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Abstract. The pressure—driven ion transport through nanofiltration membrane pores with
constant surface potential or charge density is investigated theoretically. Two approaches are
employed in the study. The first one is based on one-dimensional Nernst—Planck equation
coupled with electroneutrality, zero current, and Donnan equilibrium conditions. This model
is extended to account for interfacial effects by using a smooth approximation of step function
for the volume charge density. A simplified model for the case of constant surface potential
is also proposed. The second approach is based on two—dimensional Nernst—Planck, Poisson,
and Navier—Stokes equations, which are solved in a high aspect ratio nanopore connecting two
reservoirs with much larger diameter. The modification of equations on the basis of Slotboom
transformation is employed to speed up the convergence rate. The distributions of poten-
tial, pressure, ion concentrations and fluxes due to convection, diffusion, and migration in the
nanopore and reservoirs are discussed and analyzed. It is found that for constant surface charge
density, the convective flux of counter—ions in the nanopore is almost completely balanced by
the opposite migration flux, while for constant surface potential, the convective flux is balanced
by the opposite diffusion and migration fluxes. The co—ions in the nanopore are mainly trans-
ported by diffusion. A particular attention is focused on describing the interfacial effects at
the nanopore entrance/exit. Detailed comparison between one— and two—dimensional models
is performed in terms of rejection, pressure drop, and membrane potential dependence on the
surface potential/charge density, volume flux, electrolyte concentration, and pore radius. A
good agreement between these models is found when the Debye length is smaller than the pore
radius and the surface potential or charge density are sufficiently low.
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1 Introduction

Nanofiltration (NF) is a pressure-driven membrane process, which is used to remove ionic
species and organic solutes from aqueous solutions [1]. Nanofiltration membranes are character-
ized by effective pore diameter ranging from one to a few nanometers, and the molecular weight
cut—off between a few hundred to a few thousand Dalton. The range of operating pressure starts
from a few bars up to 10-20 bars. These characteristics lie between those of reverse osmosis
(RO) and ultrafiltration (UF) membranes [2]. NF membranes combine the advantages of a
high water flux at relatively low operating pressure and high salt and organic matter rejection
rate [3]. Nanofiltration has received much attention in the last decades due to its applications
in textile, paper, and food industries including water desalination [1-4].
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The separation mechanisms of NF membranes include not only steric, but also electric
effects. Most of such membranes acquire an electric charge when brought in contact with a
polar medium due to dissociation of functional groups or adsorption of charged species from
the solution onto the pore walls. In nanometer—sized pores, the electric double layers from
the opposite walls overlap, which leads to the favoured transport of counter—ions and exclusion
of co—ions. If the pore walls are made of conductive material, the wall charge can be altered
by applying a prescribed potential to the membrane. In this way, the membrane selectivity
characteristics can be externally varied and controlled [5,6]. A comprehensive review of charged
membranes applications can be found in [7].

The development of adequate mathematical models for nanofiltration is extremely impor-
tant for better understanding of complex transport mechanisms and prediction of separation
characteristics [8]. A charged membrane is usually modelled as an array of identical parallel
charged pores. It is now well established that the pressure—driven transport of ions in charged
membrane pores can be described by the system of Nernst—Planck, Poisson, and Navier—Stokes
equations [9]. However, the direct application of this model requires much computational re-
sources even in two-dimensional statement. Due to that, a number of simplified approaches
has been developed. In the homogeneous approximation [10], the uniform distribution of fixed
charged in membrane pores is assumed, and the radial variation of electric potential and ion
concentrations in the pore is neglected. It is a valid assumption when the Debye screening
length is much larger than the pore radius, and the fixed charge density is sufficiently low. In
this case, the model reduces to one-dimensional Nernst—Planck equation extended by convec-
tive transport term, the electroneutrality and zero current conditions, and Donnan equilibrium
at the pore entrance and exit. This is known as Teorell-Meyer—Sievers (TMS) model. The
latter was successfully applied for interpreting the experimental data on reverse osmosis in
charged membranes in [11]. The Donnan-steric partitioning pore model (DSPM) [12] takes
into account the finite ion size by introducing diffusive and convective hindrance factors. The
fitting of experimental rejection data to this model allowed obtaining such membrane char-
acteristics as pore radius, volume charge density, and effective membrane thickness [13-15].
The effect of concentration polarization on salt rejection was investigated in [16] by coupling
the DSPM model with convection—diffusion equations in the boundary layer adjacent to the
membrane. The contribution of convection, diffusion, and migration to electrolyte transport
through nanofiltration membranes was studied in [17]. It was found that convection is the dom-
inant transport mechanism at low membrane charge density and/or high permeate volume flux,
while the transport is mainly governed by diffusion when the membrane is strongly charged.
Migration becomes dominant when the co—ion diffusion coefficient exceeds that of counter—ion.
The effect of inhomogeneous charge distribution on the pressure-driven ionic transport was
considered in [18]. It was suggested that the rejection capability of nanopores can be optimized
by the appropriate fixed charge distribution. For the case of bipolar charge distribution [19],
similar rejection was found in asymmetric electrolytes with divalent co—ions or counter—ions. In
contrast, homogeneously charged nanopores strongly reject the former type of electrolyte and
are much more permeable to the latter one.

The radial variation of potential and ion concentrations in the pore as well as the impact
of electroosmotic flow on ion transfer are taken into account in the space—charge (SC) model,
which was originally developed in [20]. Detailed comparison between results obtained from SC
and TMS models [21] showed a good agreement for pores with small radius (less than 2 nm)
and low surface charge density. Otherwise, a strong overestimation of rejection by the TMS
model in comparison with the SC model was found. Similar conclusion was made with respect
to membrane potentials of monovalent and multivalent electrolytes calculated from the above
two models in [22]. A simplification of SC model, which assumes a parabolic velocity profile
(Poiseuille flow) in the pore, was suggested in [23]. Comparison between theory and experiment



on salt rejection in compacted clay showed a very good agreement.

