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Abstract 

Biomedical applications of magnetic nanoparticles in a magnetic field have exceeded 

many expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug 

nanocarriers, and contrast agents; various strategies have been suggested to selectively target 

tumor cancer cells but not healthy cells. Our study presents magnetodynamic nanotherapy 

utilizing DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a 

low frequency alternating magnetic field for precise elimination of tumor cells in vivo. The cell 

specific DNA aptamer AS-14 binds to fibronectin protein in Ehrlich carcinoma and delivers 

gold-coated magnetic nanoparticles to a mouse tumor. An alternating magnetic field of 50 Hz 

causesthe nanoparticles to oscillate and pull fibronectin and integrins on the surface of the cell 

membrane resulting in massive cell apoptosis followed by necrosis without heating the tumor, 

adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency 

alternating magnetic field demonstrates a unique technology of a non-invasive nanoscalpel for 

precise cancer surgery at a single cell level. 
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Introduction 

Medical nanotechnologies are becoming promising for cancer treatment. A variety of 

nanomaterials and nanoparticles (NPs) have been synthesized for diagnostic and therapeutic 

applications [1, 2]. At the nanometer scale, materials exhibit novel optical, magnetic, electronic, 

and structural properties [1, 3], which make nano-sized particles promising in molecular 

diagnostics and anti-cancer therapy [4]. Magnetic nanoparticles (MNPs) can be used as effective 

heat mediators, drug carriers, and contrast agents [4, 5]. The main problem is that nanoparticles 

accumulate in healthy tissues causing harmful effects [6, 7]. Targeted delivery requires 

functionalization of nanoparticles with molecular probes such as antibodies or aptamers that bind 

specifically to unique or overexpressed biomolecules on cancer cells [7, 8]. Aptamers are short 

synthetic single-stranded DNA or RNA that specifically bind to various targets, such as 

inorganic ions, small organic molecules, peptides and proteins, whole cells and tissues with high 

affinity and selectivity [4, 5, 9]. Low immunogenicity, toxicity and cost make aptamers attractive 

for therapeutic applications [4]. 

Aptamer-functionalized nanoparticles have been utilized for cancer therapy including 

photodynamic therapy (PDT) [10] and photothermal therapy (PTT) [11, 12]. PDT is minimally 

invasive and minimally toxic. It destroys cells by reactive oxygen species generated with light 

and a photosensitizer. Conjugation of aptamers with nanoparticles improves accumulation of 

particles in tumor tissue and selective photo-induced damage during PDT. Similar to PDT, PTT 

is a fairly non-invasive cancer treatment. PTT is based on the ability of gold nanoparticles to 

absorb light and convert it into heat that promotes destruction of abnormal cells. The 

effectiveness of this method has been successfully demonstrated on mouse tumor remission [13]. 

Huang YF et al. demonstrated the use of aptamers conjugated to nanorods for targeted PTT of 

human leukemia [14]. 

Advantages of PDT and PTT include the less invasive nature of light-based therapies 

when compared to surgery and the ability to deliver irradiation with great accuracy as well as 

multiple times over at the same site. However, disadvantages of PDT and PTT include limited 

accessibility as they can only treat areas that can be reached by light (on or under the skin, or in 

the lining of organs that can be reached with a light source). Therefore, light-based therapies 

cannot be used to treat cancers that have grown deeply into the skin or other organs, or that have 

metastasized. 



 

 

In this study, we demonstrate the utility of alternative magnetodynamic therapy to 

eradicate a tumor in mice (Figure 1). We applied aptamer-modified gold-coated magnetic 

nanoparticles (AGMNPs) to target a tumor in vitro and in vivo. For the selective targeting, we 

used aptamer AS-14 to mouse Ehrlich carcinoma fibronectin (Fn) described in our previous 

study [15]. Fn is a large adhesive glycoprotein protein, an essential component of the 

extracellular matrix, which assembles into fibrils, attaching cells to the collagen fibers. It has 

been shown that along with extracellular Fn, Ehrlich ascites cells synthesize and release large 

amounts of Fn into the culture medium in vitro, and into ascitic fluid and plasma in vivo [16]. Fn 

plays a major role in cell growth, differentiation, migration, wound healing, blood coagulation, 

embryonic development, and also in oncogenic transformation [17-19]. Fn shows higher 

expression and different distribution in breast carcinomas than in normal breast parenchyma. Its 

expression in cancer cell cytoplasm is associated with distant metastasis development and 

survival rate both in humans and mice [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the modification of gold-coated magnetic nanoparticles 

(GMNPs) with a thiolated oligonucleotide primer followed by hybridization with a cancer cell 

specific aptamer (A). Schematic representation of tumor magnetodynamic nanotherapy in a low 

frequency alternating magnetic field (B). 

 



 

 

Aptamer AS-14 delivers GMNPs to Ehrlich carcinoma tumor and links the particles with 

fibronectin molecules. Fns bind to the cell surface via integrins - large trans membrane adhesion 

proteins that provide the physical link between the extracellular matrix and the contractile 

cytoskeleton [20]. Integrins and conventional signalling receptors often cooperate to promote 

cell growth, cell survival, and cell proliferation [21]. Integrin activation has a structural origin 

[22, 23], once a ligand binds to it, its head opens the hinge between the β-subunit and hybrid 

headpiece domain and a mechanical force greatly accelerates the hinge opening [24-26]. 

Recently reported experimental data and molecular design simulations demonstrate the dynamics 

of integrin activation due to ligand binding and a mechanical force pulling integrin to 6 nm for 6 

ns[24]. Integrin-mediated apoptosis could be induced by its activation followed by direct 

recruitment and activation of caspase-8 [21, 27-32]. The low frequency alternating magnetic 

field (LFAMF) causes oscillations of GMNPs and the complex of the aptamers with fibronectin. 

Therefore, activity of NPs was modulated by LFAMF. The advantages of the proposed 

technology are the deep penetration of a magnetic field, high cytotoxic activity toward cancer 

cells and low toxicity on adjacent cells and healthy tissues. 

 

Materials and Methods  

Ethics Statement 

This study was carried out in strict accordance with the recommendations in the Guide 

for the Care and Use of Laboratory Animals of the National Institute of Health. The protocol was 

approved by the Local Committee on the Ethics of Animal Experiments of the Krasnoyarsk State 

Medical University. All procedures were performed under anesthesia and all efforts were made 

to minimize suffering of the animals.  

