all λ ∈ C. Let us prove that there is a natural number N , such
that λ0 = −N is a resolvent point of T . For this purpose, using (9.13) and Lemma
9.11, we get

T + kI = (I + ∆L(L0 + k ι′ι)−1)(T0 + kI) (9.14)

for all k ∈ N.
We will show that the operator I + ∆L(L0 + k ι′ι)−1 is injective for some k ∈ N.

Indeed, we argue by contradiction. Suppose for any k ∈ N there is fk ∈ H−,γ(D),
such that ‖fk‖−,γ = 1 and

(I + ∆L(L0 + k ι′ι)−1)fk = 0. (9.15)
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Given any u ∈ H+,γ(D) and k ∈ N, an easy computation shows that

‖(L0 + k ι′ι)u‖2−,γ = ‖u+ k L−10 u‖2+,γ
= ‖u‖2+,γ + 2k ‖u‖2H0,γ(D) + k2 ‖L−10 u‖2+,γ
≥ ‖u‖2+,γ .

Hence, the sequence uk := (L0 + k ι′ι)−1fk is bounded in H+,γ(D). Now the weak
compactness principle for Hilbert spaces yields that there is a subsequence {fkj}
with the property that both {fkj} and {ukj} converge weakly in the spaces H−,γ(D)
and H+,γ(D) to limits f and u, respectively. Since ∆L is compact, it follows that
the sequence {∆Lukj} converges to ∆Lu in H−,γ(D), and so {fkj} converges to f
because of (9.15). Obviously,

‖f‖−,γ = 1.

In particular, we conclude that the sequence {∆L(L0 + kj ι
′ι)−1fkj} converges to

−f whence

f = −∆Lu. (9.16)

Further, on passing to the weak limit in the equality fkj = (L0 + kj ι
′ ◦ ι)ukj we

obtain

f = L0u− lim
kj→∞

kj ι
′ι ukj ,

for the continuous operator L0 : H+,γ(D) → H−,γ(D) maps weakly convergent
sequences to weakly convergent sequences. As the operator ι′ι is compact, the
sequence {ι′ι ukj} converges to ι′ι u in the space H−,γ(D) and ι′ι u 6= 0 which is a
consequence of (9.16) and the injectivity of ι′ι. This shows readily that the weak
limit

lim
kj→∞

kj ι
′ι ukj = L0u− f

does not exist, a contradiction.
We have proved more, namely that the operator I+ ∆L(L0 +k ι′ι)−1 is injective

for all but a finitely many natural numbers k. Since this is a Fredholm operator of
index zero, it is continuously invertible. Hence, (9.14) and Lemma 9.11 imply that
(T − λ0I)−1 exists for some λ0 = −N with N ∈ N.

As λ0 is a resolvent point of T ,

(T − λ0I)−1 = (L− λ0 ι′ι)−1

on H−,γ(D). Since L : H+,γ(D) → H−,γ(D) is a Fredholm operator and the
inclusion ι compact, the operator L − λ0 ι′ι : H+,γ(D) → H−,γ(D) is Fredholm.
So (L − λ0 ι′ι)−1 maps H−,γ(D) continuously to H+,γ(D). Similarly to (9.11) we
obtain

L−10 − (L− λ0 ι′ι)−1 = L−10

(
(∆L− λ0 ι′ι)(L− λ0 ι′ι)−1

)
.

Then, Theorem 9.10 yields that the root functions {uν} of the operator (L−λ0 ι′ι)−1
are complete in the spaces H+,γ(D), H0,γ(D) and H−,γ(D).

From (9.13) it follows that the systems of root functions related to the operators
(L− λ0 ι′ι)−1 and T − λ0 I coincide.

Finally, as the operators T−λ0I and T have the same root functions, we conclude
that L({uν}) is dense in the spaces H+,γ(D), H0,γ(D) and H−,γ(D). �
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The equality (T − λI)u = 0 for a function u ∈ H+,γ(D) may be equivalently
reformulated by saying that u is a solution in a weak sense to the boundary value
problem {

Au = λu in D,
Bu = 0 at ∂D, (9.17)

where the pair (A,B) corresponds to the perturbation L0 + ∆L. For n = 1 such
problems are known as Sturm-Liouville boundary problems for second order ordi-
nary differential equations (see for instance [Har64, Ch. XI, § 4]). Thus, we may
still refer to (9.17) as the Sturm-Liouville problem in many dimensions.

Now we want to study the completeness of root functions of “small” perturba-
tions of compact selfadjoint operators instead of the weak ones. To this end we
apply the so-called method of rays of minimal growth of resolvent which leads to
more general results than Theorem 6.4. This idea seems to go back at least as far
as [Agm62].

10. Rays of minimal growth

We first describe briefly the method of minimal growth rays following [DS63]
and Theorem 6.1 of [GK69, p. 302].

Let L : H+,γ(D) → H−,γ(D) be the bounded linear operator constructed in
Section 8. We still assume that estimates (8.8) and (8.44) hold and that the op-
erator L is Fredholm. In the sequel we confine ourselves to those Sturm-Liouville
problems for which the spectrum of the corresponding unbounded closed operator
T : H−,γ(D) → H−,γ(D) is discrete, cf. [Agm62]. We denote by R(λ;T ) the
resolvent of the operator T .

Definition 10.1. A ray arg λ = ϑ in the complex plane C is called a ray of minimal
growth of the resolvent R(λ;T ) : H−,γ(D) → H−,γ(D) if the resolvent exists for
all λ of sufficiently large modulus on this ray, and if, moreover, for all such λ an
estimate

‖R(λ;T )‖L(H−,γ(D)) ≤ c |λ|−1 (10.1)

holds with a constant C > 0.

Theorem 10.2. Let H+,γ(D) be continuously embedded into Hs,γ(D) or H̃s,γ(D),
for some 0 < s ≤ 1. Suppose there are rays of minimal growth of the resolvent
arg λ = ϑj, where j = 1, . . . , J , in the complex plane, such that the angles between
any two neighbouring rays are less than 2πs/n. Then the spectrum of the operator
T is discrete and the root functions form a complete system in the spaces H−,γ(D),
H0,γ(D) and H+,γ(D).

Proof. The proof actually follows by the same method as that in Theorem 3.2 of
[Agm62].

Since the spectrum of the operator T is different from the whole complex plane
it is actually discrete. It remains to show that if g ∈ H−,γ(D) is orthogonal to all
eigen- and associated functions of the operator T then g is identically zero. By the
Hahn-Banach theorem, this implies that the root functions of T are complete in
H−,γ(D).

Since the operators T and T −λ0I have the same root functions, we may assume
without loss of generality that the origin is not in the spectrum of T . Choosing
λ0 = 0 in R = (T − λ0I)−1, we set R = T−1.
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Consider now the function

f(λ) = (R(1/λ;R)u, g)−,γ , (10.2)

where u ∈ H−,γ(D) and (·, ·)−,γ stands for the scalar product in H−,γ(D). Since the
resolvent of R is a meromorphic function with poles at the points of the spectrum of
R, the function f is analytic for λ 6= λν , where {λν} is the sequence of eigenvalues
of R−1 = T . We shall use a familiar relation between the resolvents of the operators
T and T−1, namely

R(1/λ;T−1) = −λI − λ2R(λ;T ). (10.3)

Consider the expansion

R(λ;T )u =
f−N

(λ− λν)N
+

f−N+1

(λ− λν)N−1
+ . . .+

f−1
λ− λν

+

∞∑
k=0

fk (λ− λν)k,

in a neighborhood of the point λ = λν , where λν is a pole of R(λ;T ). Here N ≥ 1
and f−N 6= 0, the functions f−N , . . . , f−1 ∈ H−,γ(D) form a chain of associated
functions of T , and fk ∈ H−,γ(D) for k ≥ 0. This expansion implies that λν is a
regular point of f(λ), for g is orthogonal to all f−N , . . . , f−1. Therefore, f(λ) is an
entire function.

Relations (10.1), (10.2) and (10.3) imply that f is of exponential type, i.e., there
is a constant c > 0, such that

|f(λ)| ≤ c exp |λ| (10.4)

for |λ| → ∞, provided that arg λ = ϑj for some j = 1, . . . , J . We use the following
lemma taken from [DS63].

Lemma 10.3. Assume that R is a compact linear operator of Schatten class Sp,
with 0 < p < ∞, in a Hilbert space H. Then there exists a sequence ρj satisfying
ρj → 0, such that

‖R(λ;R)‖L(H) ≤ const exp(c |λ|−p)
for |λ| = ρj.

According to Corollaries 9.4, 9.5, 9.6, the operator R belongs to Sn/2s+ε for any
ε > 0. Then it follows from Lemma 10.3 that for any ε > 0 there exists a sequence
ρj → 0, such that

|f(λ)| ≤ exp
(
|λ|−

n
2s−ε

)
(10.5)

for all λ ∈ C satisfying |λ| = 1/ρj .
Consider f(λ) in the closed corner between the rays arg λ = ϑj and arg λ = ϑj+1.

Its angle is less than 2πs/n. Since

R(1/λ;R) = −λI − λ2R(λ;T )

and each ray arg λ = ϑj is a ray of minimal growth, inequality (10.4) is fulfilled on
the sides of the corner and inequality (10.5) on a sequence of arcs which tends to
infinity.

Choosing ε > 0 in (10.5) sufficiently small and applying the Fragmen-Lindelöf
theorem we conclude that |f(λ)| = O(|λ|) as |λ| → ∞ in the whole complex plane.
Therefore, f(λ) is an affine function, i.e., f(λ) = a0 + c1λ. On the other hand, we
have

R(1/λ;R) = −λ I − λ2R+ . . . ,
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and so

f(λ) = −λ (u, g)−,γ − λ2 (Ru, g)−,γ + . . . .

Since f(λ) is affine, we get

(Ru, g)−,γ = 0

for all u ∈ H−,γ(D). Hence it follows that g = 0, for the range of the operator R is
dense in H−,γ(D). Thus, the system of root functions of the operator T is complete
in H−,γ(D).

As the operators T , (T − λ0I) and (T − λ0I)−1 have the same root functions, it
suffices to repeat the arguments of the proof of Theorem 9.10 to see the completeness
in the spaces H0,γ(D) and H+,γ(D). �

This theorem raises the question under what conditions neighboring rays of min-
imal growth are close enough. We now indicate some conditions for a ray arg λ = ϑ
in the complex plane to be a ray of minimal growth for the resolvent of T .

Lemma 10.4. Each ray arg λ = ϑ with ϑ 6= 0 is a ray of minimal growth for
R(λ;T0) and

‖(T0 − λI)−1‖L(H−,γ(D)) ≤
{

(|λ| | sin(arg λ)|)−1, if | arg λ| ∈ (0, π/2),
|λ|−1, if | arg λ| ∈ [π/2, π].

(10.6)

Moreover, the operator L0 − λ ι′ι : H+,γ(D) → H−,γ(D) is continuously invertible
and

‖(L0 − λ ι′ι)−1‖L(H−,γ(D),H+,γ(D)) ≤
{
| sin(arg λ)|, if | arg λ| ∈ (0, π/2),
1, if | arg λ| ∈ [π/2, π].

(10.7)

Proof. According to Lemma 9.11 the resolvent

(T0 − λI)−1 : H−,γ(D)→ H−,γ(D)

exists for all λ ∈ C away from the positive real axis. As the operator Q3 = L−10 ι′ι
is selfadjoint, the operator T0 is symmetric, i.e.,

(T0u, g)−,γ = (L0u, g)−,γ

= (u,Q−13 g)+,γ

= (Q−13 u, g)+,γ

= (u, L0g)−,γ

= (u, T0g)−,γ

for all u, v ∈ H+,γ(D). If | arg(λ)| ∈ (0, π/2), then

‖(T0 − λI)u‖2−,γ = ‖(T0 −<λ I)u‖2−,γ + |=λ|2 ‖u‖2−,γ
≥ |λ|2| sin(arg λ)|2 ‖u‖2−,γ

for all functions u ∈ H+,γ(D), which establishes the first estimate of (10.6). If
| arg λ| ∈ [π/2, π], then <λ ≤ 0 whence

‖(T0 − λI)u‖2−,γ ≥ |λ|2 ‖u‖2−,γ
and so the second estimate of (10.6) holds.