The effect of membrane/solution interface on the distribution of potential and ion con-
centrations in the absence of pressure—driven flow was investigated in [24] by solving two—
dimensional Nernst—Planck and Poisson equations in two reservoirs connected by a charged
nanopore. The cases of equal and unequal electrolyte concentrations in the reservoirs were
considered. In the latter case, it was found that unequal migration and diffusion currents
resulted in non—zero total current flow in the system. A simplified analytical approach to de-
scribing potential distribution in the interfacial region was suggested in [25]. It was concluded
that Donnan equilibrium conditions with discontinuous potential and ion concentrations at
the interface are valid only if the membrane thickness is much greater than the Debye length.
The impact of pressure—driven flow on the ion transfer in the nanopore connecting two reser-
voirs with equal electrolyte concentrations was investigated numerically in [26]. In addition to
counter—ion enrichment and co—ion depletion in the nanopore, the increase/decrease of elec-
trolyte concentration near the pore entrance/exit was found. The latter effect became stronger
with increasing the applied pressure drop. The impact of electric force on pressure—driven flow
(the electroviscous effect) in reservoir—connected flat and circular nanochannels was studied
numerically in [27,28]. A simple analytical model was suggested for prediction of the pressure
drop and correlated with the numerical results. It should be noted that in the above-mentioned
works, the nanopore diameter was of order 10-100 nm, while the length to the diameter ratio
was of order 10. The considered electrolyte concentrations were 1 mol/m? and lower except the
work [24] (the pressure—driven flow was not considered there). However, typical nanofiltration
membranes have the pore diameter of a few nanometers and the aspect ratio of order 100-1000,
while the electrolyte concentration can be as high as 1000 mol/m? [1-5].

The main aim of this work is to investigate theoretically the pressure—driven ion transport
through nanofiltration membrane pores of realistic geometry in a wide range of electrolyte
concentrations. The cases of constant surface charge density and constant surface potential are
considered. Note that the former case has not been studied in details in the literature. Two
approaches are employed in the study. The first one is based on one-dimensional Nernst—Planck
equation coupled with electroneutrality, zero current, and Donnan equilibrium conditions. This
model is extended to account for interfacial effects by using a smooth approximation of step
function for the volume charge density. A simplified model for the case of constant surface
potential is also proposed. The second approach is based on two—dimensional Nernst—Planck,
Poisson, and Navier—Stokes equations, which are solved in a high aspect ratio nanopore, which
connects two reservoirs with much larger diameter. The modification of equations on the
basis of Slotboom transformation is employed to speed up the convergence rate. Detailed
comparison between the two approaches is performed in terms of rejection, pressure drop,
and membrane potential dependence on the applied potential/charge density, volume flux,
electrolyte concentration, and pore radius. A particular attention is focused on describing the
interfacial effects at the nanopore entrance/exit.

The paper is organized as follows. The mathematical models are presented in Section 2,
while the numerical implementation is described in Section 3. The obtained results are analyzed
and discussed in Section 4. The main findings are summarized in Conclusion.

2 Models formulation
2.1 One—dimensional model with specified surface charge density

Consider a cylindrical nanopore of length L, and radius R,, which connects two reservoirs
of length L, and radius R, (Fig. 1). The surface charge density o(z) is specified at the
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Figure 1: The geometry of the nanopore and reservoirs with notation for one—dimensional model.

nanopore wall, while the walls of reservoirs are not charged. In this paper, we consider the case
of monovalent symmetric electrolyte, so all models will be formulated for this case for simplicity.
The concentrations of positive and negative ions are denoted by C'; and C_, respectively. The
ionic solution is pumped through the pore with the volume flux .Ji,, which is equivalent to the
solution velocity. In the homogeneous approach, the electric potential ®, ion concentrations
C4, and pressure P are functions of longitudinal coordinate z only. The molar fluxes of ions
are described by the extended Nernst—Planck equation:
dcC’ DL F _, d®
Ji:CiJV_Did_;::F RiT S (1)

where D, are the ion diffusion coefficients, F' is the Faraday constant, R is the ideal gas
constant, and T is the temperature. Note that we do not take into account the hindrance
factors for convection and diffusion [13-15] since our aim is to compare the results obtained
from one— and two—dimensional models. The latter model is described in Section 2.3 and does
not take into account the hindrance effects in the present formulation.

The conditions of no electric current and electroneutrality inside the nanopore and reser-
voirs are given by

Jp—J.=0, (2)
C,-C_+X=0, Ct-ct=0, Cf-cCcf=0. (3)

Here Ct = CL = CF and CF = C# = C* are the ion concentrations in the left and right
reservoirs, respectively, while X is the effective volume charge density, which is related to the
surface charge density o4 by the formula

20
X = =
FR,

(4)

It is assumed that far from the pore exit in the right reservoir, the transport of ions
occurs by convection only (there are no concentration and potential gradients). Together with
equation (2) it leads to

J. = CEJy. (5)

Note that CT is not known in advance and should be determined from the solution of the
problem.
The Donnan equilibrium conditions at the nanopore entrance and exit are written as

F F
C.(0) = C*exp <:FﬁA<I>L> , Ci(L,) = C%exp (iﬁmﬁ) : (6)



where A®L = ¢(0) — &L, APE = &% — &(L,) are the potential jumps, while ®(0), C4(0) and
®(L,), Ci(L,) are the potentlal and ion concentrations inside the nanopore near the entrance
and exit, respectively. It follows from (3) and (6) that

_FX(0) + /X2(0) + 4(CT)? ., _RT CL(0)
C:t(O) = 5 , AP" = :F? In oL (7)
RT = Cy(L,)
R +
= OHL) C-(Ly), AR = £ m = (8)
With the help of (5), equation (1) can be rewritten as

dCy  Jy (Cy — CR) d<I>

=~ D: RTO dz ©)

By differentiating the first equation in (3) and substituting the expression for dCy. /dz from
(9) into the result, we find

% _ (Jv (CB: ct) v (CD_— ch (izX> (;T (Cs +C- ))1. (10)

The equation for pressure can be obtained by taking z—momentum equation in the Navier—
Stokes system and averaging it over the nanopore cross—section [18]:
dP 8u dd
—=—=Jy—-FC, -C_)— 11
dz R2 14 ( + ) dz ’ ( )
where g is the dynamic viscosity of ionic solution. In the derivation of (11), it is assumed that
the velocity in z direction has a parabolic profile

V =2Jy (1 - (T/Rp)2>.

The osmotic pressure jumps at the pore entrance/exit are given by

AP" = P(0) — P* = RT(C4(0) + C_(0) — 2C"), (12)
AP = P% — P(L,) = RT(2C" — C4(L,) — C_(Ly)). (13)

The total pressure difference AP = PL — P® can be found by integrating equation (11) from
z = L, to z = 0 with the help of (3) and taking into account the osmotic pressure jumps:

SuL

_ L
AP =-AP'+

—Fr JV+F/X—dz—APR (14)

Ly

The distributions of potential, ion concentrations, and pressure in the nanopore can be
obtained by the following procedure. Given the values ®*, CT, P%  the values at the pore
entrance ®(0), C1(0), P(0) are calculated from (7) and (12). Then an initial guess for C¥ is set
and equations (9)—(11) are integrated numerically from z = 0 to z = L,. After that, the values
of ® CT P are found from (8) and (13). The problem is solved iteratively until the initial
guess for CT at the current iteration coincides with the calculated value within the required
accuracy.