Mouse Tumor Model 

White 6-week-old 25 g Imprinting Control Region (ICR) mice were provided by Siberian 

Federal University. Two million Ehrlich ascites carcinoma cells were transplanted into the right 

leg of each mouse. On days 5, 7 and 9 after the tumor transplantation, all animals were treated 

using aptamer AS-14 functionalized gold-coated magnetic nanoparticles in low frequency 

alternating magnetic field. For the in vitro studies Ehrlich ascites carcinoma cell cultures were 

utilized. Mouse ascites cells were cultured in 35×10 mm cell culture dishes (CELLSTAR
®
, 

Germany) in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich), supplemented 

with 100 UmL
-1

 penicillin, 100 UmL
-1

 streptomycin, and 5% (v/v) fetal bovine serum (FBS) in a 

humidified atmosphere containing 5% CO2 at 37°C. All cell experiments were performed in 

DPBS containing 0.9 mM CaCl2 and 0.49 mM MgCl2. 

Low frequency magnetic field induction  



 

 

The magnetic coil was specially designed for the magnetodynamic experiments: the 

copper wire (0.53 mm in diameter) was wound on a cylinder with an inner diameter of 28 mm; 

the external diameter of the coil was 80 mm, and the resistance of the coil was 21.4 Ω. The coil 

creates a sinusoidal magnetic field of 100 Oe at a frequency of 50 Hz. The power dissipated in 

the coil was approximately 1.7 W, which did not heat the coil and sample of cells or the inside of 

the animal during the procedure. After each treatment, the coil was switched off for 10 minutes 

in order to avoid the possibility of heating.  

Functionalization of Gold-Coated Magnetic Nanoparticles with DNA Aptamers  

Gold-coated magnetic nanoparticles (GMNPs) were used with a diameter of 50nm, with a 

magnetic core of 8-12 nm and a golden shell of 30-40 nm (NITmagoldCit 50nm, 

Nanoimmunotech, Spain), (Supporting information, Figure S1). Nanoparticles stabilization was 

carried out with an HPLC purified oligonucleotide complimentary to the 5' of aptamer 5′-CGT 

GGTTACAGTCAGAGGAGAA-/5ThioMC6-D/-3′ modified at the 3′ position with a 6-

hydroxyhexyl disulfide group (Integrated DNA Technologies, USA), in the GMNPs storage 

buffer for 24 hours at 4°C in a shaker (final concentration of 500nM). This mixture was diluted 

twice by mixing it with 2×DPBS (with calcium and magnesium) and mixed 1:1 with an 

equimolar amount of AS-14 aptamer (5′-

TCCTCTGACTGTAACCACGAAGGTGTCGGCCTTAGTAAGGCTACAGCCAAGGGAAC

GTAGCATAGGTAGTCCAGAAGCC-3′), which was previously heated at 95°C for 10 minutes 

and cooled on ice for 10 minutes, then incubated for an additional 24 hours at 4°C while shaking 

(Figure 1A). 

Optimization of treatment conditions for magnetodynamic nanotherapy in vitro.  

One million ascites Ehrlich carcinoma cells in 1 mL of colorless high glucose DMEM 

medium were incubated with AS-14-GMNPs or non-functionalized GMNPs at 1:25, 1:50, 1:75 

or 1:100 ratios (final concentration 1 × 10
8
 particles per 1 mL) or only DPBS with calcium and 

magnesium for 5, 15 or 30 minutes at 37°C in a humidified atmosphere containing 5% CO2. All 

samples were prepared in triplicates. After incubation, the cells were washed twice with the same 

buffer and were kept in a magnet producing LFAMF for 1, 3, 5, 7 or 10 minutes. Cell viability 

was estimated 2 hours after the treatment (cells were captured at 37°C in a humidified 

atmosphere containing 5% CO2) using propidium iodide dye (PI) (for timing the treatment 

procedure). Binding of GMNPs and viability were measured using flow cytometry (FC-500, 

Beckman Coulter, USA). 

In Vitro Analyses of the Effects of AMNPs in a Low Frequency Alternating Magnetic Field 

Ehrlich carcinoma cells treated with AS-14-GMNPs or non-functionalized GMNPS at 

1:100 ratios (final concentration 1 × 10
8
 particles per 1 mL) or only DPBS 30 minutes at 37°C in 



 

 

a humidified atmosphere containing 5% CO2, washed and kept in a magnet producing LFAMF 

for 10 minutes. All samples were prepared in triplicates. 

Apoptosis induction has been evaluated by caspase cascade activation in tumor cells, 

after 3 hours of treatment (cells were captured at 37°C in a humidified atmosphere containing 5% 

CO2) using CellEvent™ Caspase-3/7 Detection Reagent (5µM in PBS with 5% FBS) (Thermo 

Fisher Scientific, USA) for 30 minutes at 37°C. The fluorescent signal from CellEvent Caspase-

3/7 Detection Reagent has been detected using flow cytometry (FC-500, Beckman Coulter, 

USA). Inhibition of caspase cascade activation has been performed by concurrent binding of 

antibodies to mouse fibronectin prior the treatment. The cells were incubated in DPBS / 10% 

serum to block non-specific protein-protein interactions followed by the antibody (Anti-

Fibronectin antibody [TV.1], Abcam, plc., USA,) at final concentration 0.7 µg/ml for 30 min at 

37°C. The secondary antibody Donkey anti-rabbit IgG H&L Alexa Fluor® 647, Abcam, plc., 

USA) was used at 1/2000 dilution for 30 min at 37°C. Control antibody (Anti-Actin antibody 

[ACTN05 (C4)], Abcam, plc., USA) was used under the same conditions. Binding has been 

measured using flow cytometry (FC-500, Beckman Coulter, USA). 

Apoptosis by Annexin V-Cy3 (Sigma Aldrich, USA), phosphatidylserine translocation, 

and 6-carboxyfluorescein diacetate (6-CFDA) (Sigma Aldrich, USA), which enters the cell and 

is hydrolyzed by esterases present in living cells to the fluorescent compound 6-

carboxyfluorescein, indicating that the cells are viable (for cell death mechanisms identification). 

The procedures were done in accordance with the manufacturer’s protocol and analysed using 

flow cytometry.  

Intracellular sodium content was estimated with SBFI probe (Thermo Fisher Scientific, 

USA) by flow cytometry (FC-500, Beckman Coulter, USA) according to manufacturer’s 

protocols.  

