
Journal of Siberian Federal University. Mathematics & Physics 0000, 0, 001–013

УДК 517.95

The inverse problem for the nonlinear pseudoparabolic equa-
tion of filtration type

Anna Sh.Lyubanova∗

Institute of Space and Information Technologies,
Siberian Federal University,

Svobodny 79, Krasnoyarsk, 660041 Russia

Received 00.00.0000, received in revised form 00.00.0000, accepted 00.00.0000

The paper discusses the correctness of the inverse problem on finding an unknown coefficient dependent
on t in the nonlinear pseudoparabolic equation of the third order with an additional information on the
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by the reduction of the original inverse problem to the equivalent one with an operator equation for the
unknown coefficient.

Keywords: local existence and uniqueness theorem, a priori estimate, inverse problem, nonlinear higher-
order equation, pseudoparabolic equation, filtration

1. Introduction

This paper is devoted to the inverse problems of the identification of coefficients in the
pseudoparabolic equation

(u+ L1u)t + L2u = f (1.1)

with the differential operators L1 and L2 of even order with respect to spacial variables. Such
equations arises in the models of the heat transfer, filtration in the fissured media, quasi-
stationary processes in the crystalline semiconductor (see more detailed review in [10, 11]).

The study of inverse problems for pseudoparabolic equations goes back to 1980s. The first
result [9] refers to the inverse problems of determining a source function f in (1.1) with linear
operators L1 and L2 of the second order, L1 = L2. We should mention also the results in [4, 8]
concerning with coefficient inverse problems for linear equation (1.1). In [8], the uniqueness
theorem is obtained and an algorithm of determining a constant a in the second order term
is constructed. In [4], the solvability is established for two inverse problems of recovering the
unknown coefficients in terms u (the lowest term of L2u) and ut of (1.1).

In [7], the inverse problem of finding the coefficient k depending on time in the equation

(u+ ηMu)t + kMu+ gu = f (1.2)

with integral data on the boundary is examined. Here M is a second order linear differential
operator in the space variables. Sufficient solvability and uniqueness conditions for a solution to
the problem of identification of the coefficient k(t) are established.

In the present article we establish solvability and uniqueness of solutions to the inverse prob-
lem of finding an unknown coefficient k = k(t) in the nonlinear equation (1.2) with the use of an
additional information on the boundary (see (2.1)–(2.4)).
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2. Statement of the Problem and Preliminary Results

Let Ω be a bounded domain in Rn with a boundary ∂Ω ∈ C2, T is an arbitrary real number
and QT = Ω× (0, T ) a cylinder in Rn+1 with the lateral boundary ST = ∂Ω× (0, T ). The points
of Ω are denoted by x, the points of [0, T ] by t, and the points of QT by (t, x). Below we use the
following notation: ‖ · ‖ and (·, ·) are the norm and the inner product of L2(Ω); ‖ · ‖j and

〈
·, ·
〉
j

are the norm of W j
2 (Ω) and the duality relation between W̊ j

2 (Ω) and W−j2 (Ω) (j = 1, 2).
LetM : W 1

2 (Ω)→ (W 1
2 (Ω))∗ is a linear differential operator of the formM = −div(M(x)∇)+

m(x)I whereM(x) ≡ (mij(x)) is a matrix of functions mij(x), i, j = 1, 2, . . . , n, m(x) is a scalar
function and I is the identity operator. We consider the following inverse problem. For a given
constant η and functions f(t, x), β(t, x), U0(x), ω(t, x), ϕ1(t), ϕ2(t) find the pair of functions
(u(t, x), k(t)) satisfying the equation

(u+ ηMψ(u))t + k(t)Mψ(u) = f(t, x), (t, x) ∈ QT , (2.1)

the initial condition
(u+ ηMψ(u))

∣∣
t=0

= U0(x), x ∈ Ω, (2.2)

the boundary data
u = β(t, x), (t, x) ∈ ST , (2.3)

and the condition of overdetermination∫
∂Ω

{
η
∂(ψ(u))t

∂N
+ k(t)

∂ψ(u)