It should be noted that the above—described approach does not allow detailed treatment of
potential, ion concentrations, and pressure distribution as well as ion fluxes due to convection,
diffusion, and migration in the interfacial regions. To overcome this limitation for nanopores
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with constant surface charge density, we propose a simplified approach by considering the
distribution of surface charge density o(z) with a smooth transition between zero value in the
reservoirs and the constant value o, in the nanopore:

1
O'ZO'S(H(Z)—H(Z—LP)), H(Z)IW (15)
Here H(z) is a smooth approximation of Heaviside step function and k is a constant. In this
case, equations (9)—(11) can be integrated from z = —L, to z = L, + L, with initial conditions

¢ =L CL=CF P=Platz=—L, Forconvenience, we take ®* = 0. In equation (11),
the nanopore radius R, is replaced by the reservoir radius R, and the volume flux .Jy is replaced
by (R,/R.)* Jv for =L, < z < 0and L, < z < L, + L,. The pressure P” is chosen to satisfy
the condition P = 0. The explicit consideration of Donnan equilibrium conditions (7), (8)
and osmotic pressure jumps (12), (13) is not required since all variables vary continuously in
the interfacial regions. The results obtained by the proposed approach will be compared with
the solution of two-dimensional model (Section 2.3), which takes into account the detailed
geometry of nanopore and reservoirs.
The rejection (the fraction of ions, which is retained by the membrane) is calculated as
CR

R=1-7. (16)

2.2 One—-dimensional model with specified surface potential

In this section, we propose a simple modification of one—dimensional model for the case
of specified potential ¢,(z) on the nanopore wall. Since the potential in the right reservoir is
not known in advance and should be determined from the solution of the problem, it is not
possible to specify the distribution of potential in the nanopore and reservoirs in the form
similar to (15). In the frame of homogeneous approach, we assume that the potential in the
nanopore is the function of z only, so ®(2) = ®¥ 4 p(z), where p(z) = ps(2). It follows that
APl = &(0) — ¥ = p(0). For convenience, we take ®¥ = 0. Equation (9) in the nanopore can
be solved analytically with the initial conditions given by (7):

Cy = [CL(0)exp (iw(o)) et / exp( EA Fﬂz’)) dz’] exp( v F“D(Z)>.

RT Dy D, RT D RT

For ¢ = const, this solution reduces to

Cy = CF+ (Ce(0) — CT) exp(J—Vz).
D,
The concentration C® is determined from the first relation in (8), which reduces to the quadratic
equation. It can be shown that for ¢ = const it has two real roots (positive and negative),
so the physically meaningful positive solution for C¥ always exists. The potential in the right
reservoir is &' = ¢(L,) + AP, where A®® is given by the second relation in (8). The resulting
volume charge density is determined from the first equation in (3). The integration of (11) gives
the pressure distribution in the nanopore, while the total pressure drop is calculated from (14).
The pressure inside the nanopore becomes linear P = P(0) + 8u/ RIQJ z when ¢ = const.

2.3 Two—dimensional model

Let us now proceed to the two—dimensional model of pressure—driven flow and ion transport
in a charged cylindrical nanopore of length L, and radius R,, which connects two reservoirs



Figure 2: The geometry of the nanopore and reservoirs.

Table 1: The boundary conditions.

Boundary  Navier—Stokes Poisson Nernst—Planck Nernst—Planck eqns.
segment equations equation equations (Slotboom variables)
Ay U=0,V=.J, d=0 Cy=1 Cp=1
By P = Vb-n=0 (=VCiTCLVD) -n=0 VC: -n=0
Ass, By U=V=0 V& n=0 (=VCLFCLVP)-n=0 VC: -m=0
C U=V=0 V& n=0¢ (-VCLFCLVP) n=0 VC: -n=0
or &=y

of length L, and radius R,. The axisymmetric geometry of the system is shown in Fig. 2.
The flow and ion transport are described by the Navier-Stokes, Nernst—Plank, and Poisson
equations. We introduce dimensionless variables by taking the characteristic scales of length L
(to be specified later), velocity Jy,, pressure pJZ, concentration C*, and potential RT/F. The
dimensionless governing equations are written in the form

(U-V)U =-VP+
V.U =0,

1
Re

PeU - VC+ = —V . (—VC+ — C.A,.V@),
Pel - VO = -V - D(~VC_ + C_Vd),

1
28
V=G -

C—)>

VU - A(C, — C_)VO,

(17)
(18)
(19)
(20)
(21)

where U is the velocity vector. For axisymmetric problem, it is written as U = (U, V'), where
U and V are the radial and axial velocity components, respectively. The equations are solved
in cylindrical coordinates. The dimensionless parameters of the problem are listed below:

Jy L Jyv L RTC*
Re = pJIv : Pe = L’ — —
I Dy pJy
Ao L fl o Pes o Lo
LV 2CLF?’ *  RT’ * egoRT’

D_
D,’

. _ R
V_ﬁ'

(22)

Here Re is the Reynolds number, Pe is Peclet number, A is the parameter, which characterizes
the electric (Coulomb) force, D is the ratio of diffusion coefficients, A is the dimensionless



Debye length, ¢! and ol are the dimensionless surface potential and surface charge density,
respectively, and .Jj, is the dimensionless velocity at the inlet. It is chosen from the condition
of equal flow rates in the reservoirs and nanopore. In formulas (22), p is the density of ionic
solution, ¢ is its relative permittivity, and g is the vacuum permittivity.

The boundary conditions are summarized in Table 1. An outward unit normal to the
boundary is denoted by n. At the inlet A;, the constant dimensionless axial velocity Ji,, zero
potential, and constant dimensionless concentration are specified. At the outlet By, we impose
zero pressure, the absence of potential gradient, and zero fluxes of ions due to diffusion and
migration (the transport of ions occurs by convection only). The same conditions are specified
on the reservoir walls Ay, A3, By, B3 except zero pressure requirement, which is replaced by
the no—slip condition. The latter is also specified on the nanopore wall C' together with zero
diffusion and migration fluxes. In addition, we impose constant charge density or constant
potential on the nanopore wall.

When the ions have equal diffusion coefficients (D = 1), the considered problem is invariant
under the transformation

d— -0  CL—Cr, o, ——0o, (¢ — =) (23)

If the solution for a fixed sign of surface potential or charge density is known, the change of
variables (23) provides the solution for the opposite sign of these parameters.

An alternative formulation of governing equations can be proposed by introducing the
Slotboom variables [29-31] according to

Ci = €¥¢6i.