In Vivo Antitumor Activity of Aptamer Modified GMNPs in LFAMF 

Six-week-old 25g ICR male mice were used in this study. For two weeks before the 

experiments, animals were trained to stay calm inside the magnetic coil. Two million Ehrlich’s 

carcinoma cells were transplanted into the right leg of each mouse. Every second day, starting 

from day five after tumor transplantation until day nine, animals underwent10 minutes of 

magnetodynamic therapy in LFAMF with aptamer modified magnetic nanoparticles, free 

nanoparticles, free AS-14 or just DPBS (Figure 1B).  

The mice were randomly administered tail vein injections (on days 5, 7 and 9 after the tumor 

transplantation, 3 times total) by dividing the mice into four groups with 7 animals in each group 

as follows: 

Group 1: Injection of AS-14-GMNPs in 100 μL DPBS (1.6 μg kg
-1

); 



 

 

Group 2: Injection of free GMNPs in 100 μL DPBS (1.6 μg kg
-1

); 

Group 3: Injection of free AS-14 in 100 μL DPBS (0.4 mg kg
-1

); 

Group 4: Injection of 100 μL DPBS. 

After 30 minutes, animals were placed inside the magnet and were treated with a low frequency 

alternating magnetic field for 10 minutes.  

Caspase Activity in Tumor Tissues  

To evaluate apoptosis induction by caspase activity in tumor cells, after 3 hours of 

treatment a freshly harvested piece of a tumor was stained with CellEvent™ Caspase-3/7 (5µM 

in PBS with 5% FBS) (Thermo Fisher Scientific, USA) for 30 minutes at 37°C, washed with 

DPBS and fixed with 3.7% formalin. A series of 30μm tissue sections were prepared using 

cryostat HM 525 (Carl Zeiss, Germany) and fixed on glass slides and imaged with laser scanning 

microscope (Carl Zeiss LSM780, Germany). 

Histological Analysis 

To evaluate histological changes of the tumors after magnetodynamic therapy, 

microscopy of the tissue sections was performed (Axioskop 40, Carl Zeiss, Germany). Tumors 

were harvested and placed in 3.7% formalin. A series of 10 μm tissue sections were prepared 

using cryostat HM 525 (Carl Zeiss, Germany)andfixed on glass slides for hematoxylin and eosin 

staining.  

AS-14-GMNPs Distribution in Tumor after Injection in Tail Vein 

AS-14-GMNPs distribution in tumor and other organs after injection in the tail vein was 

analyzed using electron microscopy on 30μm tissue sections. On day 7 after the tumor 

transplantation, the mice were injected with GMNPs functionalized with FAM-labeled aptamer 

AS-14 in 100 μL DPBS (1.6 μg kg
-1

). After 1, 5 and 24 hours the animals was euthanized and the 

tumor, liver, kidney and urine were harvested, 30μm tissue sections were prepared using cryostat 

HM 525 (Carl Zeiss, Germany), fixed on glass slides and placed on silicon foil. An electron 

microscopy (Hitachi TM3000, Japan) was used to visualize and estimate percentage ratios of 

iron and gold. EM spectra were processed with the software Quantax 70 (Bruker) for Hitachi 

TM3000. 

Search of Protein Post-Translational Modifications  

Search of protein post-translational modifications (PTM) was performed by Proteome 

Discoverer 1.4 software with Sequest HT search engine. The following seven variable 

modifications were set: oxidation, deamidation, phosphorylation, glycosylation, acetylation, 

methylation, acetylation (protein N-terminus). The search results were filtered and only modified 

peptides were selected. Values of peptide spectra matches (PSM) between modified and non-



 

 

modified peptides were considered as degrees of modification. Only peptides with prevalence in 

PSM for modified type or not presented as non-modified were selected as reliable. 

In Vivo Toxicity Studies of Aptamer-Modified GMNPs in LFAMF 

Healthy six-week old 25g ICR mice were used in this study, 10 animals per group. The 

mice (5 female and 5 male in each group) were administered tail vein injections on days 1, 3 and 

5 (3 times total) as follows: 

Group 1: Injection of AS-14-GMNPs in 100 μL DPBS (1.6 μg kg
-1

); 

Group 2:Injection of 100 μL DPBS. 

Toxicity was estimated based on changes in blood biochemistry (cholesterol, total protein, 

alanine amino-transferase, alkaline phosphatase and bilirubin), which were performed using 

COBAS INTEGRA 400 plus analyzer (Roche Diagnostics, Switzerland). Male and female 

parameters were analyzed separately. All data were presented as the mean ± standard error of 

mean. 

 

Results and Discussion 

Our study demonstrates efficacy of targeted GMNPs-based magnetodynamic cancer cell 

disruption in vitro and in vivo in a low frequency alternating magnetic field. For the experiments, 

we used commercially available gold-coated magnetic nanoparticles with a diameter of 50 nm, a 

magnetic core of 8-12 nm and a 30-40 nm golden shell. Magnetic core of the particles provided 

magnetodynamic effects on cells, golden coating is used to attach aptamers to the surface 

through SH groups, moreover coating with gold make iron particles less toxic and increase their 

biocompatibility in vivo. The full description is presented in Supporting Information. The 

behaviour of aptamer-modified GMNPs in a magnetic field of alternating frequency in a colloid 

solution in DPBS at a concentration of 1 × 10
8
 particles per 1 mL, which was suitable for the 

therapeutic purposes, was estimated using magnetic circular dichroism (MCD). At a frequency 

of 50 Hz, the MCD of the particles in vitro in sinusoidal magnetic field sufficiently increased and 

all particles magnetized (Figure S1).  

Mathematical simulations showed that a sinusoidal magnetic field of 100 Oe at a 

frequency of 50 Hz induced magnetodynamic cell disruption with minimal possible thermal 

effects on cells and tissues (Supporting Information) therefore it could be used for 

magnetodynamic purposes. For selective targeting we used aptamer AS-14 to mouse Ehrlich 

carcinoma fibronectin (Fn) described in our previous study [15]. Here we revealed that Fn from 

Ehrlich carcinoma cells recognized by aptamer AS-14 has several post-translational 

modifications in 5 domains of Fn type III (FnIII5): threonine is acetylated at the position 32 and 

phosphorylated at the position 36. These modifications are not currently described in the Protein 



 

 

Data Bank http://www.rcsb.org/pdb/protein/P02751, therefore, suggesting that they are unique to 

mouse Ehrlich carcinoma cells. Potentially, aptamer AS-14 recognizes particularly this region, 

which is located between collagen binding and cell attachment sites.  