Now it follows from (9.13) that the operator L0−λ ι′ι is injective for λ ∈ C away
from the positive real axis. As this operator is Fredholm and its index is zero, it is
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continuously invertible. Finally, as the operator Q3 = L−10 ι′ι is positive, we deduce
readily that

‖(L0 − λ ι′ι)u‖−,γ = ‖(I − λL−10 ι′ι)u‖+,γ
≥ |λ| |=λ−1| ‖u‖+,γ
= | sin(arg λ)| ‖u‖+,γ ,

if | arg λ| ∈ (0, π/2), i.e. the second estimate of (10.7) is fulfilled. Similar arguments
lead to the second estimate of (10.7). �

Theorem 10.5. Let H+,γ(D) be continuously embedded into Hs,γ(D) or H̃s,γ(D)
for some s > 0 and estimate (8.44) be fulfilled with a constant c < | sin(πs/n)|.
Then all eigenvalues of the closed operator T : H−,γ(D) → H−,γ(D) belong to
the corner | arg λ| ≤ arcsin c, each ray arg λ = ϑ with |ϑ| > arcsin c is a ray of
minimal growth for R(λ;T ) and the system of root functions is complete in the
spaces H−,γ(D), H0,γ(D) and H+,γ(D).

Proof. First we note that, by Lemma 8.15, the operator L : H+,γ(D) → H−,γ(D)
is invertible. Indeed, L = L0 + ∆L where ∆L : H+,γ(D)→ H−,γ(D) is a bounded
operator with the norm

‖∆L‖L(H+,γ(D),H−,γ(D)) < 1 = ‖L−10 ‖−1.

In particular, by (9.13), the spectrum of the corresponding operator T does not
coincide with the whole complex plane.

Fix ϑ 6= 0 and set mϑ = | sinϑ|, if |ϑ| ∈ (0, π/2), and mϑ = 1, if |ϑ| ∈ [π/2, π]. If
mϑ > c then

‖∆L‖L(H+,γ(D),H−,γ(D)) ≤ c < mϑ ≤ ‖(L0 − λ ι′ι)−1‖−1L(H+,γ(D),H−,γ(D)).

Hence it follows that the operator L− λ ι′ι : H+,γ(D) → H−,γ(D) is continuously
invertible and

‖(L− λ ι′ι)−1‖L(H+,γ(D),H−,γ(D)) ≤ (mϑ − c)−1. (10.8)

In order to establish estimate (10.1) we have to show that there is a constant
C > 0, such that

C |λ|−1 ‖(T − λI)u‖−,γ ≥ ‖u‖−,γ
for all u ∈ H+,γ(D).

If arg λ = ϑ with mϑ > c, then, by (9.13), we get

‖(T − λI)u‖−,γ = ‖(L− λ ι′ι)u‖−,γ
≥ (mϑ − c) ‖u‖+,γ
≥ (mϑ − c) ‖u‖−,γ

for all u ∈ H+,γ(D). Therefore, given any λ on the ray arg λ = ϑ with mϑ > c, it
follows that

1) The range of the operator T − λI : H−,γ(D)→ H−,γ(D) is a closed subspace
of H−,γ(D).

2) The null space of the operator T − λI : H−,γ(D)→ H−,γ(D) is trivial.
By (9.13), the range of T − λI coincides with the range of L− λ ι′ι which is the

whole space H−,γ(D). Hence, the resolvent (T − λI)−1 exists for all λ away from
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the corner | arg λ| ≤ arcsin c in the complex plane. On applying (9.13) and Lemma
10.4 we obtain

T − λI = L0 + ∆L− λ ι′ι = (I + ∆L(L0 − λ ι′ι)−1)(T0 − λI) (10.9)

on H+,γ(D) and

‖(I + ∆L(L0 − λ ι′ι)−1)u‖−,γ
≥ ‖u‖−,γ − ‖∆L‖L(H+,γ(D),H−,γ(D)) ‖(L0 − λ ι′ι)−1u‖+,γ
≥ (1− c/mϑ) ‖u‖−,γ .

Therefore the operator I + ∆L(L0−λ ι′ι)−1 is continuously invertible as Fredholm
operator of zero index and trivial null space. Moreover,

‖(I + ∆L(L0 − λ ι′ι)−1)−1‖L(H−,γ(D)) ≤ (1− c/mϑ)−1.

Now (10.9) implies

‖(T − λI)−1‖L(H−,γ(D))

≤ ‖(I + ∆L(L0 − λ ι′ι)−1)−1‖L(H−,γ(D))‖(T0 − λ I)−1‖L(H−,γ(D))

≤ (1− c/mϑ)−1m−1ϑ |λ|
−1

(10.10)

for all λ satisfying arg λ = ϑ with mϑ > c.
Thus, all rays outside of the corner | arg λ| ≤ arcsin c are rays of minimal growth.

By the hypothesis of the theorem, the angles between the pairs of neighboring rays
arg λ = ϑ are less than 2πs/n, and so the completeness of root functions follows
from Theorem 10.2. �

We are now in a position to prove the main result of this section. When compared
with [Agr11c] our contribution consists in developing dual function spaces which fit
the problem.

Theorem 10.6. Let the space H+,γ(D) be continuously embedded into Hs,γ(D) or

into H̃s,γ(D) for some s > 0, the operator ∆L : H+,γ(D) → H−,γ(D) be bounded
with norm less then | sin(πs/n)|, and C : H+,γ(D) → H−,γ(D) be compact. Then
the following is true:

1) The spectrum of the operator T in H−,γ(D) corresponding to L0 + ∆L+C is
discrete.

2) For any ε > 0, all eigenvalues of the operator T (except for a finite number)
belong to the corner | arg λ)| < arcsin ‖∆L‖+ ε.

3) Each ray arg λ = ϑ with

|ϑ| > arcsin ‖∆L‖L(H+,γ(D),H−,γ(D)) (10.11)

is a ray of minimal growth for R(λ;T ).
4) The system of root functions is complete in the spaces H−,γ(D), H0,γ(D) and

H+,γ(D).

Proof. First we note that the operator L0 + ∆L : H+,γ(D) → H−,γ(D) is contin-
uously invertible and hence the operator L0 + ∆L + C : H+,γ(D) → H−,γ(D) is
actually Fredholm.

Theorem 10.5 implies that all rays satisfying (10.11) are rays of minimal growth
for R(λ;T0 + ∆T ) with the closed operator T0 + ∆T in H−,γ(D) corresponding to
L0 + ∆L : H+,γ(D)→ H−,γ(D).
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Fix an arbitrary ε > 0. Then estimates (10.8) and (10.10) imply that there are
constants c1 and c2 depending on ε, such that

‖(L0 + ∆L− λ ι′ι)−1‖L(H−,γ(D),H+,γ(D)) ≤ c1, (10.12)

‖(T0 + ∆T − λI)−1‖L(H−,γ(D)) ≤ c2 |λ|−1 (10.13)

for all λ satisfying

| arg λ| ≥ arcsin ‖∆L‖L(H+,γ(D),H−,γ(D)) + ε. (10.14)

Then, using (9.13), (10.12) and Theorem 10.5 we obtain

T − λI =
(
I + C(L0 + ∆L− λ ι′ι)−1

)
(T0 + ∆T − λI) (10.15)

on H+,γ(D) for all rays satisfying (10.14).
We now prove that there is a constant Mε > 0 depending on ε, such that the

operator I +C(L0 + ∆L− λ ι′ι)−1 is injective for all λ satisfying both (10.14) and
|λ| ≥ Mε. To do this, we argue by contradiction in the same way as in the proof
of Theorem 9.12. Suppose for each natural number k there are fk ∈ H−,γ(D),
satisfying ‖fk‖−,γ = 1, and λk, satisfying (10.14) and |λk| ≥ k, such that(

I + C(L0 + ∆L− λk ι′ι)−1
)
fk = 0. (10.16)

It follows from (10.12) that the sequence uk = (L0 + ∆L − λkι′ι)−1fk is bounded
in H+,γ(D). By the weak compactness principle for Hilbert spaces one can assume
without restriction of generality that the sequences {fk} and {uk} converge weakly
in the spaces H−,γ(D) and H+,γ(D) to functions f and u, respectively. Since C
is compact, it follows that the sequence {Cuk} converges to Cu in H−,γ(D) and
so {fk} converges to f , which is due to (10.16). Obviously, the H−,γ(D) -norm of
f just amounts to 1. In particular, we conclude that {C(L0 + ∆L − λk ι′ι)−1)fk}
converges to −f whence

f = −Cu. (10.17)

Further, as fk = (L0 + ∆L − λk ι′ι)uk, letting k → ∞ in this formula yields
readily

f = (L0 + ∆L)u− lim
k→∞

λk ι
′ι uk.

As the operator ι′ι is compact, the sequence {ι′ι uk} converges to ι′ι u in the space
H−,γ(D), and ι′ιu 6= 0 because of (10.17) and the injectivity of ι′ι. Therefore, the
weak limit

lim
k→∞

λk ι
′ι uk = (L0 + ∆L)u− f

fails to exist, for {λk} is unbounded. A contradiction.
As the operator I + C(L0 + ∆L − λ ι′ι)−1 is Fredholm and it has index zero,

this operator is continuously invertible for all λ ∈ C satisfying both (10.14) and
|λ| ≥Mε. Set

Nε = inf ‖(I + C(L0 + ∆L− λ ι′ι)−1)f‖−,γ ≥ 0,

the infimum being over all f ∈ H−,γ(D) of norm 1 and all λ ∈ C satisfying (10.14)
and |λ| ≥ Mε. We claim that Nε > 0. To show this, we argue by contradiction. If
Nε = 0 then there are sequences {fk} in H−,γ(D), each fk being of norm 1, and
{λk} satisfying (10.14) and |λ| ≥Mε, such that

lim
k→∞

‖(I + C(L0 + ∆L− λk ι′ι)−1)fk‖−,γ = 0. (10.18)
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Again, by (10.12), the sequence uk = (L0+∆L−λk ι′ι)−1fk is bounded in H+,γ(D).
By the weak compactness principle for Hilbert spaces we may assume that the se-
quences {fk} and {uk} are weakly convergent in the spaces H−,γ(D) and H+,γ(D)
to functions f and u, respectively. Since C is compact, the sequence {Cuk} con-
verges to Cu in H−,γ(D) and so {fk} converges to f because of (10.18); obviously,
‖f‖−,γ = 1. In particular, we deduce that the sequence C(L0 + ∆L− λk, ι′ι)−1) fk
converges to −f whence

f = −Cu (10.19)

with u 6= 0.
If the sequence {λk} is bounded in C, then using the weak compactness principle

and passing to a subsequence, if necessary, we may assume that {λk} converges to
λ0 ∈ C which satisfies (10.14) and |λ| ≥Mε. Since

(L0 + ∆L− λk ι′ι)−1fk − (L0 + ∆L− λ0 ι′ι)−1f
= (L0+∆L−λj ι′ι)−1)(fk−f) +

(
(L0+∆L−λk ι′ι)−1 − (L0+∆L−λ0 ι′ι)−1

)
f

and

‖
(
(L0 + ∆L− λk ι′ι)−1 − (L0 + ∆L− λ0 ι′ι)−1

)
f‖−,γ

≤ |λk−λ0| ‖(L0+∆L−λk ι′ι)−1‖ ‖(L0+∆L−λ0 ι′ι)−1‖ ‖f‖−,γ ,
estimate (10.12) implies that in this case the sequence {(L0 + ∆L − λk ι′ι)−1fk}
converges to (L0 + ∆L− λ0 ι′ι)−1f , and so(

I + C(L0 + ∆L− λ0 ι′ι)−1
)
f = 0

because of (10.18). But λ0 satisfies (10.14) and |λ| ≥Mε, and hence the injectivity
of the operator I + C(L0 + ∆L − λ0 ι′ι)−1 established above yields f = 0. This
contradicts ‖f‖ = 1.