Using these variables, equations (17)—(21) are rewritten as

(U-V)U =-VP + éVQU —A(e™®Cy —*C ) VO, (24)
V-U =0, (25)
V- (e7® (PeUC, — VC,)) =0, (26)
V- (e (PeUC. — DVC.)) =0, (27)
V20 = —L(e_q)éjL — eq’CN'_). (28)

2)2

After the transformation, the boundary conditions for Navier—Stokes and Poisson equa-
tions remain the same, while the conditions for the Nernst—Planck equations are transformed
into a simpler form, which is given in the last column of Table 1. The advantages of using the
Slotboom variables will be discussed further in Section 3.

It should be noted that the flow in nanopores typically corresponds to low Reynolds
numbers, so the convective term in (17) and (24) can be neglected. However, we have retained
it for completeness.

2.4 Physical parameters

In this paper, the calculations are performed for potassium chloride aqueous solution,
which fully dissociate into K* and C1~ ions. The parameters used are as follows: 7" = 298.15
K, R =8.314 J/(mol K), F = 96485 C/mol, ¢ = 78.49, gy = 8.854- 1072 F/m, p = 997
kg/m?, p=0.888-1073 Pass, D, =1.957-10"° m2/s, D_ =2.032-10=° m2/s, L =10~ m.
The size of reservoirs is fixed to R, = 25 nm, L, = 100 nm, while the nanopore dimensions
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Figure 3: The dependence of residuals for continuity equation (a) and negative ion transport equation (b) on the
number of iterations n. 1 — Coupled method, Slotbhoom variables; 2 — SIMPLEC method, Slotboom variables;
3 — Coupled method, Primitive variables; 4 — SIMPLEC method, Primitive variables.

can take the following values: R, =1, 2, 5, 10 nm, L, = 1000, 2000 nm. In some cases (low
values of inlet concentration and high values of surface potential /charge density), the length of
right reservoir is extended to 300 nm to satisfy the condition C'; = C_ at the outlet. The value
of constant k in (15) is chosen as 0.5 provided that the values of z are given in nanometers.
It results in a smooth transition between ¢ = 0 and ¢ = o, within 10 nm range of z at
the nanopore entrance/exit. The variations of physical parameters C*, Jy, @, 0, as well as
dimensionless variables (22) are described in Section 4.

3 Numerical implementation

The equations of one-dimensional model (9)—(11) were integrated numerically by the
Runge-Kutta—Merson method of 5th order with variable spacial step, which was chosen to
maintain the required accuracy. For example, a fixed relative error of 5-107% resulted in
around 800 steps on the interval (—L,, L, + L,.) for L, = 2000, L, = 100. The step size at the
interfacial regions was much smaller than at the rest of the interval in order to resolve large
potential, concentration, and pressure gradients there.

The governing equations of two—dimensional model (Section 2.3) were solved numerically
with a help of ANSYS Fluent 14.5 (Academic version). Note that the Nernst—Planck and
Poisson equations cannot be realized by means of standard ANSYS Fluent capabilities. They
were implemented with the help of user—defined scalar (UDS) transport equations, which were
realized through user—defined functions (UDF) library. This approach allowed setting the con-
vection, diffusion, and migration transport terms in the Nernst—Planck equations as well as the
source term in the Poisson equation. The coupling with Navier—Stokes equations was realized
by introducing the corresponding source term.

Let us briefly describe the main features of numerical schemes used. The stationary prob-
lem was solved iteratively by two methods in finite volume formulation [32]. The first one is
the Coupled scheme [33], which solves the pressure-based momentum and continuity equations
together. The second is the SIMPLEC scheme [34], where the momentum equation is segre-
gated from continuity equation, from which the Poisson equation for pressure is derived and
solved to obtain the velocity correction. The Coupled scheme provides a robust and efficient
implementation for complex flows with superior performance compared to the segregated so-
lution scheme SIMPLEC. Approximation of convective terms in the transport equations was



carried out by the second order upwind scheme. For diffusion fluxes and source terms, the
second—order approximation was employed. The linearized algebraic equations were solved by
the algebraic multi-grid (AMG) iterative method for accelerated convergence. The details of
numerical algorithms can be found in the ANSYS Fluent 14.5 documentation.

The characteristics of computational mesh were chosen in such a way as to ensure that
further refinement did not influence the solution quality. For the typical case of R, = 2 nm,
L, = 2000 nm, R, = 25 nm, L, = 100 nm, the number of nodes in radial and axial directions
was 20 and 3000 for the nanopore, and 70 and 120 for each reservoir, respectively. The mesh
had clustering in the axial direction near the nanopore entrance and exit as well as in the
radial direction in the reservoirs. In the nanopore, the mesh was radially uniform. For other
dimensions of the nanopore, the number of nodes was changed accordingly.

We have performed a comparison of convergence between formulations in Primitive vari-
ables (17)—(21) and Slotboom variables (24)—(28) as well as between Coupled and SIMPLEC
methods. Figure 3 shows the dependence of residuals R for continuity equation (18) or (25)
and negative ion transport equation (20) or (27) on the number of iterations n. One can see
that the use of Slotboom variables allows to decrease the required number of iterations by 2-3
times in comparison with the use of Primitive variables. The Coupled method allows to de-
crease this number further by 5 times. It should be noted that the calculations were performed
with the serial processing option (i.e. on a single core). It was found that the use of parallel
computations significantly increases the number of iterations required for convergence.

In the calculations, it was ensured that the total fluxes of positive and negative ions
obtained by summing up convection, diffusion, and migration fluxes are constant and equal
at each cross—section including the interfacial regions. Additional validation was performed by
comparing the results of two—dimensional model with those based on one—-dimensional approach.
A good agreement was found for small pore radius and low applied surface potential / charge
density, where the homogeneous approximation is valid (see Section 4).

4 Results and discussion

4.1 The distributions of potential, pressure, ion concentrations and fluxes

In this section, we perform a detailed study of flow and ion transport in the nanopore
and two reservoirs on the basis of one— and two—dimensional models. The dimensions of the
nanopore are fixed at R, = 2 nm, L, = 1000 nm, the inlet ion concentration is C* = 10
mol/m?, and the volume flux is Jyy = 100 pm/s.

The parameters of the considered cases are summarized in Table 2. In this paper, we
consider nanopores with negative surface potential / charge density. Since the ratio of Kt and
Cl1™ diffusion coefficients is close to unity, the solution for positive values of these parameters
can be obtained by applying the change of variables (23). First, the two—dimensional model
is solved for constant surface potential ¢,. Then the equivalent surface charge density oy is
determined from the boundary condition

6502—;1? =0, (29)
averaged over the pore surface (here ® is the dimensional potential). It allows one to deter-
mine the volume charge density X from (4). The potential ¢ is calculated by averaging the
dimensional potential over the pore volume. These parameters are used in the corresponding
one—dimensional models, see Sections 2.1 and 2.2.