Aptamer AS-14 delivers GMNPs to Ehrlich carcinoma tumor and links the particles with 

fibronectin molecules. The low frequency alternating magnetic field causes oscillations of the 

GMNPs in the complex with the aptamers bound to fibronectin. The mathematical modeling of 

the magneto-mechanical action of AS-14-GMNPs on cells is described in Supporting 

Information. Interestingly, LFAMF did not cause local hyperthermia (Supporting Information). 

LFAMF rotates a nanoparticle bound to FnIII5 clockwise pulling the integrin β-subunit via 

FnIII10 and returns it to its original position (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of an apoptotic caspase cascade. (A) The cascade is caused 

by fibronectin oscillation in a low frequency alternating magnetic field controlled by AS-14-

GMNPs. (B) Forces applied to an AS-14-GMNP in the presence of a low frequency alternating 

magnetic field, where     is the force pulling fibronectin;       is magnetic moment of GMNP; 

and       is an external magnetic field.  

 

We calculated the magnetic moment, force and time of action of the magnetic particles in 

LFAMF (Supporting Information). LFAMF with a frequency of 50 Hz makes AS-14-GMPS 

periodically pull and relax the C terminus of FnIII10 to 0.07 nm for 0.01 seconds, that means 

twice per period of LFAMF variation. Mechanical forcepulling of integrin activates FnIII [24] 

and causes integrin-mediated apoptosis by direct recruitment and activation of caspase-8 [21, 27-



 

 

32]. We think that oscillation of AS-14-GMNPscaused by LFAMF influences integrins via Fn 

and causes activation of caspases followed by cell apoptosis (Figure 2).  

Effects of Aptamer-Modified GMNPs in LFAMF In Vitro 

In order to optimize the therapeutic procedure in vitro, titration experiments at different 

incubation times have been performed. Incubation time did not influence binding much as after 5 

minutes most cells appeared to be bound with aptamer modified fluorescently labelled 

nanoparticles, 75 and 100 particles bound per cell. Binding of 25 and 50 particles per cell 

required more time for efficient binding (Figure 3A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Optimization of treatment conditions for magnetodynamic nanotherapy in 

vitro. (A) Determination of the binding time for different amounts of AS-14 modified GMNPs 

per cell. Histograms of binding of 25 particles per cell (orange); 50 particles per cell (purple); 75 

particles per cell (blue), and 100 particles per cell (green) after 5 minutes (A1); 15 minutes (A2), 

and 30 minutes of incubation (A3). (B) Viability of Ehrlich cells pre-incubated with AS-14-

GMNPs (ratio of 100 particles per cell for 30 minutes) after 1, 3, 5, 7, and 10 minutes of LFAMF 

exposure. 

 

One hundred particles per cell was enough to prompt binding, therefore this concentration 

was chosen for in vitro experiments and to insure all cells specifically bound with the particles 

incubation time was always 30 minutes. In order to adjust the time of LFAMF exposure, Ehrlich 

carcinoma cells bound with AS-14-GMNPs (a ratio of 1:100 particles after 30 minutes of 



 

 

incubation) were placed in the center of the magnetic coil in LFAMF for 1, 3, 5, 7, and 10 

minutes (Figure 3). The cellular death was registered in two hours after the treatment using 

propidium iodide (PI) dye by flow cytometry. Ten minutes were sufficient to induce Ehrlich 

carcinoma cells death and to avoid heating of the magnetic coil during this time. 

In order to prove our suggestions that oscillations of AS-14-GMNPs bound with Fn in 

LFAMF cause integrins pulling via Fn and resulted in activation of caspases cascade (Figure 2) 

we performed binding experiments with anti-Fn antibodies blocking the interaction of AS-14 

with Fn (Figure 4). Three hours after treatment with AS-14-GMNPs in LFAMF activation of 

caspase 3/7 accurred in 35% of cells. Anti-Fn antibodies added to the cells prior the treatment 

occupied binding sites for AS-14-GMNPs and inhibited caspase cascade, while control anti-actin 

antibody did not (Figure 4A1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mechanisms and efficacy of magnetodynamic nanotherapy in vitro. (A) Apoptosis 

estimated by caspase 3/7 activity;  



 

 

(B) Apoptosis estimated by Annexin V-Cy3 labeling and 6-carboxyfluorescein diacetate (6-

CFDA) staining of Ehrlich cells: (1)intact cells without staining; (2) viability of living cells; (3) 

cells 3 hours after exposure to LFAMF; (4) cells 3 hours after treatment with GMNPs and 

LFAMF; (5) cells 3 hours after treatment with AS-14-GMNPs (AGMNPs) and LFAMF. (B) 

Relative sodium content estimated by SBFI fluorescence intensity: the red curve corresponds to 

cells without staining, the purple - to untreated cells; the blue - to cells treated with GMNPs in 

LFAMF; and green to cells treated with AS-14-GMNPs in LFAMF. 

 

In intact cells caspase 3/7 was activated in 11% of cells, treatment with GMNPs in 

LFAMF increased just fluorescence intensity, but not the number of apoptotic cells(Figure 4A2). 

We should note that these experiments have been performed in cell cultures which grew in 

suspension and thus express less extracellular Fn, than in solid tumor in vivo [16]. Anti-Fn 

antibodies bind only to 60% of cells (Figure 4B).  

In cell cultures we demonstrate that AS-14-GMNPs in LFAMF- induced carcinoma cell 

death, which started with apoptotic phosphatidylserine translocation and followed by necrosis 

(Figure 4 C5). After the AS-14-GMNPs - LFAMF treatment, the majority of Annexin V positive 

cells were also CFDA negative (which indicates they were dead). Control experiments with AS-

14-GMNPs alone without a magnetic field and GMNPs without aptamers with LFAMF 

treatment did not cause carcinoma cells death, but the cells accumulated less CFDA, and their 

membranes might have been slightly damaged. Moreover, the content of sodium cations in 

carcinoma cells increased after treatment with AS-14-GMNPs in LFAMF, suggesting necrosis 

(Figure 4D). Cell death can be caused by activation of different molecular pathways, including 

apoptosis, necrosis and autophagy, characterized by morphological and biochemical features 

[33]. Death processes are accompanied by a change in the cell volume due to a change in ion 

fluxes, especially sodium ions. Significant loss of sodium, potassium and chlorine ions are 

essential for activation of caspases and nucleases for apoptosis development [34]. In contrast, 

necrosis, is characterized by swelling of the cell because of increased sodium content. The lack 

of energy for Na
+
/ K

+
-ATPases in cellular necrosis causes swelling of cell followed by 

membrane rupture and inflammation. 

