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Abstract: The method of obtaining the private analytical solution of system of the non-
linear differential equations in private derivatives for calculation the stress state thin-walled
beams with rectangular cross section is offered. With use of the semi-return method of Saint-
Venant the analytical solution which will be agreed with known to the expressions received
on dependences of the theory of plates and shells is constructed.

The comparative analysis of results received by finite elements method in Ansys and the

offered method showed good convergence, allowed to reveal features of a stress state of beams

at pure bend, and also to specify scopes of various types of finite elements.
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1. Introduction

Thin-walled beams with not axisymmetric cross section, and also the compound
farm designs based on them, have wide circulation in the most various branches:
general and space mechanical engineering, aircraft industry, construction, etc.
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The existing calculation methods based on hypotheses of the theory of
beams [1] and [2] allow to estimate work of all design in general, but at the
same time there is no opportunity to consider the stress-deformed state in local
areas of thin-walled cross section of a beam in which there is shear stresses caus-
ing a deplanation of cross section. Deplanation of cross section depends also on
other factors: lengths of a thin-walled beam, thickness of his wall, conditions
of loading, fixing, etc.

Use of the simplified models [1] and [2] in the form of the one-dimensional
beams having equivalent geometrical and inertial characteristics leads to their
very rough model which doesn’t allow to create products with the minimum
mass-dimensional parameters and the best functional and operational charac-
teristics.

The simplest solution of the accounting of thin-walled cross section is use
when calculating such designs of the theory of beams with addition of empir-
ical correction coefficients [3]. However, the results received at the same time
strongly depend on the choice of values of these correction coefficients which in
reference books are given depending on a combination of certain sizes of cross
section of a beam. The choice of intermediate values will be uncertain as at
these intervals there is a strong nonlinearity.

The calculation methods created on the basis of fundamental works of V.
Z. Vlasov [4], A.R. Rzhanitsyna [5], D. V. Bychkov [6], are development of
the theory of beams for a case of thin-walled with axisymmetric cross section.
The main achievement of these works is assessment and the accounting of a
deplanation of thin-walled cross section in case of action of big shear stress at
the constrained torsion or joint action of a bend and torsion. Shortcomings of
such approach follow from the initial one-dimensional settlement scheme of a
design (beam) chosen by authors [4], [5] and [6] therefore the stress-deformed
state of a thin-walled beam in general is estimated, without an opportunity to
define his local state.

Operating conditions of precision rod designs, such as the wave guides of the
antenna-feeder system representing thin-walled beams with rectangular cross
section demand calculation methods, the stress-deformed state allowing to de-
fine with high precision in general and in any local area.

It is possible to fulfill the requirements stated above, having only passed
when modeling thin-walled beams from their one-dimensional models (beams,
beams) to two-dimensional settlement schemes (plates, shells) with the corre-
sponding dependences of the theory of plates and shells [7] and [8].

Calculation of a thin-walled beam with not axisymmetric cross section with
use of the theory of shells is complicated by existence of folds (a plate at right
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angle), the functions of radius of curvature of a shell leading to a gap to which
conditions on smoothness and a continuity are shown [7]. As a result, it is
difficult to describe the stress-deformed state of a thin-walled beam in general
by means of one system of the differential equations of the theory of shells.
Division of geometry of an initial design into separate elements in the form of
plates and shells can be an exit from this situation. However, the known works
in this area, for example [9], consider only axisymmetric compound designs for
which calculation authors use numerical solutions on the computer.

It is offered to represent also geometry of thin-walled beams with not ax-
isymmetric section system from separate elements (plates, shells) connected
among themselves, for each of which the subsystem of the differential equations
is under construction. In the case under consideration the thin-walled beam
with rectangular cross section is modeled by system from four plates connected
at right angle (Fig.1).

Figure 1: Shell model of thin-walled beam with rectangular cross section

For each of plates the subsystem of the partial differential equations in
nonlinear statement [8, 10] which set for a thin-walled beam, generally the
accounting of dynamic and temperature influences, will have an appearance is
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used:
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where i = 1, 2, 3, 4 – numbers of plates;
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ωi = ωi(αi, βi) – function of deflections for the ith plate;

φi = φi(αi, βi) – stress function for the ith plate;

qαi, qβi, qZi – components of surface loading for the ith plate;

E – Young’s modulus; α – thermal expansion coefficient; τ – time;
t – thickness of plates; ρ – density;

T0i(αi, βi) – initial temperature field for the i-th plate;

Ti(αi, βi) – temperature field for the ith plate when heating.