The chosen dimensional parameters correspond to the following values of dimensionless
parameters defined by (22): Re =1.123-107%, Pe = 5.110- 1075, A = 2.486 - 10°, D = 1.038,
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Table 2: The parameters of considered cases of study: surface potential ¢, volume-averaged potential ¢,
surface charge density o, volume charge density X for R, = 2 nm, L, = 1000 nm, CL = 10 mol/m?,
Jy =100 pm/s.

Case Vs © Os X
\Y% \% 1072 C/m* mol/m?
1 —-0.02 —0.0189 —0.159 —17
2 —0.04 —0.0372 —0.399 —41
3 —0.06 —0.0545 —0.818 —85
4 —0.08 —0.0702 —1.543 —160
5 —0.10 —0.0840 —2.726 —283
6 —0.12  —0.0958 —4.567 —473
7 —-0.14 —0.1057  —7.333 —760

A =3.042, J|, = 6.4-1073. The dimensionless surface potential and charge density vary in the
following ranges: ¢, = —0.778 ... —5.449, o/ = —0.089 ... —4.107. For comparing the results
obtained from one— and two—dimensional models, we introduce the cross—sectionally averaged
variables:

27 Rp 27 Rp

— 1
= b rdrdep, Cy= —//C’i rdrdyp,
WRZ// T2 /)

2w Rp
RQ//Prdrdgo
T

where ®, CL, P are the dimensional potential, ion concentrations, and pressure, respectively.
For one-dimensional model, the averaged quantities coincide with the non—averaged ones since
the latter depend on z coordinate only. In addition, the convection fluxes J¥, diffusion fluxes
JP migration fluxes J¥, and total fluxes J. of ions in axial direction are defined by

21 Rp 21 Rp
oC
JS = //Cindrdgo, JP = //(—Dia—;) rdrdep,
0 0

DiF . 0%
//( = a)rdrdgo, Jo=JS +J0 4+ M.

The corresponding fluxes for one-dimensional model are calculated from (1) by multiplying it
to the nanopore cross—sectional area WRZQD.

Figure 4 shows the profiles of potential, pressure, ion concentrations, and axial velocity
in the central cross—section of the nanopore at z = L,/2. The results for constant surface
potential / charge density virtually coincide in this cross—section. Counter—ion enrichment and
co—ion depletion are observed in the nanopore. For small values of ¢, or oy, the profiles of &,
P, (' show weak dependence on the radial coordinate r. When these values are increased,
pronounced radial variations are observed. The concentration of counter—ions C increases,
while the concentration of co-ions C'_ decreases towards the pore wall. The pressure rise near
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the wall compensates the electric force (the last term in equation (17)), which is directed
towards the wall. For large potentials, the axial velocity profile shows some deviation from the
purely parabolic one. The reasons for that will be discussed below after analyzing the axial
profiles of all quantities.

The distributions of averaged potential, pressure, and ion concentrations obtained from the
numerical solution of two—dimensional model for Cases 1-7 in Table 2 are shown in Fig. 5. One
can see that the increase of surface potential ¢ or surface charge density o, by absolute value
leads to the larger potential and osmotic pressure jumps at the entrance/exit of the nanopore.
The concentration of counter—ions (K*) increases, while that of co—ions (Cl7) decreases inside
the nanopore. The electrolyte concentration at the right reservoir becomes smaller, so the
rejection of salt is enhanced. One can also observe the rise of membrane potential A® =
6(Lp + L,) when ¢, or o, are increased. The pressure gradient inside the nanopore is mainly
determined by the specified volume flux Jy,. The osmotic pressure jumps (see also (12), (13))
balance the electric force, which develops in the interfacial regions, where non—zero net charge
is subjected to a large electric field. The total pressure drop AP = P(—L,) increases with
increasing ¢, or o,. The change of pressure drop due to the presence of electric force is known
as electroviscous effect. Our findings are in line with previous results for low aspect ratio
pores [27,28].

Some differences between the cases of constant surface potential and constant surface
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Figure 6: The distributions of ion fluxes for the case of constant surface potential (a,b) and constant surface
charge density (c,d) obtained from two—dimensional model. The curves correspond to Case 5 in Table 2.

charge density can be observed from Fig. 5. In the latter case, the ion concentrations are almost
constant inside the nanopore, while in the former case, notable ion concentration gradients
develop there. They are directed from the nanopore entrance to the exit for counter—ions
and oppositely for co-ions. The potential gradient inside the nanopore is slightly larger for
os = const than for ¢ = const. The potential difference between the two ends of a charged
nanopore arising due to pressure—driven flow is known as streaming potential. The increased
streaming potential results in the larger electric force directed to the nanopore entrance (see
the last term in equation (17)). At fixed volume flow rate Jy, the pressure gradient inside the
nanopore for o, = const becomes larger than that for ¢, = const to compensate the increase
of electric force. Note that in the former case, the osmotic pressure jump at the entrance (exit)
is larger (smaller) than that in the latter case. These effects lead to the difference between
pressure profiles for constant surface potential/charge density in Fig. 5 (b). However, the total
pressure drops AP = P(—L,) for these two cases virtually coincide.

The impact of axial electric force on the velocity profile is demonstrated in Fig. 4 (e).
This force acts in the direction of nanopore entrance, and its magnitude is stronger near the
nanopore walls. In this region, the flow is slightly slowed down with increasing the applied
potential /charge density, while near the centerline it is enhanced to provide the same averaged
volume flux Jy .

The mechanisms of ion transport the nanopore and reservoirs can be understood from the
distribution of ion fluxes, which is shown in Figure 6 for Case 5 in Table 2. The total fluxes
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of ions at any cross—section are equal to the convective salt flux at the outlet of the right
reservoir, i.e. Jo = J¢ = CRJy7RS, where C* = C.(L, + L,). At the outlet, there are no
potential and concentration gradients, so the diffusion J£ and migration J fluxes are absent.
Inside the nanopore, the co—ions are mainly transported by diffusion with a small contribution
from convection and migration, which is more pronounced near the nanopore entrance, see
Fig. 6 (b,d). The large convective flux of counter—ions is almost completely balanced by the
opposite diffusion and migration fluxes for the case of constant potential (Fig. 6 (a)) and by
the opposite migration flux only for the case of constant surface charge density (Fig. 6 (b)). In
the left reservoir, the ions transported by the inlet convective fluxes J¢ = C*.Jy are partially
rejected by the opposite diffusion fluxes JP. It means that the salt concentration gradient
directed to the nanopore entrance is formed in the left reservoir. However, this gradient is
rather small and cannot be seen in Fig. 5 (d). In the interfacial regions near nanopore entrance
and exit, large migration and diffusion fluxes of ions develop and almost completely balance
each other, see also Fig. 9 (c,f) below. It should be noted that large unequal migration and
diffusion fluxes at the entrance / exit of a charged membrane pore were reported in [24]. In that
work, the pore connected two reservoirs with equal or different concentrations in the absence
of pressure—driven flow.