In Vivo Antitumor Activity of Aptamer-Modified GMNPs in LFAMF 

In vivo antitumor efficacy of AS-14-GMNPs in LFAMF was evaluated using solid 

Ehrlich carcinoma in which the tumor was transplanted into the right leg of each mouse. The 

principal scheme of the experiment is presented in Figure 1 and described in details in Materials 

and Methods. Briefly, AS-14 modified GMNPs (1.6 μg kg
-1

), free GMNPs, free AS-14 (0.4 mg 

kg
-1

) and DPBS for control groups (7 animals in each) were injected intravenously, and after 30 



 

 

minutes, LFAMF was applied for 10 minutes. The treatment procedures were repeated three 

times on alternate days starting on day 5 after tumor transplantation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Efficacy of magnetodynamic nanotherapy in vivo. (A) Tumor size changes in the 

course of treatment (* p<0.05; ** p<0.01; *** p<0.001). (B) Imaging the tumor recovery after 

LFAMF treatment.  

 

The efficacy of the treatment is presented in Figure 5A: tumor sizes were estimated by 

measuring legs girth regularly every day after treatment. The tumor size visually decreased after 

treatment with AS-14-GMNPs and LFAMF. On day 6, after the first treatment, a subcutaneous 

hemorrhage was observed in the leg with the tumor in each mouse injected with AS-14-GMNPs 

and exposed with LFAMF for 10 min (Figure 5B). On day 8,after a second treatment was 

performed on day 7, the tumor stopped growing and formed a crust, suggesting necrosis. After 

the third injection, on day 9, the wound began to heal. On day 13, the size of the crust reduced 

significantly and the skin around it almost fully recovered. Treatment with either GMNPs or AS-

14 aptamer in LFAMF did not cause any reduction in tumor size. Injection of GMNPs with 

LFAMF exposure caused small inflammation of the tumor, which grew during the course of 

treatment, demonstrating the slight effect of GMNPs. We think that GMNPs themselves also 

cause tumor necrosis, but they are sufficiently less effective without the aptamer. 

Mathematical simulations show that LFAMF does not cause hyperthermia itself or in the 

presence of GMNPs and AS-14-GMNPs. Therefore, the mechanical action of LFAMF on 

GMNPs linked through the aptamer with tumor cells can be explained as: Fn causes twitching of 



 

 

the integrin β-domain which leads to its activation [24] and initiation of cell death by caspase 

cascade induction of primary apoptosis (Figure 2A) followed by sodium content increase (Figure 

4B) and cancer cell necrosis (Figure 6 B10-B12). Considerable damage of the tumor in vivo and 

tumor size reduction by LFAMF occurred only when the GMNPs were aptamer modified and 

delivered to the tumor site (Figure 5). For non-specific accumulation of GMNPs in tumor, the 

effect was insufficient and may be a result of the 30-minute exposure time. 

Aptamer-facilitated magnetodynamic nanotherapy at a low frequency (50 Hz) of 

alternating magnetic field did not cause local hyperthermia, which was demonstrated by 

mathematical simulations (Supporting Information). 

 

Tissue Analyses after Magnetodynamic Nanotherapy  

We identified that the reduction of tumor's size was due to the mechanical oscillations of 

AS-14-GMNPS in LFAMF. Five hours after the treatment with AS-14-GMNPs in LFAMF, 

caspase 3/7 were active in tumor cells (Figure 6A), whereas pure GMNPs or free AS-14 aptamer 

in LFAMF did not cause this effect. 

Tumors did not respond to the control treatment with pure DPBS in LFAMF; cells stayed 

viable, tumors  grew and destroyed muscle tissue, and the immune response was weak (Figure 6 

B1-3).The control treatment with free aptamer AS-14 in DPBS and LFAMF did not show 

significant changes in tumor's structure; lymphocytic infiltration was still poor, swelling of the 

intermediate spaces was moderate, and muscle fibers were degenerative (Figure 6, B4-6). 

Treatment with pure GMNPs caused partial necrosis of tumor tissues remaining in the 

form of "islands" (Figure 6, B7-B9). We observed tumor cells with cytoplasm vacuolization and 

signs of karyolysis, which is an irreversible result of the damaging effects of the treatment 

(Figure 6, B9). Inflammatory lymphocytic infiltration was expressed weakly around the tumor 

(Figure 6, B7-B9). 

A significant therapeutic effect was observed in tumor tissues after treatment with AS-14-

GMNPs in LFAMF (Figure 6 B9-B12). On the periphery of the large tumor necrosis areas 

remain small amounts of carcinoma cells, partly subjected to complete destruction or with 

irreversible changes: karyorrhexis, karyolysis, plasmorrhexis, these are the damaging effects of 

the treatment (Figure 6 B12). This treatment caused significant immune response as there was 

visible inflammatory infiltration of segmented leukocytes on the boundaries of necrotic areas. 

Swelling and destructive changes of tumor tissue microenvironment were also observed (Figure 

6 B9-B12). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 6. Tumor response to magnetodynamic nanotherapy.  

(A) Caspase 3/7 activity in cancer cells from tissue sections of tumors harvested 5 hours after 

treatment.  

(B) Histological structure of treated tumors. B1-B3 – DPBS and LFAMF treated Ehrlich 

carcinoma has a solid structure and grows into the muscle tissue, composed of atypical cells with 

pleomorphic, hyperchromatic nuclei of different shapes and volume. No immune response: very 

rare lymphocytes. B4-B6 – AS-14 and LFAMF treated carcinoma has moderate swelling of the 

intermediate spaces, poor lymphocytic infiltration and muscle fibers with degenerative changes. 