∂N

}
ω(t, x) ds+ ϕ1(t)k(t) = ϕ2(t) (2.4)

for t ∈ (0, T ]. Here ∂
∂N

= (n,M(x)∇) and n is the unit outward normal vector to ∂Ω.
If ω(t, x) ≡ 1 and ϕ1 ≡ 0, then the integral condition of overdetermination (2.4) means, for

instance, the total discharge of a liquid through the surface of the ground.
We assume that the following conditions are fulfilled.
I. M is an operator of elliptic type, that is, there exist positive constants m1 and m2 such

that for any v ∈ W̊ 1
2 (Ω)

m1‖v‖21 ≤
〈
Mv, v

〉
1
≤ m2‖v‖21 (2.5)

and m(x) ≥ 0 in Ω.
II. mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n, and m(x) are bounded in Ω and the operator M

is selfadjoint, that is mij(x) = mji(x) for i, j = 1, 2, . . . , n.
III. The function ψ(ρ) is an injection of (−∞,+∞) onto itself. The injection is continuous

and monotone, i. e.
(ψ(ρ1)− ψ(ρ2))(ρ1 − ρ2) ≥ 0 (2.6)

for all ρ1, ρ2 ∈ (−∞,+∞), ρ1 6= ρ2. The mapping ψ−1(v) from L2(Ω) to Lq(Ω) (q ≥ 2) is
demicontinuous (ψ−1(ρ) – the inverse of ψ(ρ)).

We denote by a(t, x), and b(t, x) the solutions of the problems

Mψ(a) = 0 в Ω, a
∣∣
∂Ω

= β(t, x), (2.7)

Mb = 0 в Ω, b
∣∣
∂Ω

= ω(t, x), (2.8)

and introduce the additional notation:〈
Mv1, v2

〉
M

= (M(x)∇v1,∇v2) + (m(x)v1, v2), v1, v2 ∈W 1
2 (Ω);
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Ψ(t) =
〈
Mψ(a), b

〉
1,M

, F (t, x) = at − f(t, x), Ψ = max
t∈[0,T ]

Ψ(t), ϕ1 = max
t∈[0,T ]

ϕ1(t).

The existence and uniqueness of the solution to the problems (2.7) and

(u(0, x) + ηMψ(u(0, x)))
∣∣
t=0

= U0(x), u(0, x)
∣∣
∂Ω

= β(0, x) (2.9)

are ensured by the Lemma 1.1 [6]. The trace u|t=0 = u0 belongs to Lp(Ω) and ψ(u0) ∈ W 2
2 (Ω).

Moreover, the solutions of the problems (2.7) and (2.9) satisfy the comparison theorem (see
Lemma 1.2 [6]).

By the solution of the direct problem (2.1)–(2.3) we mean the function u of class V =

{v|ψ(v) ∈ C([0, T ];W 1
2 (Ω)), v + ηMψ(v) ∈ C1([0, T ];W−1

2 (Ω))} which satisfies the equation〈
(u+ ηMψ(u))t, v

〉
1

+
〈
Mψ(u), v

〉
1

=
〈
f, v
〉

1

for ∀v ∈ L2(0, T ; W̊ 1
2 (Ω)), the identity

〈
u+ηMψ(u)), v

〉
1

∣∣
t=0

=
〈
U0, v

〉
1
and the condition (2.3).

Lemma 2.1 Let the assumptions I–III are fulfilled, ∂Ω ⊂ C2, k ∈ L∞(0, T ), f ∈
C([0, T ];L2(Ω)), U0 ∈ L2(Ω), ψ(β) ∈ C1([0, T ];W

1/2
2 (∂Ω)), η be a positive constant. Then

the following assertions hold.
1) The direct problem (2.1)–(2.3) has a unique solution u ∈ V .
2) If in addition ψ(β) ∈ C1([0, T ];W

3/2
2 (∂Ω)) and for all ρ ∈ (−∞,+∞) the inequality

|ψ(ρ)| ≥ c|ρ|p (2.10)

holds with constants c > 0 и p ≥ 1, then u ∈ W where W = {v |ψ(v) ∈ L∞(0, T ;W 2
2 (Ω)),

v ∈ L∞(0, T ;L2p(Ω)), (v + ηMψ(v))t ∈ L∞(0, T ;L2(Ω))}.