If {λk} is unbounded in C we can repeat the arguments above. Indeed, then
fk = (L0+∆L−λk ι′ι)uk and on passing to the weak limit with respect to k →∞
we get

f = (L0 + ∆L)u− lim
k→∞

λk ι
′ι uk.

As the operator ι′ι is compact, the sequence {ι′ι uk} converges to ι′ι u in the space
H−,γ(D). Moreover, ι′ι u 6= 0 because of (10.19) and the injectivity of ι′ι. This
shows that the weak limit

lim
n→∞

λk ι
′ι uk = (L0 + ∆L)u− f

fails to exist if {λk} is unbounded in C, a contradiction. Therefore, Nε > 0 and for
all λ ∈ C satisfying (10.14) and |λ| ≥Mε we obtain

‖
(
I + C(L0 + ∆L− λ ι′ι)−1

)−1 ‖L(H−,γ(D)) ≤ 1/Nε. (10.20)

From estimates (10.12), (10.20) and formula (10.15) it follows that, given any
λ ∈ C satisfying (10.14) and |λ| ≥Mε, the resolvent R(λ;T ) exists and

‖R(λ;T )‖L(H−,γ(D)) ≤ const (ε) |λ|−1.
As C is compact, there are only finitely many λ ∈ C with |λ| < Nε, such that

the operator (I +C(L0 − λ ι′ι)) is not injective. Therefore, it follows from formula
(10.15) that all eigenvalues of the operator T corresponding to L0+∆L+C (except
for a finite number) belong to the corner | arg λ| < arcsin ‖∆L‖ + ε. Finally, since
ε > 0 is arbitrary, all rays (10.11) are rays of minimal growth. By the hypothesis of
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the theorem, the angles between the pairs of neighboring rays arg λ = ϑ satisfying
(10.11) are less than 2πs/n, and so the statement of the theorem follows from
Theorem 10.2. �

Part 5. Non-coercive problems

11. The coercive case

We first consider coercive boundary value problems, i.e. we assume that estimate
(8.9) is fulfilled. The sufficient conditions for (8.9) to be true are indicated in
Lemmas 8.2, 8.3, 8.10 and 8.11.

Lemma 11.1. Assume that estimate (8.9) is fulfilled.
1) If r = 0 and the operator Ψ is given by multiplication with a function ψ

satisfying ρ|ψ|2 ∈ L∞(∂D\S), then the norms ‖·‖+,γ and ‖·‖H1,γ(D) are equivalent,

and so the Banach spaces H+,γ(D) and H1,γ(D, S) are isomorphic.
2) The conclusion is the same if the operator Ψ maps H1/2,0(∂D, S) continuously

to L2(∂D).

Note that there are continuous embeddings

H1/2,0(∂D) ↪→ H1/2(∂D) ↪→ Hr(∂D),

if |r| ≤ 1/2. Hence, the hypothesis of the continuity of Ψ is natural, for the
domain of Ψ is intended to belong to Hr(∂D). In the transversal case we get
H1/2,0(∂D) = H1/2(∂D).

Proof. From estimate (8.9) it follows that the norm ‖ · ‖+,γ is not weaker than
the norm ‖ · ‖H1,γ(D) on H1,γ(D, S). Furthermore, since the coefficients ai,j are
bounded in D, we obtain∫

D

n∑
i,j=1

ρ−2γai,j∂ju∂iu dx ≤ c
n∑
j=1

‖∂ju‖2H0,γ(D) ≤ c ‖u‖
2
H1,γ(D)

for all u ∈ H1,γ(D, S).
Obviously

‖a0,0u‖H0,γ(D) ≤ c ‖u‖H1,γ(D)

because ρ2a0,0 ∈ L∞(D).
As ρ|ψ|2 ∈ L∞(∂D \ S),∫

∂D\S
ρ−2γ |ψ(x)|2|u(x)|2 ds =

∫
∂D\S

ρ|ψ(x)|2 ρ−2(γ+1/2)|u(x)|2 ds

≤ c ‖u‖2H0,γ+1/2(∂D)

≤ c ‖u‖2H1/2,γ(∂D)

≤ c ‖u‖2H1,γ(D)

(11.1)

for all u ∈ H1,γ(D, S), the last inequality being a consequence of Theorem 4.13.
Here, by c is meant a constant independent of u, which can be diverse in different
applications.
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On combining the above estimates we deduce immediately that there is a con-
stant c with the property that

‖u‖+,γ ≤ c ‖u‖H1,γ(D)

for all u ∈ H1,γ(D, S), as desired.
If u ∈ H1,γ(D, S), then ρ−γu ∈ H1,0(D, S) and so the restriction of ρ−γu to the

boundary belongs to H1/2,0(∂D, S). Under the coercive estimate (8.9), the space
H+,γ(D) is continuously embedded into H1,γ(D). Now, if Ψ maps H1/2,0(∂D, S)
continuously to L2(∂D), then, by Corollary 3.3 and Theorem 4.13, we get

‖Ψ(ρ−γu)‖L2(∂D) ≤ c ‖ρ−γu‖H1/2,0(∂D)

≤ c ‖u‖H1/2,γ(∂D)

≤ c ‖u‖H1,γ(D)

(11.2)

for all u ∈ H1,γ(D, S), with c a constant independent of u and different in diverse
applications.

Thus, using (11.2) instead of (11.1) in the above arguments we again obtain the
desired statement. �

Let us discuss the estimate (8.44).

Lemma 11.2. Let (8.9) hold. In each case of 1)-3) there is a constant c with the
property that

1) If ρaj ∈ L∞(D) for all 1 ≤ j ≤ n, then

|(aj∂ju, v)H0,γ(D)| ≤ c ‖u‖+,γ‖v‖+,γ (11.3)

for all u, v ∈ H1,γ(D).
2) If the operator ∆B0 is given by multiplication with a function ∆b0 satisfying

ρ∆b0/b1 ∈ L∞(∂D \ S), then

|(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ (11.4)

for all u, v ∈ H1,γ(D).
3) If the operator b−11 ∆B0 maps H1/2,γ(∂D, S) continuously to H−1/2,γ(∂D)

then
|(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ

for all u, v ∈ H1,γ(D).

In the transversal case 3) just amounts to saying that the operator ργb−11 ∆B0ρ
−γ

maps H1/2(∂D, S) continuously to H−1/2(∂D) (cf. Lemma 8.13 with r = 1/2).

Proof. Inequality (11.3) follows from estimates (8.9) and Lemma 8.13 in an obvious
way.

Furthermore, (8.9) implies the continuous embedding H+,γ(D) ↪→ H1,γ(D). For
u, v ∈ H1,γ(D), the traces on the surface ∂D belong to H1/2,γ(∂D), which is due
to Lemma 4.14. Hence, using Lemmas 8.10 and 4.14 we obtain

|(b−11 ∆B0u, v)H0,γ(∂D\S)| = |(ρb−11 ∆B0u, v)H0,γ+1/2(∂D\S)|
≤ c ‖u‖H1/2,γ(∂D)‖v‖H1/2,γ(∂D)

≤ c ‖u‖H1,γ(D)‖v‖H1,γ(D)

for all u, v ∈ H1,γ(D), i.e. (11.4) holds true.
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Finally, if b−11 ∆B0 maps H1/2,γ(∂D, S) continuously to H−1/2,γ(∂D), then, by
duality and Theorem 4.13,

|(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ ‖b−11 ∆B0u‖H−1/2,γ(∂D)‖v‖H1/2,γ(∂D\S)

≤ c ‖u‖H1/2,γ(∂D)‖v‖H1/2,γ(∂D\S)

≤ c ‖u‖H1,γ(D)‖v‖H1,γ(D)

for all u, v ∈ H1,γ(D, S). �

Lemma 11.2 and estimate (8.43) show readily that in the coercive case estimate
(8.44) concerns for the most part the mere summand

(b−11 ∂tu, v)H0,γ(∂D\S)

in the sesquilinear form Q(u, v).
Let t1(x), . . . , tn−1(x) be a basis of tangential vectors of the boundary surface at

a point x ∈ ∂D. Then we can write

∂t =

n−1∑
j=1

kj(x) ∂tj

where k1, . . . , kn−1 are bounded functions on the boundary vanishing at S.

Lemma 11.3. Suppose (8.9) is fulfilled. If kj/b1 is of Hölder class C0,λ in the
closure of ∂D \ S for all 1 ≤ j ≤ n− 1, with λ > 1/2, then

|(b−11 ∂tu, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ (11.5)

for all u, v ∈ H1,γ(D, S).

Proof. By assumption, ∂D is a compact closed Lipschitz manifold and ∂tj first
order differential operators with bounded coefficients on ∂D. Such operators map
H1/2,γ(∂D) = H1/2,1/2+γ(∂D) continuously to H−1/2,γ(∂D) = H−1/2,−1/2+γ(∂D),
the dual of H1/2,1/2−γ(∂D).

Recall that for each Hölder continuous function f ∈ C0,λ(K) on a compact set
K ⊂ Rn, with 0 < λ ≤ 1, there is an explicit extension F to all of Rn, which is
given by

F (x) = inf
y∈K

(f(y) + ‖f‖C0,λ(K)|x− y|λ) (11.6)

and satisfies ‖F‖C0,λ(K̃) ≤ ‖f‖C0,λ(K) for any larger compact K̃.

Applying this result to each function kj/b1 on the compact set ∂D \ S with
1/2 < λ ≤ 1, we find functions Fj ∈ C0,λ(∂D) satisfying Fj = kj/b1 in ∂D \ S and
such that

‖Fj‖C0,λ(∂D) ≤ ‖kj/b1‖C0,λ(∂D\S).

It follows that

|(b−11 ∂tu, v)H0,γ(∂D\S)| ≤
n−1∑
j=1

|(∂tju, b−11 kjv)H0,γ(∂D\S)|

≤
n−1∑
j=1

‖∂tju‖H−1/2,γ(∂D)‖Fjv‖H1/2,γ(∂D)

(11.7)
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for all u, v ∈ H1,γ(D, S), the last estimate being due to the generalised Schwarz
inequality.

It is well known that multiplication by functions of Hölder class C0,λ(∂D) with
1/2 < λ ≤ 1 is a bounded linear operator in H1/2(∂D) (see for instance [Slo58, § 3],
[Pal96, Lemma 2.1] and elsewhere). Hence, there is a constant c with the property
that

‖Fjv‖H1/2(∂D) ≤ c ‖v‖H1/2(∂D)

for all v ∈ H1/2(∂D). If now v ∈ H1/2,γ(∂D), then ρ−γv ∈ H1/2,0(∂D) = H1/2(∂D)
whence

‖Fjv‖H1/2,γ(∂D) ≤ ‖Fj(ρ−γv)‖H1/2(∂D)

≤ c ‖ρ−γv‖H1/2(∂D)

≤ c ‖v‖H1/2,γ(∂D).

We have thus proved that multiplication by a function of class C0,λ(∂D \ S) is
a bounded linear operator on H1/2,γ(∂D, S). Summarising we estimate the right-
hand side of (11.7) by

c ‖u‖H1/2,γ(∂D)‖v‖H1/2,γ(∂D) ≤ c ‖u‖H1,γ(D)‖v‖H1,γ(D)

≤ c ‖u‖+,γ‖v‖+,γ ,

where the constant c does not depend on u and v and may be different in diverse
applications. �

Remark 11.4. Lemma 11.3 is actually true under weaker assumptions. We need
not require than kj/b1 ∈ C0,λ(∂D \ S). These quotients must be just multipliers

for the space H1/2(∂D, S). For example, this is the case for a measurable function
m on ∂D \ S if

sup
x∈∂D\S

|m(x)|2 + sup
x∈∂D\S

∫
∂D\S

|m(x)−m(y)|2

|x− y|n
ds

is finite, see [Slo58, § 3], [Pal96, Lemma 2.1]) and elsewhere.