Boundary conditions on lateral faces of plates will be defined by required
unknown functions φi(α, β) and ωi(α, β) in forms:
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where Di – cylindrical rigidity of the i-th plate.

bi, bi+1 – breadth of the i-th and (i+ 1)-th plate, respectively.

Boundary conditions at end faces of each plate determine conditions of
loading and fixing of a thin-walled beam in general by his edges.
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The system of the nonlinear partial differential equations (1.1), together
with boundary conditions (1.2), represents the general problem definition that
allows at its solution to use wide variability of various approaches and techniques
in relation to requirements of specifically solved task, both in relation to spatial
thin-walled designs with not axisymmetric cross section and the corresponding
operational conditions.

The offered approach can be used for modeling of thin-walled cores of any
not axisymmetric section: two-Tauri, channel, Z-profile, etc.

However, now there is no common analytical solution even for one subsystem
of a separate plate in system (1.1) on what pointed still to S. P. Tymoshenko
[8] and the more so for four such subsystems which joint solution describes the
stress state of a thin-walled beam with rectangular cross section. Thus, methods
of modeling and creation of the analytical solution of thin-walled cores with not
axisymmetric form of cross section on the basis of the theory of shells and plates
are insufficiently developed now.

2. Problem Definition of a Pure Bend

We will consider a simple case of a stress state of a straight part of a beam:
pure bend concerning an axis Z in global system of coordinates under the
influence of the bending moment (fig. 2, a) in the plane of the minimum
rigidity. At isothermal process of loading of a straight part of a beam in the
first equation of system (1.1), the temperature component will be equal to
zero: Eα · ∇

2(Ti(αi, βi) − T0i(αi, βi)) = 0 , and surface load is also equal to
zero: qαi = qβi = qZi = 0.

However, obtaining the analytical solution of system (1.1) is still compli-
cated by coherence of the differential equations among themselves and non-
linearity of system. For the purpose of simplification of the solution, we will
consider deformation of cross section of a core at a bend. If the straight part of
a beam is affected by the bending MZ moment, cross section will be deformed
changing the sizes and consistently taking the forms 1-4 (fig. 2, b). Thus forms
3, 4 will already correspond to loss of stability of all separate plates making
geometry of cross section [11].

In relation to the considered case it means that at action of the bending
moment and an assumption about a trifle of deformations, each of plates 1-4
will be bent only in one of the planes of the local system of coordinates, being
left in other coordinate planes without change of a form that will be expressed
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as a condition:
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=
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= 0. (2.1)

Substitution of a condition (2.1) in system (1.1) leads to simplification and
linearization of her equations and boundary conditions which will take a form:
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From the geometrical point of view, the condition (2.1) is equivalent only
to one requirement – the straight lines forming a form of cross section of a
thin-walled beam under loading have to remain straight lines that considerably
generalizes the offered assumption.

3. Method of Obtaining the Analytical Solution

Functions also define the stress-deformed state of each i-th of a plate separately.
Combination of these solutions, according to the principle of superposition, for
each separate plate will allow to define finally the stress-deformed state of a
thin-walled beam in general. The analytical solution for functions and for a
case of a pure bend (Fig. 2, a) we will get taking into account features a job of
each i-y of a plate in its structure:

– side plates 2 and 4 test a pure bend in the plane;
– plates 1 and 3 are exposed to stretching and compression respectively in

combination with a bend on the curve formed by the deformed edges of plates
2 and 4.
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a) b)
Figure 2: Analytical solution for functions and for a case of a pure bend

Let’s use the semi-return method of Saint-Venant [12, 13, 14, 15] with direct
determination of stress (function of Airy) and movements (deflections) for each
plate which will allow to receive for them private solutions which combination
will be the analytical solution of the considered task in general.

3.1. Functions of Stresses

According to the semi-return method of Saint-Venant, we will receive expression
for functions of Erie on the basis of the known approximate approach as which
we will make the solution according to the theory of beams [1]. Then the
diagramm of distribution of normal stress in plates of a thin-walled beam at a
bend will be defined according to Navier [1] formula (Fig. 3).

Figure 3: The general stress state of the beam at a bend

Expressions for functions of Erie it agrees [7, 8], will take a form:
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(3.1)

where: JZi,j – the axial moment of the cross section (fig. 3).
Analyzing dependences (3.1) it is visible that they determine only a constant

component of stress in plates 1 and 3 by their thickness, corresponding to
stresses in their median surfaces. Therefore, the received solution (3.1) for
plates 1 and 3 needs to be added with the expressions considering flexural
stress from their non-central stretching compression.

The deflection of plates 1 and 3 will be defined generally by deformations
of their lateral faces [16] on which there are power and kinematic interactions
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of the plates interfaced to them 2 and 4. For this purpose in system (2.2) it is
necessary to receive functions of deflections of plates.