Proof. 1) Let us define the function ψ̃ = ψ(u)− ψ(a) and rewrite the problem (2.1)–(2.3) in
terms of ψ̃. [

ψ−1(ψ̃ + ψ(a)) − a+ ηMψ̃
]
t

+ k(t)Mψ̃ = F, (2.11)[
ψ−1(ψ̃ + ψ(a)) − a+ ηMψ̃

]∣∣
t=0

= U0 − a(0, x), ψ̃
∣∣
∂Ω

= 0. (2.12)

In the hypotheses of the theorem the nonlinear operator M̃ mapping L∞([0, T ]; W̊ 1
2 (Ω)) into

L∞([0, T ];W−1
2 (Ω)) by the rule M̃v = ψ−1(v + ψ(a)) − a + ηMv, is radially continuous and

strongly monotone. Then, by Theorem 2.2 [3, Chapter 5], the problem (2.11)–(2.12) has a unique
solution ψ̃ ∈ C([0, T ]; W̊ 1

2 (Ω)) and M̃ψ̃ ∈ C1([0, T ];W−1
2 (Ω)). Hence, ψ(u) ∈ C([0, T ];W 1

2 (Ω))

and u+ ηMψ(u) ∈ C1([0, T ];W−1
2 (Ω)).

We estimate the norm of ψ(u) in C([0, T ];W 1
2 (Ω)). In view of (2.11) and (2.12), the integration

of (2.1) with respect to t from 0 to τ , 0 < τ ≤ T and the multiplication of the result by ψ̃(u) in
terms of the duality between W̊ 1

2 (Ω) and W−1
2 (Ω) gives:

(u− a, ψ̃(u)) + η
〈
Mψ̃(u), ψ̃(u)

〉
1

=
〈
U0 − a0 +

∫ τ

0

[
F − k(t)Mψ̃(u)

]
dt, ψ̃(u)

〉
1

(2.13)

where a0(x) = a(0, x). Estimating the right term of (2.13) with the help of the Cauchy inequality,
(2.5), (2.6) and applying the Gronwall lemma, one can obtain the inequality

‖ψ̃(u)‖21 ≤
1

η2m2
1

[
‖U0 − a0‖2W−1

2 (Ω)
+ T

∫ T

0

∥∥F∥∥2

W−1
2 (Ω)

dt
]

exp(
m2

2K
2T 2

η2m2
1

) ≡ C1 (2.14)
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(K = maxt∈[0,T ] |k(t)|), whence

‖ψ(u)‖1 ≤ C1/2
1 + ‖ψ(a)‖1. (2.15)

2) If (2.10) holds, then, by (2.15), we have

‖u‖L2p(Ω) ≤
1

c

(
C

1/2
1 + ‖ψ(a)‖

)
. (2.16)

Furthermore, integrating (2.1) with respect to t from 0 to τ , 0 < τ ≤ T and multiplying by
Mψ(u) in terms of the inner product of L2(Ω) we reach the equality

η‖Mψ(u)‖2 = (U0 − u,Mψ(u)) +
(∫ τ

0

fdt,Mψ(u)
)
−
(∫ τ

0

k(t)Mψ(u)dt,Mψ(u)
)
. (2.17)

In view of (2.16), (2.17) estimating the right term of this relation with the help of the Cauchy
inequality and applying the Gronwall lemma to the resulting relation gives:

‖Mψ(u)‖ ≤
√

2

η

(
(mesΩ)

p−1
2p ‖u‖Lp(Ω) + ‖U0‖+ T max

t∈[0,T ]
‖f‖

)
e
K2T
2η2 ≡ C2. (2.18)

From (2.14), (2.18) and the inequality [5, Chapter 2]

‖v‖2 ≤ χ(‖Mv‖+ ‖v‖1) (2.19)

for v ∈ W̊ 1
2 (Ω)∩W 2

2 (Ω), where the constant χ depends on n, m1, mesΩ, we obtain the estimate

‖ψ(u)‖2 ≤ χ(C2 + C
1/2
1 ) + ‖ψ(a)‖2 ≡ C ′2. (2.20)

(2.1) and (2.20) implies that (u+ ηMψ(u))t ∈ L∞(0, T ;L2(Ω)). The lemma is proved.