Our next concern will be to describe those perturbations of aj and ∆b0/b1 and

t which preserve the completeness property of root functions of the operator L−10

under condition (8.9).

Lemma 11.5. Let estimate (8.9) hold and t = 0. Suppose there is a number ε > 0
such that

ρ1−ε
(
aj − 2γ ρ−1

n∑
i=1

ai,j(∂iρ)
)
∈ L∞(D),

ρ2−εa0 ∈ L∞(D)

and either the operator ∆B0 is given by multiplication with a function ∆b0 satisfying
ρ1−ε∆b0/b1 ∈ L∞(∂D\S) or b−11 ∆B0 maps H1/2,γ(∂D) compactly to H−1/2,γ(∂D).
Then the operator

∆L = L− L0 : H+,γ(D)→ H−,γ(D)

is compact.
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In the case of regular singularities the last condition means that the operator
ργb−11 ∆B0ρ

−γ maps H1/2(∂D) compactly to H−1/2(∂D). It is the case, e.g., if

ργb−11 ∆B0ρ
−γ maps H1/2(∂D) continuously to H−1/2+ε,γ(∂D) with some ε > 0.

Proof. Fix v ∈ H1,γ(D) and consider the function w = ρε−1v. By Corollary 3.3, we
get w ∈ H1,γ+ε−1(D) = H1,γ+ε(D). The embedding e : H1,γ+ε−1(D)→ H0,γ(D) is
compact because of Corollary 4.8.

Fix a bounded sequence {uν} in H+,γ(D). Estimate (8.9) implies that H+,γ(D)
is continuously embedded into H1,γ(D). Hence, the sequence

Fν = ρ1−ε
n∑
j=1

(
aj − 2γ ρ−1

n∑
i=1

ai,j(∂iρ)
)
∂juν + ρ2−εa0(ρ−1uν)

is bounded in H0,γ(D). According to the weak compactness principle we may
assume without restriction of generality that the sequence converges weakly to zero
in H0,γ(D).

On the other side, if ∆B0 = 0 then

(∆Luν , v)γ = (Fν , eOp (ρ1−ε)v)H0,γ(D) = ((eOp (ρ1−ε))∗Fν , v)H1,γ(D)

whence

|(∆Luν , v)γ | ≤ ‖(eOp (ρ1−ε))∗Fν‖H1,γ(D)‖v‖H1,γ(D)

≤ c ‖(eOp (ρ1−ε))∗Fν‖H1,γ(D)‖v‖H+,γ(D),

where

(eOp (ρ1−ε))∗ : H0,γ(D)→ H1,1+γ(D)

is the Hilbert space adjoint for eOp (ρ1−ε) and the constant c does not depend on
u and v.

The operator eOp (ρ1−ε) is compact, for Op (ρ1−ε) is bounded and e is compact.
Hence

‖∆Luν‖−,γ ≤ c ‖e∗Fν‖H1,γ+ε(D) → 0

as ν →∞, i.e. ∆L : H+,γ(D)→ H−,γ(D) is compact, too.
Let

aj = 2γ ρ−1
n∑
i=1

ai,j(∂iρ),

for 0 ≤ j ≤ n, and let the operator ∆B0 be given by multiplication with a function
∆b0 satisfying ρ1−ε∆b0/b1 ∈ L∞(∂D \ S). According to Lemma 4.14 the trace
operator t1 : H1,γ(D)→ H1/2,γ(∂D) is bounded. Hence it follows that the sequence

Uν =

{
ρ1−εb−11 ∆b0 t1uν on ∂D \ S,
0 on S

is bounded in H0,γ+1/2(∂D). Again we may assume that it converges weakly to
zero in H0,γ+1/2(∂D). Then

(∆Luν , v)γ = (b−11 ∆b0 t1uν , t1v)H0,γ(∂D\S)

= (ρ1−εb−11 ∆b0 t1uν , ρ
εt1v)H0,γ+1/2(∂D\S).

By Corollary 3.3, the operator Op (ρε) maps the space H1/2,γ(∂D) continuously
to H1/2,γ+ε(∂D) = H1/2,1/2+γ+ε(∂D). Furthermore, Corollary 4.9 implies that the
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embedding e : H1/2,1/2+γ+ε(∂D) ↪→ H0,1/2+γ(∂D) is compact. Therefore,

(∆Luν , v)γ = (Uν , eOp (ρε) t1v)H1/2,1/2+γ(∂D)

= (e∗Uν ,Op (ρε) t1v)H1/2,1/2+γ+ε(∂D)

where e∗ : H0,1/2+γ(∂D)→ H1/2,1/2+γ+ε(∂D) is the Hilbert space adjoint for e. As
the operator

Op (ρε)t1 : H1,γ(D)→ H1/2,1/2+γ+ε(∂D)

is bounded (see Lemma 4.14 and Corollary 3.3) we see that

|(∆Luν , v)γ | ≤ c ‖e∗Uν‖H1/2,1/2+γ+ε(∂D)‖v‖H1,γ(D)

≤ c ‖e∗Uν‖H1/2,1/2+γ+ε(∂D)‖v‖H+,γ(D)

with c a constant independent of u and v. It follows that

‖∆Luν‖−,γ ≤ ‖e∗Uν‖H1/2,1/2+γ+ε(∂D) → 0,

as ν →∞, i.e. ∆L is compact in this case, too.
Finally, suppose that

aj = 2γ ρ−1
n∑
i=1

ai,j(∂iρ),

for 0 ≤ j ≤ n, and b−11 ∆B0 maps H1/2,γ(∂D) compactly to H−1/2,γ(∂D). Then
the sequence

Uν = b−11 ∆B0 uν

is precompact in H−1/2,γ(∂D). We may assume that {uν} converges weakly to zero
in H1/2,γ(∂D), and then {Uν} converges to zero in H−1/2,γ(∂D). By duality and
Theorem 4.13,

|(∆Luν , v)γ | = |(b−11 ∆B0 uν , v)γ,∂D|
≤ ‖Uν‖H−1/2,γ(∂D)‖v‖H1/2,γ(∂D)

≤ c ‖Uν‖H−1/2,γ(∂D)‖v‖H1,γ(D)

≤ c ‖Uν‖H−1/2,γ(∂D)‖v‖+,γ ,

where c is a constant independent of v and ν. Therefore,

‖∆Luν‖−,γ ≤ c ‖Uν‖H−1/2,γ(∂D) → 0,

as ν →∞, i.e. ∆L is compact in this case, as desired. �

Typical compact mappings from H1/2(∂D) to H−1/2(∂D) are discussed in Ex-
ample 8.8.

We now split

aj = 2γρ−1
n∑
i=1

ai,j∂iρ+ ∆caj + ∆saj

and

∆a0 = ∆ca0 + ∆sa0,
∆B0 = ∆cB0 + ∆sB0,
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where the terms ∆caj , ∆ca0 and ∆cB0 induce compact operators and the terms
∆saj , ∆sa0 and ∆sB0 “small” operators,

|
n∑
j=1

(∆saj∂ju+∆sa0u, v)H0,γ(D)+((∂t+∆sB0)u, v)H0,γ(∂D\S) | ≤M ‖u‖+,γ‖v‖+,γ

(11.8)
for all u, v ∈ H+,γ(D), with M > 0 a constant independent of u and v.

Corollary 11.6. Suppose that estimate (8.9) is fulfilled, kj/b1 ∈ C0,λ(∂D \ S)

for all 1 ≤ j ≤ n − 1, with λ > 1/2, ∆sB0 maps H1/2,γ(∂D, S) continuously to
H−1/2,γ(∂D), and the constant M in (11.8) is less than one. If there is a num-
ber ε > 0, such that ρ1−ε∆caj ∈ L∞(D), for 1 ≤ j ≤ n, ρ2−ε∆ca0 ∈ L∞(D),
and either the operator ∆cB0 is given by multiplication with a function ∆cb0 sat-
isfying ρ1−ε∆cb0/b1 ∈ L∞(∂D \ S) or b−11 ∆cB0 maps H1/2,γ(∂D) compactly to

H−1/2,γ(∂D), then problem (8.47) is Fredholm of index zero. Besides, if ∆caj = 0
for all 1 ≤ j ≤ n, ∆ca0 = 0, and ∆cB0 = 0, then, in fact, problem (8.47) is
uniquely solvable and the inverse operator L−1 : H−,γ(D)→ H+,γ(D) ⊂ H1,γ(D, S)
is bounded.

Proof. It follows from Lemmas 8.13, 11.2, 11.3 and 11.5 that (8.44) is fulfilled under
the hypothesis of the corollary.

Denote by ∆L : H+,γ(D) → H−,γ(D) the operator defined by the terms ∆saj ,
∆sa0, ∂t, and ∆sB0, as described in Section 8. As the constant M in (11.8) is less
than one, we deduce that

‖∆L‖L(H+,γ(D),H−,γ(D)) < 1 = ‖L−10 ‖L(H−,γ(D),H+,γ(D)),

and so a familiar argument shows that the operator L0+∆L : H+,γ(D)→ H−,γ(D)
is invertible.

According to Lemma 11.5, the operator C = L−L0−∆L is compact. Therefore,
problem (8.47) is equivalent to the Fredholm-type operator equation

(I + (L0+∆L)−1C)u = (L0+∆L)−1f

in H+,γ(D) with compact operator (L0 +∆L)−1C : H+,γ(D) → H+,γ(D). This
establishes the corollary. �

Corollary 11.7. Under the hypotheses of Corollary 11.6, if M < sinπ/n, with
M being the constant from (11.8), then the system of root functions of the corre-
sponding closed operator T in H−,γ(D) is complete in the spaces H−,γ(D), H0,γ(D)
and H1,γ(D, S), and, for any δ > 0, all eigenvalues of T (except for a finite num-
ber) lie in the corner | arg λ| < δ + arcsinM in C. If moreover ∆caj = 0 for all
1 ≤ j ≤ n, ∆ca0 = 0, and ∆cB0 = 0, then all eigenvalues of T belong to the corner
| arg λ| ≤ arcsinM in C.

Proof. This is a straightforward consequence of Theorem 10.6 and Corollary 11.6.
As the constant M in (11.8) is less than one, it suffices to apply Theorem 9.10
combined with Corollary 11.6. The last statement follows from Theorem 10.5 and
Corollary 11.6. �

We now discuss several examples. The most illustrative of them is of perhaps
the Dirichlet problem.
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Example 11.8. Let S = ∂D and (8.7) hold with δ = 1. By Lemmas 8.11 and 11.1,
we get H+,γ(D) = H1,γ(D, ∂D). We thus arrive at the Dirichlet problem{

Au = f in D,
u = 0 at ∂D (11.9)

for a complex-valued function u ∈ H+,γ(D), with a given distribution f ∈ H−,γ(D).
By Lemma 11.5, the problem is Fredholm provided there is ε > 0 such that

ρ1−ε
(
aj − 2γ ρ−1

n∑
i=1

ai,j(∂iρ)
)
∈ L∞(D),

ρ2−εa0 ∈ L∞(D)

for all 1 ≤ j ≤ n. The spectral properties of such a problem in weighted Sobolev
spaces are similar to those in the usual Sobolev spaces (corresponding to the case
ρ = 1), see for instance [Kel51], [Mik76]. However, we note that if ρ vanishes on
∂D then the summand ∆a0 induces a bounded operator from H+,γ(D) to H−,γ(D)
only in the case ρ2∆a0 ∈ L∞(D). This means that in weighted spaces the Dirichlet
problem for the Laplace equation might be non-Fredholm for certain weight indices
γ. In the case of regular singularities our techniques allows one to we consider the
Dirichlet problem also with non-zero boundary data. Indeed, let the norms of the
spaces H1,0(D) and H1(D) be equivalent. Consider the inhomogeneous Dirichlet
problem {

Au = f in D,
u = u0 at ∂D (11.10)

for a function u ∈ H1,γ(D), where f ∈ H−,γ(D) and u0 ∈ H1/2,γ(∂D) are given
data. Using spectral synthesis in Sobolev spaces (see [HW83]) we verify that the
case u0 = 0 corresponds to the Dirichlet problem (11.9). By Corollary 5.6, there is
a bounded inverse t−11 : H1/2,γ(∂D) → H1,γ(D). Therefore, (11.10) is a Fredholm
problem, for it is solvable if and only if problem (11.9) is solvable with f replaced
by f − Lt−11 u0, and its solution is given by u = u(f) + t−11 u0, where u(f) is a
solution to the corresponding problem (11.9). Here, by L : H+,γ(D)→ H−,γ(D) is
meant the operator induced by (11.9), as explained above.