Comparison of results obtained from one— and two—dimensional models is presented in
Fig. 7 for the constant surface charge density (Case 4 in Table 2). It can be seen that the
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agreement is very good. One-dimensional model predicts slightly larger values of membrane
potential and required pressure drop, and slightly smaller salt concentration at the outlet. Note
that this model does not take into account the radial variations of the above quantities. Figure
8 shows a close—up view of ion concentrations near the pore entrance and exit. The difference
between curves obtained from one— and two—dimensional models is observed in a short region
of around 10 nm near z = 0 and z = L,,, while outside this region the curves virtually coincide.
The difference is caused by the geometry of reservoirs and the value of constant £ in formula
(15).

The comparison between fluxes determined from one- and two-dimensional models is
shown in Fig. 9 for the constant surface charge density (Case 4 in Table 2). One can see
that the former model provides not only qualitative, but also quantitative agreement with the
latter one. The differences are most pronounced in the interfacial regions. In particular, sharp
fronts of diffusion and migration fluxes in the left reservoir are shifted closer to the nanopore
entrance in one-dimensional model in comparison with two—dimensional one. Figures 9 (c¢) and
(f) show that these fluxes are 10*—10° times higher than the total fluxes of ions in the interfa-
cial regions. Finally, it should be noted that the agreement between one— and two—dimensional
models becomes better (worse) with decreasing (increasing) the surface charge density.

When the constant surface potential is specified, the agreement between the two considered
models is also good for low potentials and becomes worse when the potential is increased. Note
that in this case the comparison can be made only inside the nanopore, see Section 2.2. Figure
10 shows the ion concentrations and fluxes for Case 4 in Table 2. It can be seen that the volume
charge density X = C_ — ('} obtained from one-dimensional model with constant volume-
averaged potential ¢ is slightly lower than that found from two—dimensional model. There
is a complete agreement for total fluxes as well as for three contributions to the total flux of
co—ions. For counter—ions, the two—dimensional model predicts non-zero migration flux, while
this flux is absent in one-dimensional model since the potential is assumed to be constant and
homogeneous in radial direction. The diffusion fluxes of counter—ions in the two models differ
accordingly in order to compensate the convective flux. It follows that the one-dimensional
model suggested in Section 2.2 does not fully describe the mechanisms of ion transport in the
nanopore.

4.2 Rejection, pressure drop, and membrane potential

This section is focused on studying the dependence of rejection, required pressure drop, and
membrane potential on the applied surface potential / charge density, volume flux, electrolyte
concentration, and nanopore radius. The length of the nanopore is fixed at L, = 2000 nm. For
two—dimensional model, the rejection is calculated by formula (16) with C* = Cy(—L,) and
C® = Cy(L,+L,). The pressure drop and membrane potential are calculated as AP = P(—L,)
and A® = ®(L, + L,), respectively. For one-dimensional model, AP = AP and A® = Ad.

First, the influence of variable surface potential / charge density on the nanopore selectivity
is investigated for R, = 2 nm, C* = 10 mol/m?, J; = 100 pum/s. The considered cases of
study are summarized in Table 3. The same values of ¢ as in Table 2 are taken here, while
the calculated values of ¢, os, X are slightly different from those in Table 2 since the nanopore
length is two times larger. The results of calculations are presented in Fig. 11. The horizontal
axis corresponds to the values of surface potential ¢, or equivalent values of ¢, o,, X from Table
2. One can see that the increase of surface potential / charge density by absolute value results
in the increase of rejection, pressured drop, and membrane potential. The value of pressure
drop in the limiting case ¢y = 0 corresponds to the hydrodynamic pressure drop of Poiseuille
flow, see the second term in the right-hand side of (14).

For low values of ¢, or o, the radial variations of potential, ions concentrations, and
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Table 3: The parameters of considered cases of study: surface potential ¢,, volume—averaged potential ¢,
surface charge density o5, volume charge density X for R, = 2 nm, L, = 2000 nm, Ct = 10 mol/m3,
Jy =100 pm/s.

Case Vs © O X
\Y% Vv 1072 C/m? mol/m?
1 —-0.02 —0.0189 —0.163 —17
2 —0.04 —0.0372 —0.408 —42
3 —0.06 —0.0544 —0.835 —87
4 —-0.08 —0.0700 —1.569 —163
) —0.10 —0.0838 —2.765 —287
6 —0.12  —0.0956 —4.621 —479
7 —-0.14 —0.1055 —7.403 —767
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Figure 11: The dependence of rejection (a), pressure drop (b), and membrane potential (c) on the surface
potential / equivalent surface charge density for one-dimensional model (dashed curves) and two—dimensional
model (solid curves). The calculated cases are shown by dots, see Table 3.
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pressure are rather small (see Fig. 4), so the agreement between one— and two—dimensional
models is almost complete. With increasing the above parameters, the difference between the
two models becomes evident with one—dimensional model providing overestimated values of the
considered characteristics. The latter model also provides larger values of these characteristics
for o; = const in comparison with ¢, = const. Note that in one-dimensional models, the
volume charge density X or potential ¢ should be specified. The equivalent value of X is
obtained from two-dimensional results with the help of (4) and (29), while the equivalent
potential ¢ is found by averaging the two—dimensional potential over the pore volume. It turns
out that the average volume charge density determined from the model with constant potential
on the basis of first equation in (3) is lower than the value taken in the model of constant
surface charge. For example, the solution for ¢ = —0.1055 V provides X = —640 mol/m3,
while the corresponding value of X in Table 3 is —767 mol/m?® (see Case 7). It explains the
differences between results of one—dimensional models in Fig. 11. Note that in the model of
constant potential, the contribution of electric force to the pressure gradient is absent inside the
nanopore, see (11) and (14). Thus, the pressure drop in this case should be lower in comparison
with that for constant surface charge density. Finally, the two—dimensional models for constant
surface potential / charge density provide nearly the same results.