Lemma 2.2 Let the assumptions I–III are fulfilled and the hypotheses of Lemma 2.1 providing
the existence of the solution u ∈W to the direct problem (2.1)–(2.3) holds. Suppose that k(t) ≥ 0

on [0, T ]. Then the following assertions are valid.
1) If f ≥ 0 almost everywhere in QT , U0 ≥ 0 almost everywhere in Ω and β ≥ 0 almost

everywhere on ST , then u ≥ 0 for almost all (t, x) ∈ QT .
2) If at − f ≥ 0 almost everywhere in QT and a(0, x)−U0 ≥ 0 almost everywhere in Ω, then

u ≤ a for almost all (t, x) ∈ QT .

Proof. 1) We multiply (2.1) by the function exp
(

1
η

∫ t
0
k(τ)dτ

)
and transfer the first summand

to the right side of the obtained relation. Renaming t as θ and integrating this relation with
respect to θ from 0 to t, 0 < t ≤ T and integrating by parts with respect to θ in the term
contained ut we are led to the equality

u+ ηMψ(u) = U0 exp
(
− 1

η

∫ t

0

kdτ
)

+

∫ t

0

(k
η
u+ f

)
exp

(
− 1

η

∫ t

θ

kdτ
)
dθ. (2.21)

Let us consider the iterative scheme:

ui + ηMψ(ui) = U0 exp
(
− 1

η

∫ t

0

kdτ
)

+

∫ t

0

(k
η
ui−1 + f

)
exp

(
− 1

η

∫ t

θ

kdτ
)
dθ, (2.22)

ui
∣∣
ST

= β(t, x), i = 1, 2, ...; u0 = 0.
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Let vi and v be the solutions of the equations Mvi = ui and Mv = u, respectively, vi|ST =

v|ST = 0. We subtract (2.21) from (2.22) at the iteration i and multiply the difference by vi − v
in terms of the inner product of L2(Ω). By (2.6), after integration by parts with respect to
space variables and estimation of the right term in the resulting relation one can prove that
vraimaxt∈[0,T ] ‖vi − v‖1 → 0 and hence ui → u in L∞(0, T ;W−1

2 (Ω)) as i → ∞. Moreover,
ui, u ∈ L2p(QT ) by Lemma 2.1, which implies that ui → u weakly in L2(QT ) as i → ∞. In
accordance with lemma 1.2 [6] ui ≥ 0, i = 1, 2, .... Then u ≥ 0 for almost all (t, x) ∈ QT .

2) Let now the hypotheses of the second assertion hold. By the assertion 2) of lemma 1.2 [6]
ui ≤ a for almost all (t, x) ∈ QT , i = 1, 2, .... Since ui → u weakly in L2(QT ) as i → ∞ and
a ∈ L2p(QT ), this inequality holds for u for almost all (t, x) ∈ QT . The lemma is proved.

3. The existence and uniqueness of the solution to the in-
verse problem

From hereafter we suppose that the following condition on ψ(ρ) is fulfilled.
IV. The function ψ(ρ) is continuously differentiable on (−∞,+∞). Moreover, ψ′(ρ) ≥ ψ0 > 0

where ψ0 is a constant and for every σ > 0 there exists a constant L(σ) > 0 such that for all
ρ1, ρ2 ∈ [−σ, σ]

|ψ′(ρ1)− ψ′(ρ2)| ≤ L(σ)|ρ1 − ρ2|. (3.1)

By the solution of the inverse problem (2.1)–(2.4) we mean the pair of functions {u, k}
which belongs to the class W (t∗) × C([0, t∗]), где W (t∗) = {v |ψ(v) ∈ C([0, t∗];W 2

2 (Ω)), v ∈
C([0, t∗];L4(Ω)), vt ∈ L∞(0, t∗;L2(Ω)), (ψ(v))t ∈ L∞(0, t∗;W 2

2 (Ω))} and satisfies the equation
(2.1) for almost all (t, x) ∈ QT and the conditions (2.2)–(2.4) for t ∈ [0, t∗] where 0 < t∗ ≤ T .