After Zaremba [Zar10], the following mixed boundary value problem was sug-
gested to him by W. Wirtinger.

Example 11.9. Consider the mixed problem
−∆nu+ ρ−1

n∑
j=1

(ρεaj + 2γ∂jρ)∂ju+ ρ−2(ρεa0 + 1)u = f in D,

u = 0 at S,
∂vu = u1 at ∂D \ S

(11.11)
for a real-valued function u, where ∆n is the Laplace operator in Rn, the coefficients
a1, . . . , an and a0 are assumed to be bounded functions in D, and ∂v = ∂ν + ∂t
with a tangential vector field t(x) on ∂D whose coefficients are functions of class

C0,λ(∂D \ S) vanishing on S, and ε > 0. In this case ai,j = δi,j , b0 = χS is the
characteristic function of the boundary set S, and b1 = χ∂D\S is that of ∂D \ S.
From the results of the previous section it follows that the root functions related
to problem (11.11) in the space H+,γ(D) = H1,γ(D, S) are complete in H−,γ(D),
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H0,γ(D) and H+,γ(D, S) for all t(x) of sufficiently small length. If ρ ≡ 1 then
H+,γ(D) = H1(D, S) and H0,γ(D) = L2(D), i.e. the results are applicable to usual
Sobolev spaces over Lipschitz domains. In this case (11.11) is a mixed problem
of Zaremba type for the Helmholtz equation in Sobolev spaces. It becomes the
classical problem of Zaremba for the Laplace operator provided a0 = −1 and aj = 0
for 1 ≤ j ≤ n (cf. [Zar10]).

Weight functions ρ enable to enlarge the class of function spaces which are used
to find adequate function-theoretic setting of the boundary value problem. Al-
though such functions ρ may be quite whimsical, merely property (5.1) is of crucial
importance.

We finish the section by showing a second order elliptic differential operator in
the plane for which no Zaremba-type problem is Fredholm (see [ST12]). The idea
is traced back to a familiar example of A. V. Bitsadze (1948).

Example 11.10. Let A = ∂̄2 be the square of the Cauchy-Riemann operator in
the plane of complex variable z. We choose D to be the upper half-disk of radius
1, i.e. the set of all z ∈ C satisfying |z| < 1 and =z > 0. As S we take the upper
half-circle, i.e. the part of ∂D lying in the upper half-plane. Consider the function
sequence

uν(z) = (|z|2 − 1)
sin(νz)

νs
,

for ν = 1, 2, . . ., where s is a fixed positive number. Each function uν satisfies
Auν = 0 in the plane and vanishes on S. Moreover, for any differential operator
B of order < s with bounded coefficients, the sequence {Buν} converges to zero
uniformly on ∂D \S = [−1, 1]. Since |uν(z)| → ∞ for all z ∈ D, we deduce that no
reasonable setting of Zaremba-type problem is possible.

12. The non-coercive case

To the best of our knowledge the completeness of root functions has been stud-
ied for elliptic boundary value problems, i.e. for those satisfying the Shapiro-
Lopatinskii condition. If the boundary is non-smooth, by the Shapiro-Lopatinskii
condition is meant any generalisation of this condition in the context of operator
algebras with symbolic structure. In this section we consider an example where the
Shapiro-Lopatinskii condition is violated (cf. [ST12] for the case of usual Sobolev
spaces).

Our focus will be upon the case where embedding (9.9) is fulfilled for some
0 < s < 1.

Lemma 11.3 shows that there is no hope for the tangential operator ∂t to be
bounded in the non-coercive situation. But as in the non-coercive case the conormal
derivative ∂c contains already an essential tangential part, it is natural to assume
in this section that t = 0.

It should be also noted that in the absence of coercivity the cases 1/2 < s < 1
and 0 < s ≤ 1/2 may differ drastically because the functions from Hs,γ(D) no
longer need possess traces on ∂D, if 0 < s ≤ 1/2. In particular, the significance of
boundary terms in the norm ‖ · ‖+,γ increases for 0 < s ≤ 1/2.

Lemma 12.1. Suppose that there is a continuous embedding (9.9) for some index
s satisfying 1/2 < s < 1.
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1) If ρ2s−1∆b0/b1 ∈ L∞(∂D \S) then there is a constant c > 0 with the property
that

|(b−11 ∆b0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ
for all u, v ∈ H1,γ(D).

2) If the operator b−11 ∆B0 maps Hs−1/2,γ(∂D, S) continuously to H1/2−s,γ(∂D)
then

|(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ c ‖u‖+,γ‖v‖+,γ
for all u, v ∈ H1,γ(D).

In the case of regular singularities the condition 2) just amounts to saying that
the operator ργb−11 ∆B0ρ

−γ maps Hs−1/2(∂D, S) continuously to H1/2−s(∂D).

Proof. In this case, for u, v ∈ Hs,γ(D), the traces tsu and tsv belong toHs−1/2,γ(∂D)
(see Lemma 4.16). Hence, using Lemma 4.16 we get

|(b−11 ∆b0u, v)H0,γ(∂D\S)| = |(ρ2s−1b−11 ∆b0u, v)H0,s−1/2+γ(∂D\S)|
≤ c ‖tsu‖H0,s−1/2+γ(∂D)‖tsv‖H0,s−1/2+γ(∂D)

≤ c ‖u‖Hs,γ(D)‖v‖Hs,γ(D)

≤ c ‖u‖+,γ‖v‖+,γ
for all u, v ∈ H1,γ(D), where c is a constant independent on u and v and different
in diverse applications. This proves part 1) of the lemma.

Finally, if b−11 ∆B0 maps Hs−1/2,γ(∂D, S) continuously to H1/2−s,γ(∂D), then,
by duality and Theorem 4.13, we obtain

|(b−11 ∆B0u, v)H0,γ(∂D\S)| ≤ ‖b−11 ∆B0u‖H1/2−s,γ(∂D)‖v‖Hs−1/2,γ(∂D\S)

≤ c ‖u‖Hs−1/2,γ(∂D\S)‖v‖Hs−1/2,γ(∂D\S)

≤ c ‖u‖+,γ‖v‖+γ
for all u, v ∈ H1,γ(D, S), showing part 2). �

For 0 < s ≤ 1/2, we no longer can exploit Lemma 12.1. In this case we have to
use Lemma 8.13 in order to guarantee inequality (8.44).

Moreover, in the absence of coercivity we ought to assume additionally that the
estimate∣∣∣( n∑

j=1

(aj − 2γ ρ−1
n∑
i=1

ai,j(∂iρ))∂ju, v
)
H0,γ(D)

∣∣∣ ≤ c ‖u‖+,γ‖v‖+,γ (12.1)

holds for all u, v ∈ H+,γ(D) with a constant c > 0 independent on u and v.
To cope with this condition we need the following lemma.

Lemma 12.2. The matrix

A(x) = (ai,j(x))i=1,...,n
j=1,...,n

admits a factorisation, i.e. there is an (m× n) -matrix X(x) of bounded functions
in D, such that

(X(x))∗X(x) = A(x) (12.2)

for almost all x ∈ D.
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Proof. By (8.3), the matrix A(x) induces a non-negative map of Cn, for each fixed
x ∈ D. As is well known, this map possesses a unique non-negative square root in
L(Cn) presented by an (n× n) -matrix X(x) =

√
A(x) whose entries are complex-

valued functions in D. Write

X(x) = (Xi,j(x))i=1,...,n
j=1,...,n

.

Since X∗ = X and X2 = A, it follows that

ai,i(x) =

n∑
j=1

|Xi,j(x)|2

for almost all x ∈ D, where 1 ≤ i ≤ n. This shows, in particular, that Xi,j ∈ L∞(D)
for all i, j = 1, . . . , n, as desired. �

Let

X(x) = (Xi,j(x))i=1,...,m
j=1,...,n

be an arbitrary factorisation of A(x), where Xi,j ∈ L∞(D). Then

n∑
i,j=1

ai,j(x)∂ju ∂iv = (∇v)∗A(x)∇u

= (X(x)∇v)∗(X(x)∇u)

=

m∑
k=1

Xkv Xku,

(12.3)

for all smooth functions u and v in D, where ∇u is thought of as n -column with
entries ∂1u, . . . , ∂nu, and

Xku :=

n∑
l=1

Xk,l(x)∂lu,

k = 1, . . . ,m. If v has compact support in D, then, by (12.3), we get

m∑
k=1

(X∗kXku, v)L2(D) =

m∑
k=1

(Xku,Xkv)L2(D)

=

∫
D

m∑
k=1

Xkv Xku dx

=

∫
D

n∑
i,j=1

ai,j(x) ∂ju ∂iv dx

= − (

n∑
i,j=1

∂i(ai,j(x) ∂ju), v)L2(D)

whence

−
n∑

i,j=1

∂i(ai,j(x) ∂j ·) =

m∑
k=1

X∗kXk. (12.4)
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Remark 12.3. The matrix X(x) need not possess any left inverse with entries in
L∞(D), i.e. no decomposition

∂l =

m∑
k=1

Yl,k(x)Xk, (12.5)

l = 1, . . . , n, with L∞(D) -coefficients is available in general. In fact, (12.3) and
(12.5) yield (strong) coercive estimate (8.5).

Second order differential operators of the form (12.4) were considered in [Hör67].
This paper gave rise to a property of vector fields X1, . . . , Xm that, if satisfied,
has many useful consequences in the theory of partial and stochastic differential
equations. In many interesting cases the matrix X(x) is surjective, see a model
example in Section 13. This is precisely a reason for non-coercive effects. The
standard factorisation A =

√
A
√
A leads to a boundary condition under which the

form is coercive.
Lemma 12.2 and Remark 12.3 suggest to confine ourselves with first order per-

turbations of the form
m∑
k=1

ãk(x)Xk, (12.6)

where ρ ãk ∈ L∞(D), instead of

n∑
j=1

aj(x)∂j , where ρ aj ∈ L∞(D).

Integrating by parts as in (8.18) yields

(Au, v)H0,γ(D)

= (u, v)+,γ − 2γ

m∑
k=1

(Xku, ρ
−1(Xkρ)v)H0,γ(D) + (

m∑
k=1

ãkXku+ ∆a0u, v)H0,γ(D)

+ (b−11 ∆Bu, v)H0,γ(∂D\S)

for all u ∈ H1,γ(D, S) and v ∈ H1,γ(D, S) satisfying the boundary condition of
(8.2). In much the same way as in formulas (8.43) and (8.46) we deduce that the
term

m∑
k=1

(Xku, ρ
−1(Xkρ)v)H0,γ(D)

induces a bounded perturbation of the operator A0.

Lemma 12.4. If ρãk ∈ L∞(D) for all 1 ≤ k ≤ m, then there is a consant c > 0,
such that

|
m∑
k=1

(ãkXku, v)H0,γ(D)| ≤ c ‖u‖+,γ‖v‖+,γ

for all u, v ∈ H1,γ(D). Moreover, if there exists an ε > 0 with the property that
ρ1−ε(ãk−2γρ−1Xkρ) ∈ L∞(D) for 1 ≤ k ≤ m, then the corresponding perturbation
∆L : H+,γ(D)→ H−,γ(D) is compact.