3.2. Functions of Deflections

According to the accepted assumption (2.1), plates 2 and 4 will be bent everyone
in the plane, therefore, their deflections from the plane are equal to zero:

ω2(α2, β2) = ω4(α4, β4) = 0. (3.2)

The deformed condition of plates 1 and 3, we will define on the basis of the
semi-return method of Saint-Venant with direct definition of movements. For
this purpose from the main dependences of the theory of elasticity [15] we will
receive expressions for functions of movement of lateral faces of plates 2 and 4
by which deflections of borders of plates 1 and 3 in places of their connection
will be defined (Fig. 4).

ω1 = ν2 =
MZ

2 ·EJZ
[α2

2+µ·(β2
2−z22)], ω3 = ν4 =

MZ

2 ·EJZ
[α2

4+µ·(β2
4−z24)]. (3.3)

a) deformation of a plate in the plane b) deformation of cross section
Figure 4: The deformed state of a plate 2

Let’s substitute β2 = −
h′

2 and z2 = 0 in (3.3) coordinates and for lateral
face of a plate 2 (figs. 4), then tangential movements of a side side of a plate 2
will define required function of deflections ω1(α, β) of the plate attached to her
1:
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3.3. The Full Analytical Solution at a Pure Bend

Using the offered approach, we will receive the dependences similar (3.4), in
connections between other plates of a thin-walled beam. Then after association
of expressions for functions φi(αi, βi) and ωi(αi, βi) we will also receive the full
analytical solution of system (2.2) at a pure bend of a thin-walled beam
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(3.5)

Using expressions (3.5), it is possible to determine stress and deformations
in any point i-x plates (i = 1, 2, 3, 4) making a thin-walled beam at his pure
bend.

4. Stress at a Pure Bend

The normal stress operating in i-y to a plate will be determined by dependences
[15]:
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σzi = 0.

According to dependences (4.1, 4.2), the largest normal stress will arise in
the longitudinal directions αi (i = 1, 2, 3, 4) of all plates of a thin-walled beam.

4.1. Maximum Normal Stress

According to the received private analytical solution (3.5) and dependence (4.1),
diagram of the specified distribution of normal stresses σαi for a thin-walled
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beam are constructed (figs. 5), which maximum values are equal:
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2
. (4.4)

a) refined stress state b) stress state in a junction of plates 1 and 2
Figure 5: General and local refined stress state of straight part of beam at a

bend

Shows comparison of expression for the maximum stress σ1max (4.3) and
Navier [1] formula that they differ only in a “flexural” component of stress and
under a condition

(1− µ2) ≈ 1, (4.5)

that is without squeezing of fibers in plates 1,3 coincide:

σ1max = −σ3max =
MZ

JZ
·

(

h′

2
+

t

2

)

=
MZ

JZ
·
H

2
. (4.6)

Not the accounting of squeezing of longitudinal fibers is among themselves used
as one of fundamental hypotheses of the theory of beams at their bend [1] and
doesn’t lead to big errors in calculations at the small sizes of elements in the
cross directions. For thin-walled elements of a thin-walled beam which are bent
from the plane (a plate 1,3 on figs. 2), the specified hypothesis is unacceptable.

4.2. Maximum Shear Stress

Analysis shear normal stress (figs. 5) for plates 1 and 2 in places of their
connection on lateral faces shows existence in values of stress of sharp jumps
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which cause emergence of shear stress. The similar situation will arise also in
junctions of lateral faces of other plates 2-3, 3-4 and 4-1.

Values of shear stress change under the linear law (figs. 5), reaching the
maximum values on external and internal surfaces of a plate 1 will also be equal:

τmax = σ1max − σ2max =
MZ
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2
+

t

2
·

1
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−
MZ

JZ
·
H

2
=

=
t

2
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Emergence of shear stress at a bend of the thin-walled beam having rect-
angular cross section, obviously is caused by geometrical heterogeneity of his
form. Shear stress works only in junctions of plates 1-2, 2-3, 3-4, 4-1 and has lo-
cal self-balanced character, without influencing the general the stress-deformed
state.

However, in certain cases, shear stress can have significant effect on op-
erability of designs. For example, at connection of thin-walled plates among
themselves welded or solder connections which are loaded with dynamic and
temperature cyclic loadings.

5. Results of Comparative Calculations and their Analysis

For verification of the developed technique comparative calculations for Navier’s
formula and are carried out to Ansys for thin-walled beams with different sizes
of their cross sections: 5.5× 11× 1.2; 10× 61× 2; 6.5× 13× 1.2; 8× 16× 1.2;
9.5 × 19 × 1.2; 12.6 × 28.5 × 1.2; 15 × 35 × 1.2; 25 × 58 × 2; 50 × 116 × 2 and
100 × 232 × 2.