Figure 12 shows the dependence of rejection, pressure drop, and membrane potential on
the volume flux Jy- for different nanopore radii R, with o, = —2.765-1072 C/m? and C* =10
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mol/m3. For this value of inlet concentration, the Debye length is 3.042 nm. When the
nanopore radius is smaller than the Debye length, electric double layers from the opposite
walls overlap, so the radial variations of potential, ion concentrations, and pressure are not
large. In this case, the results from one—dimensional model agree well with those from two—
dimensional one. However, the latter model provides overestimated values of the considered
characteristics. The overestimation of rejection and membrane potential becomes significant
with increasing the nanopore radius. The differences in pressure drop are rather small since it is
mainly determined by the the specified volume flux. The increase of Jy results in larger values
of pressure drop, membrane potential, and rejection. The latter approaches some limiting value
for high volume flux and small nanopore radius. The obtained results on rejection show similar
trends in comparison with the results reported earlier in [21], where the TMS and Space—charge
models were compared.

The impact of inlet concentration CF on rejection, pressure drop, and membrane potential
for the nanopore of radius R, = 2 nm and volume flux Jyy = 100 pm/s is presented in Fig.
13 for different surface charge densities o,. Larger values of o, correspond to higher rejection,
membrane potential, and pressure drop. The difference between results from one— and two—
dimensional models becomes more pronounced. The former model provides overestimated
values of the considered quantities. The increase of inlet concentration C'* leads to the decrease
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of Debye length (see formulas (22)). When the Debye length is smaller than the channel radius,
the electric double layers from the opposite walls do not overlap, and nanopore selectivity
reduces. It results in the lower rejection and membrane potential.

Figure 13 (b) shows that the pressure drop reaches the maximum value at some particular
inlet concentration. Since the volume flux Jy is constant, the hydrodynamic contribution to
the pressure drop is fixed. The variation of AP with C* can be explained by considering the
osmotic pressure jumps at the nanopore entrance and exit, which are given by (12) and (13).
When the surface charge density o, or equivalent volume charge density X is negative and
large, we have C_ ~ 0 inside the nanopore. Then it follows from (3) that Cy ~ —X so the
total contribution of osmotic pressure jumps can be represented as

~APY — APR ~ 2RT(C* — C®) = 2RTC'R > 0,

where R is the rejection defined by (16). When C* — 0, we have R — 1, so 2RTC'R — 0.
From the other hand, when C* becomes very large, the rejection R — 0 since CF¥ — CF. It
follows that 2RT(CL — C®) — 0. Thus, the contribution of osmotic pressure jumps should
reach maximum at some value of inlet concentration.

For large inlet concentrations, the curves of two—dimensional model in Fig. 13 are not
calculated since the values of C'; near the nanopore wall become non—physical. The maximum
ion concentration can be estimated from the expression for volume fraction of ions v = a>N,C,
where a is the diameter of solvated ion, N4 is the Avogadro number, and C' is the concentration
of positive or negative ions in mol/m? [35]. If we put v = 1, then Cpax = (a3N4)™!. For K*
ions, a = 0.66 nm, so C,., = 5778 mol/m?3. In particular, the value of C'y near the pore wall
in the case of o, = —2.765 - 1072 C/m?, C* = 25 mol/m? is already very close to the above
value of C),q.. To prevent the non—physical rise of concentration at large potentials / charge
densities, the finite ion size effects should be taken into account [35]. Note that this problem
does not arise in one-dimensional model, where radial variations of all quantities are neglected.

5 Conclusion

In this paper, the pressure—driven ion transport through nanofiltration membrane pores
with specified surface potential or charge density has been investigated theoretically. Two ap-
proaches are employed in the study. The first one is based on one—dimensional Nernst—Planck
equation coupled with electroneutrality, zero current, and Donnan equilibrium conditions. This
model is extended to account for interfacial effects by using a smooth approximation of step
function for the volume charge density. A simplified model for the case of specified surface
potential is also proposed. The second approach is based on two-dimensional Nernst—Planck,
Poisson, and Navier—Stokes equations, which are solved in a high aspect ratio nanopore con-
necting two reservoirs with a larger diameter. The modification of equations on the basis of
Slotboom transformation is employed to speed up the convergence rate.

The distributions of potential, pressure, ion concentrations and fluxes due to convection,
diffusion, and migration in the nanopore and reservoirs are discussed and analyzed. It is found
that for constant surface charge density, the convective flux of counter—ions in the nanopore
is almost completely balanced by the opposite migration flux, while for the constant surface
potential, the convective flux is balanced by the opposite diffusion and migration fluxes. The
co—ions in the nanopore are mainly transported by diffusion. In the interfacial regions near
nanopore entrance and exit, the fluxes due to migration and diffusion are several orders of
magnitude higher in comparison with those inside the nanopore. These fluxes almost completely
balance each other. In the inlet reservoir, the ions are transported by convection and partially
rejected by diffusion in the opposite direction. We have shown that the axial potential gradient

22



induces electric force, which is directed to the nanopore entrance and acts on the non—zero net
charge near the nanopore walls. As a result, the axial velocity is slightly decreased near the
walls and increased near the center of the nanopore to keep volume flux constant.

We have found that the rejection, pressure drop, and membrane potential increase with in-
creasing surface potential / charge density and volume flux, while they decrease with increasing
the pore radius and inlet concentration. An exception from the latter rule is the pressure drop,
which reaches maximum at some value of inlet concentration when other parameters are fixed.
This effect is related to the contribution of osmotic pressure jumps at the nanopore entrance
and exit. Detailed comparison between one— and two—dimensional models has been performed.
It is found that they provide qualitative and quantitative agreement when the surface potential
or charge density are sufficiently low. In this case, the interfacial effects can be correctly de-
scribed by one-dimensional model by using a smooth approximation of step function for volume
charge density. For large values of surface potential / charge density, one-dimensional model
provides overestimated values of rejection, pressure drop, and membrane potential.

Acknowledgement

This work is supported the Russian Science Foundation, Project 15-19-10017.

References

[1] H. Strathmann. Introduction to membrane sceince. Wiley—VCH, 2011.
[2] R.W. Baker. Membrane technology and applications. John Wiley & Sons, 2004.

[3] P. Eriksson. Nanofiltration extends the range of membrane filtration. Enviroment. Progr.

7 (1988) 58-62.

[4] V.V. Volkov, B.V. Mchedlishvili, V.I. Roldugin, S.S. Ivanchev, A.B. Yaroslavtsev. Mem-
branes and nanotechnologies. Nanotechnologies in Russia, 3 (2008) 656-687.

[5] M. Nishizawa, V.P. Menon, C.R. Martin. Metal nanotubule membranes with electrochem-
ically switchable ion—transport selectivity. Science, 268 (1995).