Proof. The proof is similar to those of Lemmas 11.2 and 11.5. �

From now on we will consider in the non-coercive case first order perturbations
of the form (12.6) only. In this way one can also describe the class of tangential
vectors admissible for small perturbations.
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Our next concern will be to specify other compact perturbations of the problem
if the form fails to be coercive.

Lemma 12.5. Let for some 0 < s < 1 there be a continuous embedding (9.9). If

ãk = 2γ ρ−1Xkρ

for 1 ≤ k ≤ m, t = 0, ∆B0 = 0 and there is a number ε > 0 with the property
that ρ2−ε∆a0 ∈ L∞(D), then the operator ∆L = L− L0 : H+,γ(D) → H−,γ(D) is
compact.

Proof. Fix an arbitrary v ∈ H+,γ(D). Then ιsv ∈ Hs,γ(D). Consider the function
w = ρε−sιsv. It follows from Corollary 3.3 that w ∈ Hs,γ+ε−s(D) = Hs,γ+ε(D).
But then Corollary 4.9 yields compact embedding e : Hs,γ+ε−s(D)→ H0,γ(D).

Let {uν} be a bounded sequence in H+,γ(D). The continuous embedding (9.9)
guarantees that it is bounded in Hs,γ(D), too. Then the sequence

Fν = ρ2−ε∆a0(ρ−suν)

is bounded in Hs,γ(D) and so in H0,γ(D). According to the weak compactness
principle we may assume that it converges weakly to zero in H0,γ(D).

On the other hand, if ãk = 2γ ρ−1Xkρ for all 1 ≤ k ≤ m, t = 0 and ∆B0 = 0,
then

(∆Luν , v)γ = (Fν , eρ
ε−sιsv)H0,γ(D) = (e∗Fν , ρ

ε−sιsv)Hs,γ+ε−s(D).

Using embedding (9.9) and Corollary 3.3 we conclude that

|(∆Luν , v)γ | ≤ c ‖e∗Fν‖Hs,γ+ε−s(D)‖ιsv‖Hs,γ(D)

≤ c ‖e∗Fν‖Hs,γ+ε−s(D)‖v‖H+,γ(D)

with c a constant independent on ν and v. Hence

‖∆Luν‖−,γ ≤ c ‖e∗Fν‖Hs,γ+ε−s(D) → 0,

as ν →∞, i.e. ∆L is compact. �

Lemma 12.6. Let for some 1/2 < s < 1 there be a continuous embedding (9.9).
Suppose

ãk = 2γ ρ−1Xkρ

for 1 ≤ k ≤ m, t = 0 and there is a number ε > 0 such that either ∆B0 is
given by multiplication with a function ∆b0 satisfying ρ2s−1−ε∆b0/b1 ∈ L∞(∂D\S)
or b−11 ∆B0 maps the space Hs−1/2,γ(∂D) compactly to H1/2−s,γ(∂D). Then the
operator

∆L = L− L0 : H+,γ(D)→ H−,γ(D)

is compact.

Proof. Let the operator ∆B0 be given by multiplication with a function ∆b0 satis-
fying ρ2s−1−ε∆b0/b1 ∈ L∞(∂D \ S).

Pick a bounded sequence {uν} in H+,γ(D). By Lemma 4.16, the trace operator
ts : Hs,γ(D)→ Hs−1/2,γ(∂D) is bounded. Then the sequence

Uν =

{
ρ2s−1−εb−11 ∆b0 tsuν on ∂D \ S,
0 on S
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is bounded in H0,γ+s−1/2(∂D). Again we may assume that it converges weakly to
zero in H0,γ+s−1/2(∂D \ S). Write

(∆Luν , v)γ = (b−11 ∆b0 tsuν , tsv)H0,γ(∂D\S)

= (ρ2s−1−εb−11 ∆b0 tsuν , ρ
εtsv)H0,γ+s−1/2(∂D\S).

According to Corollary 3.3 the operator Op (ρε) maps Hs−1/2,γ(∂D) continuously
to Hs−1/2,γ+ε(∂D) = Hs−1/2,γ+s−1/2+ε(∂D). But Corollary 4.9 implies that the
embedding

e : Hs−1/2,γ+s−1/2+ε(∂D) ↪→ H0,γ+s−1/2(∂D)

is compact. We thus get

(∆Luν , v)γ = (Uν , eρ
εtsv)Hs−1/2,γ+s−1/2(∂D)

= (e∗Uν , ρ
εtsv)Hs−1/2,γ+s−1/2+ε(∂D),

where e∗ : H0,γ+s−1/2(∂D) → Hs−1/2,γ+s−1/2+ε(∂D) is the Hilbert space adjoint
of e. As the operator

Op (ρε)ts : Hs,γ(D)→ Hs−1/2,γ+s−1/2+ε(∂D)

is bounded (see Lemma 4.16 and Corollary 3.3), it follows that

|(∆Luν , v)γ | ≤ c ‖e∗Uν‖Hs−1/2,γ+s−1/2+ε(∂D)‖v‖Hs,γ(D)

≤ c ‖e∗Uν‖Hs−1/2,γ+s−1/2+ε(∂D)‖v‖H+,γ(D),

where c stands for a constant independent on u and v and different in diverse
applications. Summarising we get

‖∆Luν‖−,γ ≤ ‖e∗Uν‖Hs−1/2,γ+s−1/2+ε(∂D) → 0,

as ν →∞, i.e. ∆L is compact in this case.
Finally, assume that the operator b−11 ∆B0 maps Hs−1/2,γ(∂D) compactly to

H1/2−s,γ(∂D). As the trace operator ts : Hs,γ(D) → Hs−1/2,γ(∂D) is bounded,
the sequence

Uν = b−11 ∆B0 tsuν

is precompact in H0,1/2−s(∂D). Hence, as the sequence {uν} converges weakly to
zero in Hs−1/2,γ(∂D), we deduce that {Uν} converges to zero in H1/2−s,γ(∂D). By
duality and Theorem 4.13,

|(∆Luν , v)γ | = |(b−11 ∆B0 tsuν , tsv)γ |
≤ ‖b−11 ∆B0 tsuν‖H1/2−s,γ(∂D)‖tsv‖Hs−1/2,γ(∂D)

≤ c ‖Uν‖H1/2−s,γ(∂D)‖v‖Hs,γ(∂D)

≤ c ‖Uν‖H1/2−s,γ(∂D)‖v‖+,γ
with c a constant independent of ν and v. Therefore,

‖∆Luν‖−,γ ≤ c ‖Uν‖Hs−1/2,γ(∂D) → 0,

as ν →∞, i.e. ∆L is compact, as desired. �

We can not use Lemma 12.6 for 0 < s ≤ 1/2. However, we may extract the
compactness property of the operator ∆L, related to the boundary term ∆B0,
from estimate (8.10).
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Lemma 12.7. Let
ãk = 2γ ρ−1Xkρ

for 1 ≤ k ≤ m, t = 0 and (8.10) hold for some r ∈ [−1/2, 1/2]. If ρ−γb−11 ∆B0ρ
γ

maps Hr(∂D, S) compactly to H−r(∂D), then ∆L = L−L0 : H+,γ(D)→ H−,γ(D)
is compact.

In the case of regular singularities the condition on b−11 ∆B0 may be equivalently
reformulated by saying that b−11 ∆B0 maps Hr,γ(∂D, S) compactly to H−r,γ(∂D).
By the Rellich theorem, the operator ρ−γb−11 ∆B0ρ

γ maps Hr(∂D, S) compactly to
H−r(∂D) provided it maps the space Hr(∂D, S) continuously to H−r+ε(∂D) for
some ε > 0.

Proof. Fix a bounded sequence {uν} in H+,γ(D). It follows from (8.31) that the
sequence {ρ−γuν} is bounded in Hr(∂D). Then the sequence

Uν = ρ−γb−11 ∆B0 uν = ρ−γb−11 ∆B0ρ
γ ρ−γuν

is precompact in H−r(∂D). We may assume without restriction of generality that
{uν} converges weakly to zero in Hr(∂D) and then {Uν} converges to zero in
H−r(∂D). By duality, we obtain

|(∆Luν , v)γ | = |(b−11 ∆B0 uν , v)H0,γ(∂D)|
= |(ρ−γb−11 ∆B0ρ

γ ρ−γuν , ρ
−γv)L2(∂D)|

≤ c ‖Uν‖H−r(∂D)‖v‖Hr,γ(∂D)

whence
‖∆Luν‖−,γ ≤ c ‖Uν‖H−r(∂D) → 0,

as ν →∞, i.e. ∆L is compact, as desired. �

As before, we split

ãk = 2γρ−1Xkρ+ ∆cãk + ∆sãk

and
∆a0 = ∆ca0 + ∆sa0,
∆B0 = ∆cB0 + ∆sB0,

where the terms ∆cãk, ∆ca0 and ∆cB0 induce compact operators and the terms
∆sãk, ∆sa0 and ∆sB0 “small” operators,

|
m∑
j=k

(∆sãkXku+ ∆sa0u, v)H0,γ(D) + (∆sB0u, v)H0,γ(∂D\S) | ≤ M̃ ‖u‖+,γ‖v‖+,γ

(12.7)

for all u, v ∈ H+,γ(D), with M̃ > 0 a constant independent of u and v.

Corollary 12.8. Under the hypotheses of Corollary 8.12, let estimate (8.10) hold
with some −1/2 < r < 1/2 and let t = 0. Let ρ−γ∆sB0ρ

γ map Hr(∂D, S) contin-

uously to H−r(∂D) and the constant M̃ in (12.7) be less than one. If there is a
number ε > 0 such that ρ1−ε∆cãk ∈ L∞(D), for 1 ≤ k ≤ m, ρ2−ε∆ca0 ∈ L∞(D)
and either the operator ∆cB0 is given by the multiplication with a function ∆cb0 sat-
isfying ρ2r−ε∆cb0/b1 ∈ L∞(∂D \ S) or ρ−γb−11 ∆cB0ρ

γ maps Hr(∂D, S) compactly
to H−r(∂D), then problem (8.47) is Fredholm of index zero. Moreover, if ∆cãk = 0,
for 1 ≤ k ≤ m, ∆ca0 = 0, ∆cB0 = 0, then problem (8.47) is uniquely solvable and
the inverse operator L−1 : H−,γ(D)→ H+,γ(D) ⊂ Hs,γ(D, S) is bounded (where s
is given by (8.12).
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Proof. Corollary 8.12 yields that H+,γ(D) is continuously embedded into Hs(D)
with s > 0 given by (8.12). Besides, the index s satisfies 1/2 < s = r + 1/2 < 1 if
0 < r < 1/2.

It follows from Lemmas 8.13, 12.1 and 12.4 that (8.44) is fulfilled under the
hypotheses of the corollary.

Write ∆L : H+,γ(D)→ H−,γ(D) for the operator determined by the terms ∆sãk,
∆sa0, and ∆sB0, as is described in Section 8. From estimate (12.7) we conclude
that

‖∆L‖L(H+,γ(D),H−,γ(D)) < 1 = ‖L−10 ‖L(H−,γ(D),H+,γ(D)),

and so a familiar argument shows that the operator L0+∆L : H+,γ(D)→ H−,γ(D)
is invertible.

According to Lemmas 12.4, 12.5 and 12.6 (for 0 < r < 1/2) and 12.7 (for
−1/2 < r < 1/2), the operator C = L− L0 −∆L is compact. Therefore, problem
(8.47) is equivalent to the Fredholm-type operator equation

(I + (L0 + ∆L)−1C)u = (L0 + ∆L)−1f

in H+,γ(D) with compact operator (L0 + ∆L)−1C : H+,γ(D) → H+,γ(D). This
establishes the corollary. �

Corollary 12.9. Under the hypotheses of Corollary 12.8, if moreover the constant
M̃ from (12.7) satisfies M̃ < sinπ(2r+ 1)/2n, then the system of root functions of
the corresponding closed operator T in H−,γ(D) is complete in the spaces H−,γ(D),
H0,γ(D) and Hs,γ(D, S) (with s given by (8.12), and, for any δ > 0, all eigenvalues

of T (except for a finite number) lie in the corner | arg λ| < δ + arcsin M̃ in C.
Besides, if ∆cãk = 0, for 1 ≤ k ≤ m, ∆ca0 = 0, ∆cB0 = 0, then all eigenvalues of
T belong to the corner | arg λ| ≤ arcsin M̃ in C.