For receiving the most uniform field of stress for each standard size of cross
section the required length of a thin-walled beam, his way of fixing and loading
were defined.

Calculated by the offered technique of value of the maximum normal (4.3)
and tangent (4.7) stress were compared to results of the calculations received
on Navier (3.11) formula and method of finite elements in Ansys for various
types of the finite elements (FE) with linear and square functions of a form:

1) frame FE: Beam4, Beam188, Beam189;
1) shell FE: linear Shell181 and square Shell281;
2) solid-state FKE: linear Solid185 and square Solid98.
The number of finite elements was defined by a condition of achievement of

the greatest possible uniform field of stress and has made: for rod model about
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one thousand KE, for shell model 7-9 thousand FE and for solid-state model
of 40-60 thousand KE.

5.1. Normal Stress

Results of calculation of the maximum flexural normal stress in plates of the
beams by all compared techniques are shown on fig.6 in relative values. At
assessment of relative value of result (in %) as basic value of the maximum stress
the size calculated according to the technique offered by us and dependence (4.3)
is accepted.

Figure 6: Comparison of relative values (%) maximum normal stresses

Thus, schedules on fig.6 show a deviation of values of the maximum normal
stress by the considered and analyzed calculation procedures (in %) concerning
the results received by the offered technique (4.3) for the considered standard
sizes (No. 1-10) of cross section of beams.

The executed calculations have shown that the analytical solution (4.3)
differs from results, the received other methods, for 0.1-3.1%.

5.2. Shear Stress

Values of the maximum shear stress calculated by a formula (4.7) for the consid-
ered sizes of sections of beams make only 0.18-1.5% of the level of the maximum
normal stress (4.3). At increase of the characteristic relation (4.2) the level of
the maximum shear stress decreases (Fig. 7).
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Figure 7: Relative values of the maximum shear stresses

Other considered methods of calculations (Navier’s formula and FEM for
various types of finite elements) haven’t recorded emergence of shear stress in
junctions of plates.

5.3. Features of the FEM-Solution

The analysis of the results shown on figs. 6, allows to estimate features of
numerical solutions:

1) Results of calculations of flexural normal stress for all FE Beam4, Beam188
and Beam189 frame types (a curve 3) are completely identical each other, and
are comparable to calculations for Navier’s formula (a curve 2) as frame finite
elements when determining flexural normal stress use Navier’s formula [17] and
[18].

2) Results of calculations with solid-state Solid185 and Solid98 FE (curves
6,7) have almost completely coincided with the results of calculations received
on Navier’s formula as knots of solid-state FE have only forward degrees of
freedom don’t consider a movement trajectory, and in the received analytical
solution the amendment goes at the expense of the accounting of curvature of
plates.

3) When using the shell of FE of the Shell181 types (a curve 4) and Shell182
(a curve 5) settlement dependences are based on hypotheses of the theory of
plates and shells [7, 17, 18]. It allows to consider change curvature thin-walled
elements (plates) that causes the essential growth of the maximum normal stress
in comparison with calculations on Navier’s formula and FEM with solid-state
finite elements.

Results of calculations of the maximum normal stress in plates of a thin-
walled beam by the offered technique were closest to numerical results of FEM
at application the shell of FE and differ no more than for 0.5%.
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6. Conclusion

The way of modeling of the intense deformed condition of thin-walled beams of
rectangular cross section with use of the theory of plates and shells is offered.

The system of the differential equations in private derivatives for the general
case of loading of a thin-walled beam of rectangular cross section in nonlinear
statement is received and complexity of her solution is shown.

With use of the semi-return method of Saint-Venant the private analytical
solution of system of the differential equations for a case of a pure bend of a
thin-walled beam in linear statement is received.

The solution of a task in idle time analytical to a form which has allowed to
specify expression for Navier’s formula when determining the maximum values
of normal stress is received, and also to reveal local scopes of the shear stress at
a pure bend caused by heterogeneity of a form of cross section of a thin-walled
beam and to estimate their values.

The comparative analysis of results of calculations in relation to beams
received by a numerical method of finite elements and the offered technique,
has shown their good convergence, distinction has made 0.1-3.1%, and has
allowed to reveal features of application of various types of finite elements.

The offered approach and technique of obtaining the analytical solution can
be used for the analysis of the stress-deformed state of thin-walled beams of any
other form of thin-walled not axisymmetric cross section: two-Tauri, channel,
Z-profile, etc.
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