[6] M.S. Kang, C.R. Martin. Investigations of potential-dependent fluxes of ionic permeates
in gold nanotubule membranes prepared via the template method. Langmuir, 17 (2001)
2753-2759.

[7] G. Pourcelly, V.V. Nikonenko, N.D. Pismenskaya, A.B. Yaroslavtsev. Applications of
charged membranes in separation, fluid cells, and emerging process. Chapter 20 in 'Tonic
interactions in natural and synthetic macromolecules’, John Wiley & Sons, 2012.

[8] X.L. Wang, Y.Y. Fang, C.H. Tu, B. Van der Bruggen. Modelling of the separation perfor-
mance and electrokinetic properties of nanofiltration membranes. Int. Rev. Phys. Chem.
31 (2012) 111-130.

[9] V.V. Nikonenko, A.B. Yaroslavtsev, G. Pourcelly. Ton transfer in and through charged
membranes: structure, properties, and theory. Chapter 9 in ’lonic interactions in natural
and synthetic macromolecules’, John Wiley & Sons, 2012.

[10] T. Tsuru, S. Nakao, S. Kimura. Calculation of ion rejection by extended Nernst—Planck
equation with charged reverse osmosis membranes for single and mixed electrolyte solu-
tions. J. Chem. Eng. Jpn. 24 (1991) 511-517.

23



[11] T. Tsuru, M. Uralri, S. Nakao, S. Kimara. Reverse osmosis of single and mixed electrolytes
with charged membranes. Experiment and analysis, J. Chem. Eng. Jpn., 24 ( 1991 ) 518.

[12] W.M. Deen, B. Satvat, J.M. Jamieson. Theoretical model for glomerular filtration of
charged solutes. Amer. J. Physiology. 238 (1980) 126-139.

[13] W.R. Bowen, H. Mukhtar. Characterisation and prediction of separation performance of
nanofiltration membranes. J. Membr. Sci. 112 (1996) 263-274.

[14] J. Schaep, C. Vandecasteele, A.W. Mohammad, W.R. Bowen. Analysis of the salt retention
of nanofiltration membranes using the Donnan—Steric partitioning pore model. Sep. Sci.
Tech. 35 (1999) 3009-3030.

[15] C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti. Analysis of the salt
retention of a titania membrane using the 'DSPM’ model: effect of pH, salt concentration
and nature. J. Membr. Sci. 208 (2002) 315-329.

[16] S. Bhattacharjee, J.C. Chen, M. Elimelech. Coupled model of concentration polarization
and pore transport in crossflow nanofiltration. AIChE J. 47 (2001) 2733-2745.

[17] A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J. Pagetti. Contribution of con-
vection, diffusion and migration to electrolyte transport through nanofiltration membranes.
Adv. Colloid Interface Sci. 103 (2003) 77-94.

[18] A. Szymeczyk, H. Zhu, B. Balannec. Pressure—driven ionic transport through nanochannels
with inhomogenous charge distributions. Langmuir 26 (2010) 1214-1220.

[19] A. Szymczyk, H. Zhu, B. Balannec. lon rejection properties of nanopores with bipolar fixed
charge distributions. J. Chem. Phys. 114 (2010) 10143-10150.

[20] R.J. Gross, J.F. Osterle. Membrane transport characteristics of ultrafine capillaries. J.
Chem. Phys. 49 (1968) 228-234.

[21] X.L. Wang, T. Tsuru, S.I. Nakao, S. Kimura. Electrolyte transport through nanofiltration
membranes by the space—charge model and the comparison with Teorell-Meyer—Sievers
model. J. Membr. Sci. 103 (1995) 117-133.

[22] W.J. Shang, X.L.. Wang, Y.X. Yu. Theoretical calculation on the membrane potential of
charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions. J. Membr. Sci.
285 (2006) 362-375.

23] G. Jacazio, R.F. Probstein, A.A. Sonin, D. Yung. Electrokinetic salt rejection in hyper-
filtration through porous materials. Theory and experiment. J. Phys. Chem. 76 (1972)
4015-4023.

[24] R. Chein, H. Chen, C. Liao. Investigation of ion concentration and electric potential dis-
tributions in charged membrane/electrolyte systems. J. Membr. Sci. 342 (2009) 121-130.

[25] V. Garcia-Morales, J. Cervera, J.A. Manzanares. Pore entrance effects on the electrical
potential distribution in charged porous membranes and ion channels. J. Electroanalyt.

Chem. 599 (2007) 203-208.

[26] Y. Wang, K. Pant, Z. Chen, G. Wang, W.F. Diffey, P. Ashley, S. Sundaram. Numerical
analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in
hydrodynamic flow. Microfluid Nanofluid 7 (2009) 683-696.

24



[27] M.R. Davidson, D.J.E. Harvie. Electroviscous effects in low Reynolds number liquid flow
through a slit-like microfluidic contraction. Chem. Eng. Sci. 62 (2007) 4229-4240.

[28] R.P. Bharti, D.J.E. Harvie, M.R. Davidson. Steady flow of ionic liquid through a cylindrical
microfluidic contraction—expansion pipe: Electroviscous effects and pressure drop. Chem.
Eng. Sci. 63 (2008) 3593-3604.

[29] B. Lu, M.J. Holst, J.A. McCammon, Y.C. Zhou. Poisson—-Nernst—Planck equations for
simulating biomolecular diffusion-reaction processes I: Finite element solutions. J. Comp.
Phys. 229 (2010) 6979-6994.

[30] J.F. Pietschmann, M.T. Wolfram, M. Burger, C. Trautmann, G. Nguyen, M. Pevarnik, V.
Bayere, Z. Siwy. Rectification properties of conically shaped nanopores: consequences of
miniaturization. PCCP 15 (2013) 16917.

[31] D. Menga, B. Zhenga, G. Lin, M.L. Sushko. Numerical solution of 3D Poisson—Nernst—
Planck equations coupled with classical density functional theory for modeling ion and
electron transport in a confined environment. Comm. Comput. Phys. 16 (2014) 1298-1322.

[32] T.J. Chung. Computational fluid dynamics. Cambridge University Press, 2010.

[33] R.F. Hanby, D.J. Silvester, J.W. Chew. A comparison of coupled and segregated solution
techniques for incompressible swirling flow. Int. J. Numer. Methods in Fluids 22 (1996)
353-373.

[34] J.P. Vandoormaal, G.D. Raithby. Enhancements of the SIMPLE method for predicting
incompressible fluid flows. Numer. Heat Transfer 7 (1984) 147-163.

[35] M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari. Towards an understanding of induced-
charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid
Interface Sci. 152 (2009) 48-88.

25