Proof. This is a consequence of Theorem 10.6 and Corollary 12.8. For M̃ = 0 it
suffices to apply Theorem 9.10 combined with Corollary 12.8. The last statement
follows from Theorem 10.5 and Corollary 12.8. �

13. An example of non-coercive problems

We now wish to consider a typical non-coercive problem in weighted Sobolev
spaces in a bounded Lipschitz domain D ⊂ R2n. The space R2n bears an additional
complex structure.

Let the complex structure in R2n ∼= Cn be given by zj = xj +
√
−1xn+j , for

j = 1, . . . , n. Denote by ∂̄ the Cauchy-Riemann operator corresponding to this
structure in Cn, i.e. the column of n complex derivatives

∂

∂z̄j
=

1

2

( ∂

∂xj
+
√
−1

∂

∂xn+j

)
for 1 ≤ j ≤ n.

The formal adjoint ∂̄∗ of ∂̄ with respect to the standard Hermitian structure of
the space L2(Cn) is the line of n operators

−1

2

( ∂

∂xj
−
√
−1

∂

∂xn+j

)
=: − ∂

∂zj
.
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An easy computation shows that ∂̄∗∂̄ just amounts to the −1/4 multiple of the
(non-positive) Laplace operator

∆ =

2n∑
j=1

∂2xj

in R2n.
We take A to be

A = −∆ +

n∑
j=1

aj
∂

∂z̄j
+ a0,

where ρa1, . . . , ρan and ρ2a0 are assumed to be bounded functions in D. The
complex matrix

(ai,j(x))i=1,...,2n
j=1,...,2n

has the form (
En

√
−1En

−
√
−1En En

)
where En is the unity (n×n) -matrix. Obviously, the matrix is Hermitian, and the
corresponding conormal derivative is

∂c =
∂

∂ν
+
√
−1

n∑
j=1

(
νj

∂

∂xn+j
− νn+j

∂

∂xj

)
,

which is known as (the 2 multiple of) complex normal derivative ∂̄ν at the boundary
of D.

Consider the following boundary value problem. Given a function f in D, find
a function u in D satisfying −∆u+

n+d∑
j=1

aj
∂u

∂z̄j
+ a0u = f in D,

∂cu+B0u = 0 at ∂D.
(13.1)

In this case S is empty, b1 = 1 and t = 0. Set a0,0(z) := aρ−2 in D with a real
constant a which is assumed to be positive, if Y 6= ∅, and non-negative, if Y = ∅.
Then the corresponding Hermitian form (·, ·)+,γ is given by

(u, v)+,γ = 4 (∂̄u, ∂̄v)H0,γ(D) + a (u, v)H0,γ+1(D) + (Ψ(ρ−γu),Ψ(ρ−γv))L2(∂D)

and the space H+,γ(D) is defined to be the completion of C∞comp(D\Y ) with respect
to the norm

‖u‖+,γ :=
√

(u, u)+,γ .

Denote by H(D) the subspace of L2(D) consisting of those functions u which are
holomorphic, i.e. satisfy ∂̄u = 0 in D.

Lemma 13.1. The inclusion ι : H+,γ(D)→ H0,γ(D) is continuous. If (8.10) holds
for some −1/2 < r ≤ 1/2, then it is compact. More precisely,

1) If (8.10) holds for some −1/2 < r ≤ 1/2, then there are continuous embed-
dings H1,γ(D) ↪→ H+,γ(D) ↪→ Hs,γ(D), where s > 0 is given by (8.12).

2) In particular, if Ψ is given by multiplication with a non-zero constant, then
there are continuous embeddings H1,γ(D) ↪→ H+,γ(D) ↪→ H1/2−ε,γ(D) for any
ε > 0.
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3) If ρ ≡ 1, Ψ = 0 and D is a strictly pseudoconvex domain with C∞ boundary,
then there are continuous embeddings

H1(D) ↪→ H+,γ(D) ↪→ H(D)⊕ (H(D)⊥ ∩H1/2(D)).

Proof. The continuity of the embedding ι has been proved in Lemma 8.1. The part
1) and 2) of the lemma follow from Corollary 8.12.

The proof of 3) can be given within the framework of complex analysis. Indeed,
as a > 0, the space H+,γ(D) is continuously embedded into L2(D), which just
amounts to H0,γ(D) in the case under study. If D is a strictly pseudoconvex
domain in Cn, then holomorphic functions in a neighborhood of D are dense in
H(D). Since Ψ = 0, we conclude that H(D) ⊂ H+,γ(D). Besides, if D is a strictly
pseudoconvex domain with C∞ boundary, then there is a constant c > 0 with the
property that

‖∂̄u‖L2(D) ≥ c ‖u‖H1/2(D)

for all u ∈ L2(D) orthogonal to the subspace H(D) of L2(D) (see [Koh79]). Using
the orthogonal decomposition

L2(D) = H(D)⊕H(D)⊥

we conclude that the completion H+,γ(D) of H1(D) with respect to the norm ‖·‖+,γ
lies in H(D)⊕ (H(D)⊥ ∩H1/2(D)), as desired. �

Example 13.2. Let ρ ≡ 1 and Ψ be given by multiplication with a non-zero
constant. By Lemma 13.1, the space H+,γ(D) is continuously embedded into
H1/2−ε(D) for any ε > 0 or even into H1/2(D), if ∂D ∈ C2. However, what-
ever ε > 0 is, there is no continuous embedding H+,γ(D) ↪→ H1/2+ε(D). Indeed, if
D is the unit disc in C then a direct computation using Lemma 1.4 of [Shl96] shows
that the series

u(z) =

∞∑
k=0

zk

(k + 1)(1+ε)/2

converges in the space H+,γ(D) but diverges in H1/2+ε(D). This means that the
coercive estimate (8.5) does not hold for problem (13.1). In particular, the form
(·, ·)+,γ is not coercive in this case, and so the Shapiro-Lopatinskii condition fails
to hold for problem (13.1). Besides, as the monomials zk are L2 -orthogonal on the
circles |z| = r, we see that in this case the term induced by multiplication with
constant ∆B0 ∈ C fails to be a compact operator from H+,γ(D) to H−,γ(D) (cf.
[PS13]).

Example 13.3. Let D be the unit ball around the origin in Cn, the boundary of D
being the unit sphere S2n−1. The Laplace-Beltrami operator ∆S2n−1 on the sphere
is non-negative and gives rise to the family

Ψr = (1 + ∆S2n−1)r/2

of invertible pseudodifferential operators of order r on S2n−1, parametrised by real
r ∈ R. By the invertibility is meant that (8.10) is fulfilled for Ψ =

√
B0,0Ψr, where

B0,0 is a non-negative constant. Then, the selfadjoint version of problem (13.1)
reads {

−∆u+ a0u = f in D,
∂̄νu+B0,0ρ

γΨ∗r Ψr(ρ
−γu) = 0 at ∂D. (13.2)
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For any r ∈ [−1/2, 1/2], the operator ∆B0 := ργΨδρ
−γ maps Hr(S2n−1) contin-

uously to Hr−δ(S2n−1). Hence, it maps Hr(S2n−1) compactly to H−r(S2n−1), if
δ < 2r. In particular, if Ψ is given by multiplication with a non-zero constant,
then r = 0 and ρ−γ∆B0ρ

γ = Ψδ is a compact selfmapping of L2(S2n−1), if δ < 0.
We may use the so-called spherical harmonics to make the action of Ψr more illus-
trative. Namely, spherical harmonics hk are eigenfunctions of ∆S2n−1 of degree k,
i.e.

∆S2n−1hk = k (2n+ k − 2)hk. (13.3)

The harmonic extension of hk into the unit ball gives a harmonic homogeneous
polynomial of degree k. The number of linearly independent spherical harmonics
of degree k is finite and equals

J(k) =
(2n+ 2k − 2)(2n+ k − 3)!

(2n− 2)! k!
.

Thus, we may build an orthonormal basis {h(j)k } of them in L2(S2n−1). It is easy
to check that, for r ≥ 0, the operator Ψr is given by

(1 + ∆S2n−1)r/2u =

∞∑
k=0

(1 + k(2n+ k − 2))r/2
J(k)∑
j=1

(u, h
(j)
k )L2(S2n−1)h

(j)
k

for u ∈ L2(S2n−1). By duality, this formula extends to all r ∈ R while the functions
u ∈ Hs(S2n−1) with arbitrary s ∈ R are specified within the framework of series
expansions

u =

∞∑
k=0

J(k)∑
j=1

c
(j)
k h

(j)
k ,

where c
(j)
k ∈ C satisfy

∞∑
k=0

(1 + k(2n+ k − 2))s
J(k)∑
j=1

|c(j)k |
2 <∞,

cf. [Pla86, Ch. 1, § 5] or [Shl96]. In particular, under this identification, we get
readily

Ψ∗Ψ = B0,0(1 + ∆S2n−1)r. (13.4)

Recall that estimate (8.44) in the particular case under considerations becomes
explicitly∣∣∣( n∑

j=1

aj
∂u

∂z̄j
+ ∆a0u, v

)
H0,γ(D)

+ (∆B0u, v)H0,γ(∂D)

∣∣∣ ≤ c ‖u‖+,γ‖v‖+,γ
for all u, v ∈ H1,γ(D), with c a constant independent of u and v. As b1 ≡ 1, it follows
from the definition of ‖ · ‖+,γ that (8.45) and (12.1) are valid if the functions ρ2∆a0
and ρaj , for 1 ≤ j ≤ n, are of class L∞(D) and either the operator ∆B0 is given by
multiplication with a function ∆b0 satisfying ρ2r∆b0 ∈ L∞(∂D), for 0 < r ≤ 1/2,
or ρ−γ∆B0ρ

γ maps Hr(∂D) continuously to H−r(∂D), for −1/2 ≤ r ≤ 1/2 (see
Lemma 8.13).
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Now, if a > 0, we deduce that estimate (8.44) is true under the conditions above
with constant

c = a−1
( n∑
j=1

‖ρaj‖2L∞(D)

)1/2
+ a−2‖ρ2∆a0‖L∞(D) + c′ (13.5)

where c′ = ‖ρ2r∆b0‖L∞(∂D) or c′ = ‖ρ−γ∆B0ρ
γ‖ depending upon the case under

discussion.
The operator L0 corresponds to the boundary value problem −∆u+ 8γ ρ−1

n∑
j=1

∂ρ

∂zj

∂u

∂zj
+ aρ−2u = f in D,

∂cu+B0,0 u = 0 at ∂D.
(13.6)

Corollary 13.4. Let (8.10) hold with some −1/2 < r ≤ 1/2. Then the inverse
L−10 of the operator L0 induces compact positive selfadjoint operators

Q1 = ι′ι L−10 : H−,γ(D) → H−,γ(D),
Q2 = ι L−10 ι′ : H0,γ(D) → H0,γ(D),
Q3 = L−10 ι′ι : H+,γ(D) → H+,γ(D)

which have the same systems of eigenvalues and eigenvectors. Besides, all eigenval-
ues are positive and there are orthonormal bases in H+,γ(D), H0,γ(D) and H−,γ(D)
consisting of the eigenvectors.

Proof. For the proof it suffices to combine Lemmas 9.1 and 13.1 with Theorem
4.5. �

We are in a position to evaluate the eigenfunctions and eigenvalues of selfadjoint
problem (13.2).