B7-B9 – GMNPs and LFAMF treated carcinoma has scattered tumor necrosis with weakly 

expressed inflammatory infiltration, tumor tissue remains in the form of "islands" in which the 

majority of cancer cells are with cytoplasm vacuolization and signs of karyolysis. B10-B12 – 

AS-14-GMNPs and LFAMF treated carcinoma has large tumor necrosis areas, swelling, 

destructive changes of tumor tissue microenvironment and inflammatory infiltration of 

segmented leukocytes. On the periphery remaining tumor cells are dead with karyorrhexis, 

karyolysis, plasmorrhexis. Magnification: (B1) ×100; (B2, B4, B5, B7, B8, B10, B11) × 200; 

(B3, B6, B9, B12) ×400.  

 

 Toxicity of aptamer-functionalized GMNPs was estimated by changes in blood serum 

biochemistry (Table 1). In addition it was made an attempt to estimate iron and gold distribution 

in different organs after intravenous injection of AS-14-GMNPs in DPBS (Figure S2). Electron 

microscopy revealed that a single dose of AS-14-GMNPs (1.6 μg kg
-1

) is not sufficient for 

detection of iron and gold ions in the tumor, other organs and urine after 1, 5 and 24 hours 

(Figure S2). Cholesterol, serum alanine amino-transferase (ALT), alkaline phosphatase (ALP) 

and bilirubin are the standard parameters for drug hepatotoxicity evaluation [35]. ALT is 

involved in energy metabolism in liver, with lower enzymatic activities in other tissues, therefore 

it is considered as a specific biomarker of liver function. Total bilirubin, a product of hemoglobin 

degradation, is a marker of hepatobiliary injury and hemolysis [35]. ALP is associated with cell 

membrane's damage of hepatocytes [35]. In our experiments, 3 injections of AS-14-GMNPs 

administered to healthy male and female mice did not cause changes in these parameters 

compared to the control group treated with DPBS and was not dependent on gender. An 

inflammation and hydration status of the animals treated with nanoparticles was evaluated by 

total protein concentration [35], which did not significantly differ in the groups of male and 



 

 

female mice treated with AS-14-GMNPs (Table 1). All tested parameters indicate that the 

treatment with AS-14-GMNPs is safe and does not cause hepatotoxic effects. 

Table 1. Blood serum biochemistry parameters performed separately for male and female mice 

treated with AS-14-GMNPs in phosphate buffer (DPBS) or DPBS alone. All data are presented 

as the mean ± standard error of mean. 

Sample  Cholesterol, 

m mole L
-1

 

Total 

protein,  

g L
-1

 

Alanine amino-

transferase, 

IU L
-1

 

Alkaline 

phosphatase,  

IU L
-1

 

Total bilirubin,  

μ mole L
-1 

 

AS-14-GMNPs 

Female 

(N=5) 1.45±0.01 50.75±3.32 18.40±3.67 214.30±74.81 5.67±0.38 

Male 

(N=5)  1.56±0.48 55.97±6.21 31.90±13.17 254.87±122.29 6.05±0.21 

 

DPBS 

Female 

(N=5) 2.30±0.28 53.90±1.27 13.55±4.78 177.67±27.13 6.25±0.70 

Male  

(N=5) 2.32±0.26 55.90±2.76 20.93±6.9 251.40±71.13 6.20±0.53 

 

 

Conclusion 

Our study demonstrates the therapeutic effect of magnetodynamic nanotherapy guided by 

cell specific aptamers on cancer. Further investigations need to be performed to better 

understand the mechanism of action of AS-14-GMNPs in LFAMF and overall toxicity of AS-14-

GMNPs and LFAMF on normal tissues. Promising opportunities for effective applications of the 

proposed method are based on using aptamer-functionalized gold- coated magnetic nanoparticles 

for targeted tumor treatment in a low frequency alternating magnetic field, which selectively 

destroys cancer cells without affecting non-malignant adjacent cells and tissues. 
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Figure S1. Properties of magnetic nanoparticles NITmagoldCit of 50nm from Nanoimmunotech, 

Spain. 

(A) Scanning electron microscopy of aptamer modified GMNPs (1); absorbance (2); magnetic 

circular dichroism before the experiment (3).  

(B) Scanning electron microscopy (1); high-resolution transmission electron microscopy (2); 

absorbance from product datasheet.  
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Figure S2. Distribution of iron and gold ions in organs after intravenous injection of AS-

14GMNPs in 100 μL DPBS (1.6 μg kg
-1

) determined by electron microscopy (EM). Spectral 

analyses of iron and gold content in AS-14GMNPs (A); thin section of the intact tumor tissue 

(B); tumor 1 (C), 5 (D) and 24 (E) hours (C) after intravenous injection of AS-14GMNPs; liver 

(F), kidneys (G), and urine (H) 1 hour after injection of AS-14GMNPs. Inserts - contrast EM of 

the correspondent sample. 

 

The mechanical action of the magnetic particles on cells 

If a magnetite particle has a spherical shape of radius   , then its magnetic moment in a uniform 

external magnetic field       equals to 

      
 
   

   
    

where μ - relative magnetic permeability, which value for magnetite is close to 5 according to the 

data [3]. This formula follows from the known exact solution for the problem of magnetization 

of a homogeneous ball [2]. Magnetic moment of a ball is directed along the field      , and 

therefore no torque appears. Any field inhomogeneity leads to magnetophoresis that we do not 

consider here. 

Shape of our magnetic particles is substantially different from a ball. In such a case, the magnetic 

moment is large, if the body is elongated along the field      , and small for another orientation. 

For bodies of particular shapes, these parameters can be calculated. We assume that our particle 

is a prolate ellipsoid of revolution, and the long half-axis      nm is twice longer than the 

short ones     nm. The exact solution for the problem of magnetization of the ellipsoid is 

known [2]. For μ = 5 it gives the magnetic moments in the direction of elongation and normal 

one 

                     .  

If there is an angle   between the magnetic field      and the direction of elongation of the body, 

the magnetic moment is not parallel to the field. The projections of the moment on the field    

and normal to it equal          and        . Hence, there is a torque 

                                 
   

          

where    - magnetic permeability. If the magnetic field strength      kA/m, which 

corresponds to 100 Oe, the torque depending on the angle    can reach           N∙m.  

Figure 3 is a diagram of the mechanical interaction of the magnetic particle with the cell. We use 

superparamagnetic particles which are covered by a thick layer of gold, so that from the outside 

they look like balls of radius       nm. Their surface is covered with aptamers which cling to 

fibronectin filaments located in the intercellular space. These filaments are attached at their ends 

to integrins located in cell membranes. We approximately simulate the filaments as inextensible 

ones and we consider integrins as solid cylinders of radius     nm. 



 

 

When under the influence of the magnetic field the particle is rotated clockwise, as shown in 

Figure 3, it pulls the left filament up and pulls the right one down. The left filament above the 

particle can be bent, and therefore does not transmit efforts at its upper end. The lower part of 

this filament pulls integrin with the force   . Similarly, the right filament does not act on the 

integrin shown in Figure 3, but pulls the other integrin, located somewhere above the drawing 

area. 

For evaluation of the elastic forces generated by pulling integrin to the height  , we 

approximately assume that all the elastic forces are determined by deformation of the membrane. 

According to [1] the mammalian cell membranes in the normal state are stretched so that the 

order of magnitude of the tension 
510  N/m. It may be noted that this tension of the membrane 

is balanced by the pressure inside the cells increased by 2 / cP R   as compared with the 

pressure in surrounding environment. For the cells with radius 10cR   m, this difference 

2P  P. 

We are interested in the phenomenon with a scale much smaller than the radius of the cell cR . 

So we neglect the curvature of the membrane. We consider a thin membrane, and we suppose 

that it is fixed at the circle of some large radius R . In our model the integrin looks like a solid 

circle of radius R  centered at the same point as the center of the selected circle of the membrane. 

This object is rotationally symmetric. Hence, we use the polar coordinates ,r   of the points in 

the plane of the non-deformed membrane.  Points do no move in direction of   because of the 

symmetry.  For small strains the displacement in direction of r  has a higher order of smallness 

than the deflection in the direction normal to the membrane. The latter is denoted as ( )w r . 

Therefore, the displacement of the membrane points is described by one function ( )w r . The 

following boundary conditions correspond to the rise to the height h  at the circle r R  and zero 

displacement at r R  

( ) , ( ) 0w R h w R  .      (1) 

The membrane takes such a form that the elastic energy J  reaches a minimum. In our case of 

axial symmetry in accordance with [4], we have 

                                                 

2R

R

dw
J rdr

dr




 
  

 
 .   

The condition of its minimum is the equation 

                                                     
1

0
d dw

r
r dr dr

 
 

 
.  

Its solution is the function 

( ) ln ( / )w r A r B ,  

where ,A B  - arbitrary constants. Their values can be found from the boundary conditions (1). 

The result is 



 

 

                                                  ( ) ln ( / r) / ln ( / )w r h R R R  .                 (2) 

The graph of this solution is shown in qualitative manner in Figure 3. 

Such a membrane is inclined relative to the plane at the angle  , such that 

 
( ) 1

( ( ))
ln ( / R)

dw r h
tg r

dr R r





  .               (3)  

This slope on the border with the solid circle defines the force with which the membrane draws 

the circle dawn in the vertical direction 

2 sin 2 / ln ( / )F R h R R       .                (4) 

The formula is simplified for small angle  , when sintg     . This expression contains one 

parameter R , whose value we have identified only by the inequalities 

      cR R R .  

The uncertainty of R  can be solved only within a more general model that takes into account 

spherical membrane. We do not do this, since the logarithm ln ( / )R R  in (2-4) is only slight 

varied when R  changes in a wide range. Take the seemingly reasonable average value 

150cR R R    nm when ln ( / ) 4R R  . Expression (4) reduces to 

    1.5F h .                                                            (5) 

The maximum value of torque 
220.5 10N   N∙m due to the magnetic field acting on the 

magnetic particle was obtained above. It is easy to show that since we use low frequencies, the 

inertia during the rotation of the particle can be neglected. The friction of the surrounding liquid 

is more important, but the friction torque is alsoa few orders of magnitude smaller than the 

torque N . Therefore, the pair of the elastic force (5) and having the same module elastic force 

applied to the right-hand filament in Figure 3, balances the torque N . It gives the equality 

3 pN h R , 

that permits to evaluatethe height to which integrins can be drawn by the magnetite particles 

which we use, 0.07h  nm. Possibly, the angle 
0( ) 0.5R   of rotation of the membrane in the 

place of its attachment to the integrin (3) is of value. The force (5), that pull the integrin from the 

membrane can be up to 
1510F   N. It can be mentioned that the magnetic particle rotates / ph R  

angle that is of about 
00.15  when 0.07h  nm. 

Note that these values of ,h F  are obtained only for the magnetic particles oriented in a certain 

way with respect to the direction of the external magnetic field      . Since the particles when 

attached to the cells are randomly oriented, the specified parameter values ought to be reduced 

several times to estimate the average impact on a cell. 

The obtained limit values could be achieved when varying over time magnetic field       has 

amplitude value, that occurs twice during the period. The frequency is 50 Hz in our experiments. 

When the magnetic field       is reversed, the magnetic moment of each magnetite particle does 

the same. The torque keeps sign since it equals to their vector product. Consequently, during 



 

 

both half cycles the particle rotates in the same direction when the field strength increases, and 

returns to its free position when the field is weakened. Therefore, during 0.01  sec integrin is 

pulled out of the cell to a height about 0.07  nm and returns to its original position. Perhaps, just 

these twitches with frequency 100 Hz damage cells in our experiments, whereas the stationary 

membrane deformations of the same scale could be not so effective. 

Heating  

Let us show that the thermal energy released in magnetic particles is distributed throughout the 

liquid. In our experiments, the particles have a concentration of the order of 1410 m 3 , so the 

distance between adjacent particles 
52 10L  m. By the heat conduction equation typical time of 

heat propagation for the distance L  is assessed as 

2C
L


 , 

where C  - heat capacity  - thermal conductivity. For water, 
64.2 10C  J/(m 3 K), 0.6  W/(m

K). We get the characteristic time  0.003 seconds. Such a small   ensures uniform heating 

throughout the liquid and particles, not only for total time of the experiment 10t   minutes, but 

even during the period of the magnetic field variation that equals 1/ f   0.02 seconds. 

First, we study the heating of the metal particles in an alternating magnetic field. 

In our experiments, we use an alternating magnetic field with strength of about 100 Oe or 8 

kA/m, that corresponds to the magnetic induction        T. This field varies with time at a 

frequency      Hz. 