Example 13.5. Let D be the unit ball around the origin in Cn, ρ ≡ 1, a0,0 ≥ 0
and a20,0 + B2

0,0 6= 0. We pass to spherical coordinates x = r S(ϕ) in R2n, where

r = |x| and ϕ are coordinates on the unit sphere S2n−1. The Laplace operator ∆
takes the form

∆ =
1

r2
((r∂r)

2 + (2n− 2)(r∂r)−∆S2n−1), (13.7)

where ∆S2n−1 is the Laplace-Beltrami operator on the unit sphere. Furthermore,
since ∂D = S2n−1, we get

∂

∂ν
= r∂r,

∂ν =

n∑
j=1

z̄j
∂

∂z̄j
=

1

2
((r∂r) +BS2n−1)

where BS2n−1 depends on the coordinates on the unit sphere only. If for instance
n = 1, then

∂ν =
1

2

(
(r∂r) +

√
−1 ∂ϕ

)
in polar coordinates in the plane.

To solve the homogeneous equation (−∆ +a)u = 0 we apply the Fourier method
of separation of variables with a ∈ R. Writing u(r, ϕ) = g(r)h(ϕ) we get two
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separate equations for g and h, namely(
−(r∂r)

2 + (2− 2n)(r∂r) + ar2
)
g = c g

∆S2n−1h = c h,

where c is an arbitrary constant. The second equation possesses non-zero solutions
if and only if c = k(2n+ k − 2) and h = hk, a spherical harmonic of degree k.

It is known that we may choose the harmonics hk in accordance with complex

structure. Namely, there is an orthonormal basis {h(j)p,q} in L2(S2n−1) consisting of
polynomials of the form

h(j)p,q(z, z) =
∑
|α|=p
|β|=q

c
(j)
α,βz

αzβ

with complex coefficients c
(j)
α,β (see for instance [AK91]). Let J(p, q) stand for the

number of polynomials of bidegree (p, q) in the basis; of course J(p, q) ≤ J(p+ q).
Clearly,

∂̄νh
(j)
p,q = qh

(j)
p,q,

BS2n−1h
(j)
p,q = (q − p)h(j)p,q

(13.8)

and

Ψ∗r Ψr h
(j)
p,q = (1 + ∆S2n−1)r h(j)p,q) = (1 + (p+ q)(2n+ p+ q − 2))rh(j)p,q,

which is due to (13.4).
Consider the Sturm-Liouville problem for the ordinary differential equation with

respect to the variable r in the interval (0, 1),
1

r2
(
−(r∂r)

2 + (2−2n)(r∂r) + ar2 + (p+q)(2n+p+q−2)
)
g = λ g in (0, 1)

g is bounded at 0,
((r∂r) + (q−p) + 2B0,0 (1+(p+q)(2n+p+q−2))r) g = 0 at 1

(13.9)
see [TS72, Suppl. II, P. 1, § 2]. Actually, if a0 and λ are real numbers then (13.9) is
a particular case of the Bessel equation. Its (real-valued) solution g(r) is a Bessel
function defined on (0,+∞), and the space of all solutions is two-dimensional. For
example, if λ = a0 then g(r) = αrp+q + βr2−p−q−n with arbitrary constants α and
β is a general solution to (13.9). In the general case the space of solutions to (13.9)
contains a one-dimensional subspace of functions bounded at the point r = 0, cf.
[TS72].

For any p, q and j, fix a non-trivial solution g
(j,k)
p,q (r) of problem (13.9) corre-

sponding to an eigenvalue λ
(j,k)
p,q . Then the function

u(j,k)p,q = g(j,k)p,q (r)H(j)
p,q(ϕ)

satisfies { (
−∆ + (a− λ(j,k)p,q )

)
u
(j,k)
p,q = 0 in Cn,(

∂̄ν +B0,0(1 + ∆S2n−1)r
)
u
(j,k)
p,q = 0 at ∂D.

(13.10)

Indeed, by (13.3), (13.7), (13.9) and the discussion above we conclude that this

equality holds in Cn \ {0}. We now use the fact that u
(j,k)
p,q is bounded at the origin

to see that the differential equation of (13.10) holds in all of Cn. On the other
hand, boundary equation of (13.10) follows from (13.8) immediately, as already
mentioned.
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Let us show that the system

{u(j,k)p,q } p,q∈Z≥0

j=1,...,J(p,q)
k=1,2,...

coincides with the system of all eigenvectors of Sturm-Liouville problem (13.2) in
the unit ball B2n around the origin in Cn. In particular, it is an orthogonal basis
in H+,γ(B2n), H0,γ(B2n) and H−,γ(B2n). Really, as a20,0 + B2

0,0 6= 0, Theorem 8.4

implies that H+,γ(B2n) is continuously embedded into L2(B2n). From (13.4) it

follows that the system {u(j,k)p,q } consists of eigenvectors of Sturm-Liouville problem

(13.2) in the ball. Moreover, by Lemma 7.1 of [ST03], the system {u(j,k)p,q } is or-
thogonal with respect to each of the Hermitian forms (·, ·)L2(S2n−1), (·, ·)L2(B2n) and

(∂̄·, ∂̄·)L2(B2n). In particular, it is orthogonal in H+,γ(B2n). On the other hand, the

orthogonality of the system in H−,γ(B2n) is fulfilled because (9.1) and Lemma 9.1
imply

(u(j,k)p,q , u
(j′,k′)
p′,q′ )−,γ = (λ(j,k)p,q )−1(ι′ιL−10 u(j,k)p,q , u

(j′,k′)
p′,q′ )−,γ

= λ
(j′,k′)
p′,q′ (u(j,k)p,q , u

(j′,k′)
p′,q′ )L2(B2n).

By construction, the system {h(j)p,q}, where p, q ∈ Z≥0 and 1 ≤ j ≤ J(p, q), is an

orthonormal basis in L2(S2n−1). For any fixed p, q and j, we have λ
(j,k)
p,q ≥ a0,0

and the countable system {g(j,k)p,q }k∈N of eigenfunctions is an orthogonal basis in
the weighted space L2((0, 1), r) of complex-valued functions with scalar product
(
√
r·,
√
r·)L2(0,1) (see [TS72, Suppl. II, P. 1, § 2]). Hence, a familiar argument now

shows that the system {u(j,k)p,q } is an orthogonal basis in L2(B2n). As {u(j,k)p,q } is
an orthogonal basis in L2(B2n), there are no other eigenvalues of problem (13.2)

but the already mentioned λ
(j,k)
p,q . Hence, there are no eigenvectors corresponding

to an eigenvalue λ which fail to be finite linear combinations of the eigenfunctions
already constructed.

By the above, the space L2(B2n) is dense inH−,γ(B2n). It follows that the system

{u(j,k)p,q } is complete in H−,γ(B2n), too. Finally, let a function u ∈ H+,γ(B2n) be

orthogonal to each vector u
(j,k)
p,q with respect to (·, ·)+,γ . Then, using Lemma 9.1

and (9.2) we conclude that

(u, u(j,k)p,q )L2(B2n) = (u, L−10 ι′ιu(j,k)p,q )+,γ

= λ(j,k)p,q (u, u(j,k)p,q )+,γ

= 0,

i.e. u is orthogonal to each vector u
(j,k)
p,q in L2(B2n). Therefore, u = 0 in L2(B2n)

and so in the space H+,γ(B2n), too. This means precisely that the system {u(j,k)p,q }
is complete in H+,γ(B2n).

Corollary 9.8 and Lemma 13.1 actually show that the operators Q1, Q2 and Q3

are of Schatten class Sn+ε for any ε > 0, and so their orders are finite. Moreover,
in this case any eigenvalue has finite multiplicity. From this point of view the case
where Ψ ≡ 0 is of certain interest.

Theorem 13.6. Let ρ ≡ 1 and Ψ ≡ 0. If D is strictly pseudoconvex domain with
C∞ boundary then the inverse L−10 of the operator L0 induces positive selfadjoint
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operators
Q1 = ι′ι L−10 : H−,γ(D) → H−,γ(D),
Q2 = ι L−10 ι′ : L2(D) → L2(D),
Q3 = L−10 ι′ι : H+,γ(D) → H+,γ(D)

which have the same systems of eigenvalues and eigenvectors. Moreover, all eigen-
values are larger than or equal to 1 and there are orthonormal bases in the spaces
H+,γ(D), L2(D) and H−,γ(D) consisting of the eigenvectors. Besides, the eigen-
value λ = 1 has infinite multiplicity and the multiplicities of all other eigenvalues
are finite.

Proof. The fact that the operators Q1, Q2 and Q3 are selfadjoint and non-negative
follows from Lemma 9.1.

Consider the operator equation (Q2 − λI)u = 0 with λ ∈ C. The corresponding
weak identity has the form

4 (∂̄u, ∂̄v)L2(D) + (u, v)L2(D) = λ(u, v)L2(D)

for all v ∈ H+,γ(D). In particular, we get

4 ‖∂̄u‖L2(D) = (λ− 1) ‖u‖2L2(D)

for its solution. Hence, non-trivial solutions are only possible if λ ≥ 1.
A function u ∈ H+,γ(D) satisfies this equation for λ = 1 if and only if u is

holomorphic in D. As such functions constitute H(D), we see that the eigenvalue
λ = 1 has infinite multiplicity.

Write H(D)⊥ = L2(D)	H(D) for the subspace of L2(D) consisting of all func-
tions which orthogonal to H(D). Clearly, if u ∈ H(D)⊥ then

(Q2u, v)L2(D) = (u,Q2v)L2(D) = (u, v)L2(D) = 0

for all v ∈ H(D). Therefore, Q2 maps H(D)⊥ to H(D)⊥.
According to Lemma 13.1, the restriction of the operator Q2 to H(D)⊥ is com-

pact and selfadjoint. By the Hilbert-Schmidt theorem, there is an orthonormal
basis {bν} in H(D)⊥ which consists of eigenvectors of this operator. On choosing
an orthonormal basis {hν} in H(D) we obtain the orthonormal basis {hν} ∪ {bν}
in L2(D) consisting of the eigenvectors of Q2.

Finally, the fact that the operators Q1, Q2, Q3 have the same systems of eigen-
values and eigenvectors follows from Lemma 9.1. �

The Fredholm property and theorem on the completeness of root functions of
problem (13.1) read as follows.

Corollary 13.7. Let a0,0 ≡ ρ−2, Ψ =
√
B0,0Ψr with B0,0 > 0 and t = 0. If

there is a number ε > 0 such that ρ1−ε
(
aj − 8γ ρ−1∂zjρ

)
∈ L∞(D), for 1 ≤ j ≤ n,

ρ2−ε∆a0 ∈ L∞(D) and either the operator ∆B0 is given by multiplication with a
function ∆b0 satisfying ρ2r−ε∆b0 ∈ L∞(∂D), for 0 < r ≤ 1/2, or ρ−γ∆B0ρ

γ maps
Hr(∂D, S) compactly to H−r(∂D), for −1/2 < r ≤ 1/2, then problem (13.1) is
Fredholm. If moreover the constant c given by (13.5) is less than 1, then problem
(13.1) is uniquely solvable and the inverse L−1 : H−,γ(D)→ H+,γ(D) ⊂ Hs,γ(D, S)
is bounded, where s is given by (8.12).

Corollary 13.8. Let a0,0 ≡ ρ−2, Ψ =
√
B0,0Ψr with B0,0 > 0 and t = 0. If the

constant c of (13.5) is less than sin(r+ 1/2)π/2n, then the system of root functions
of the closed operator T in H−,γ(D) corresponding to problem (13.1) is complete in
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the spaces H−,γ(D), H0,γ(D) and H1,γ(D, S), and, for any δ > 0, all eigenvalues of
T (except for a finite number) lie in the corner | arg λ| < arcsin c+ δ in C. Besides,
if aj = 8γ ρ−1∂zjρ, for 1 ≤ j ≤ n, ∆a0 = 0 and ∆B0 = 0, then all eigenvalues of
T belong to the corner | arg λ| ≤ arcsin c.
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