Living cells and magnetic particles can be in different liquids. All of these liquids have salinity 

not exceeding seawater salinity. Therefore, to estimate maximum effect, consider seawater 

which conductivity is      S/m. The main part of the used magnetic particles takes gold which 

conductivity is           S/m. 

The nature of the influence of a substance on the alternating magnetic field is determined by 

such a parameter as the thickness of the skin layer           , and       m for the liquid 

and      cm for gold. Here    is magnetic permeability of vacuum. Because these parameters 

are many orders of magnitude greater than the characteristic size of the region occupied by the 

liquid, and the size of the particles, respectively, the magnetic field freely permeates without 

being distorted into the liquid and into the particles. 

By virtue of the law of electromagnetic induction the variation of the magnetic field creates a 

vortex electric field     which satisfy the equation 

                                                     
 

  
       ,                                                                         (6) 

where the integration in the left side is made over an arbitrary closed circuit, and in the right side 

- over the surface bounded by this circuit,   - time. 



 

 

To simplify estimates, assume that liquid occupies a region which is symmetric with respect to 

rotation about the same axis as that of the solenoid which generates a magnetic field. The 

magnetic field is assumed homogeneous, and its induction is defined as           . Then the 

electric field is also axially symmetric and has only an azimuthal component            , and 

the integration in (6) for a circle of radius   is simple. Get 

               
 

  
                 

We express E, and for all points of the fluid at a distance of less than 5 mm from the axis, we 

obtain the estimate 

                                                                     V/m. 

The electric current produced by this field has a density            A/  , and is 

accompanied by Joule dissipation which density equals       
         W/  . This 

energy heats the liquid. The temperature rises from the initial value    to 

             

after the time  . C - heat capacity per unit volume. For water,           J/(K∙  ). For 

     minutes the temperature is increased by 

                                                                        К,                                                       (7) 

that is negligible. 

Now consider the heating of the gold ball, placed in the liquid. Since the radius of the ball, 

     nm, is much smaller than the distance between the balls, each ball can be considered 

separately, as being in an infinite domain with a uniform electric field with strength    , which 

module is  . 

We know the exact solution of this problem of electrical conductivity. The electric potential   in 

spherical coordinates      , with the axis     directed along    , has the form 

   
                            

                     
  

where the constants 

                          

                 

Linear dependence of the electric potential on the coordinate         inside the ball means a 

uniform electric field with strength           , because        . Accordingly, the density 

of Joule dissipation inside the ball equals     
          , that differs        1 times from 

dissipation in the liquid. The electric field strength in the vicinity of the ball as compared to   do 

not increase more than threefold, and returns to the value   with the distance from the ball. 



 

 

Accordingly, the density of Joule dissipation increases only in a small neighborhood of the ball 

and no more than 9 times. 

Thus, the ball with high electric conductivity increases heating of some surrounding liquid, while 

the ball itself heats much less than liquid would be heated without it. The heating is negligible in 

view of the inequality (7).  

One more important mechanism of energy transfer from the magnetic field to the medium is the 

work done by rotating particles. 

Upon rotation of the particle the magnetic field does work A N , where   - the angle of 

rotation, N  - torque. Above, we obtain an estimate 
00.15 0.003  radians. It was used the 

assumption that fibronectin filaments may be regarded as inextensible ones. If, on the contrary, 

they are easily stretched, they have virtually no influence on the rotation of the particles, which 

would turn to the ellipsoid orientation along the magnetic field, therefore,   may be of the 

order of one radian. Of course, in such a case the cell membrane is not deformed, and all 

resistance would be determined by a rotation viscosity of the liquid. To evaluate the work from 

above, we use the limit 1  radian and obtain A N . All this work is ultimately converted 

into heat. The particle has a volume much smaller volume of fluid surrounding it, and this 

thermal energy is rapidly distributed throughout the liquid. Therefore, the law of conservation of 

energy can be written as 

3

0( ) 2C L T T f t A  ,    

where the frequency f  is doubled, as the turns occur twice in the period of the field variation, 

and each time the magnetic field does the work A . Substituting the above estimates A N , 

220.5 10N    N∙m, obtains an estimate of the temperature change 

10

0 3

2
10

f N
T T t K

CL

  .        (8) 

This heating is negligible. 

Another heating mechanism is associated with losses in reverses of magnetization of particles. 

Hysteresis for the magnetite particles is so small that it is difficult to find the magnetization 

curves at the amplitude of the field 0 100H  Oe = 8 kA/m, as in our experiments. Upper estimate 

can be obtained using the curves plotted in [3] at the amplitude of the field around 3000 Oe. The 

difference per unit mass of the magnetization with increasing and decreasing field is of about 2 

A m/kg. For magnetic density of about 5000 kg/m 3 , we get 
410M  A/m. The hysteresis loop 

at low fields is definitely inside the loop obtained for large amplitude of the field, so its area 

02HdM MdH H M    . 

The heat release in each cycle of magnetization is obtained by multiplying by the volume of the 

magnet and by 0 . We get energy 
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3
ab H M    J. 

Since this energy is four times more than the energy dissipation of turning particles, heating also 

increases four times compared with (8), and hence it is also negligible. This is consistent with the 

statement [3] about the possibility to neglect by hysteresis. 

The same article [3] also considered other mechanisms of medium heating due to exposure to a 

magnetic field, such as Néel and Brownian relaxations. We do not analyze them in detail, and 

use the obtained theoretical estimates in [3], backed up by their experimental data. For magnetite 

particles with similar particle sizes in the field 0 150H  Oe varying with frequency 100 kHz the 

total heat release does not exceed 50 kW/kg. Their data demonstrate a linear dependence of the 

frequency and quadratic dependence of 0H . Under our 50f  Hz and 0 100H  Oe we receive 

less than 10 W/kg. The mass of our magnetic particle is of about 10 20 kg. Thus, the released 

thermal energy is of about 1910 W or 2110 J per half-cycle of the magnetic field variation. 

Since this energy is 10 times more than the energy dissipation of turning particles, heating is also 

increased 10 times as compared with (8), and hence it is also negligible. 

Absence of heating in our experiments, as opposed to experiments on hyperthermia, is due to a 

lower magnetic field frequency and the smallness of the concentrations of magnetite particles. 

Our values of these parameters are three and eight orders of magnitude, respectively, less 

compared with the parameters used in [3] when a substantial heating was observed, up to 10 K 

per hour. 

Thus, the alternating magnetic field has no thermal effect on the cells in our experiments. 
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