Theorem 3.1 Let n ≤ 4 and the assumptions I–IV are fulfilled. Let also

(i) ∂Ω ⊂ C2, f ∈ C([0, T ];L2(Ω)), ψ(β) ∈ C1([0, T ];W
3/2
2 (∂Ω) ∩ L∞(∂Ω)), U0 ∈ L2(Ω),

ϕ1, ϕ2 ∈ C([0, T ]), ω ∈ C([0, T ];W
3/2
2 (∂Ω));

(ii) f ≥ 0 almost everywhere in QT and U0 ≥ 0 for almost all x ∈ Ω; β and ω are nonnegative
almost everywhere on ST ;

(iii) there is a number α > 0 such that

ϕ1 + Ψ ≥ α, (3.2)

a0(x) − U0(x) ≥ 0, (3.3)

F (t, x) ≡ at − f ≥ 0, (3.4)

Φ ≡ ϕ2 + (f, b)− η
〈
M(ψ(a))t, b

〉
M
≥ Φ0 +

α

α1
max
t∈[0,T ]

[(
‖at‖+

‖f‖
(ψ0ηm1)1/2

)
‖b‖
]
(3.5)

where Φ0 > 0 is a constant,

α1 = α− 2

(η3m1ψ0)1/2
‖a0 − U0‖ max

t∈[0,T ]
‖b‖ > 0. (3.6)
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Then there exists t∗, 0 < t∗ ≤ T , such that the inverse problem (2.1)–(2.4) has a unique solution
{u, k} ∈W (t∗). Moreover, the estimates

0 ≤ u ≤ a, 0 ≤ k(t) ≤ δ∗(t) (3.7)

hold for 0 ≤ t ≤ t∗ and x ∈ Ω where δ∗(t) is a continuous function on [0, t∗].

Proof. We reduce the problem (2.1)–(2.4) to an equivalent inverse problem with a nonlinear
operator equation for k(t). To this end, we multiply (2.1) by the solution b of the problem (2.8)
in terms of the inner product in L2(Ω) and integrate by parts with respect to x at the second
and third summands. By (2.4), this yields

(ut, b)− ϕ2 + ϕ1k(t) + η

∫
∂Ω

(ψ(β))t
∂b

∂N
ds+ k(t)

∫
∂Ω

ψ(β)
∂b

∂N
ds = (f, b),

whence in view of the fact that∫
∂Ω

(ψ(β))t
∂b

∂N
ds =

〈
M(ψ(a))t, b

〉
M
,

∫
∂Ω

ψ(β)
∂b

∂N
ds =

〈
Mψ(a), b

〉
M

= Ψ(t),

we obtain the equation

k(t) =
[
Φ− (at, b) + ((a− u)t, b)

]
(ϕ1 + Ψ)−1. (3.8)

Let a function δ(t) is positive and continuous on [0, T ]. We define the cut-off function

zδ(t) =


0, z(t) < 0,

z(t), 0 ≤ z(t) ≤ δ(t),
δ(t), z(t) > δ(t),

(3.9)

for every z(t) ∈ L∞(0, T ) and consider the following iterative scheme:

(ui + ηMψ(ui))t + ki−1
δ (t)Mψ(ui) = f(t, x), (t, x) ∈ QT , (3.10)

(ui + ηMψ(ui))
∣∣
t=0

= U0(x), x ∈ Ω, ui|ST = β(t, x), (3.11)

ki(t) =
[
Φ− (at, b) + ((a− ui)t, b)

]
(ϕ1 + Ψ)−1, i = 1, 2, ...; k0(t) = δ(t). (3.12)

By Lemma 2.2 and the assumption IV, the solution ui satisfies (3.7) and

ψ(0) ≤ ψ(ui) ≤ ψ(a) (3.13)

for every i = 1, 2, .... Moreover, ui and ψ(ui) satisfy the estimates (2.14)–(2.16), (2.18) and (2.20)
where K = maxt∈[0,T ] δ(t).

Let us now integrate (3.10) with respect to t from 0 to τ , 0 < τ ≤ T , and multiply the result
by ψiu = ψ(ui)−ψ(a) in terms of the inner product of L2(Ω). Integrating by parts in the second
and third summands we obtain

(ui − a, ψiu) +
〈
ηM(ψiu) +

∫ τ

0

ki−1
δ M(ψiu)dt, ψiu

〉
M

=
(
U0 − a0 −

∫ τ

0

Fdt, ψiu

)
. (3.14)

Further, we multiply (3.14) by kiδ(τ) and integrate by τ from 0 to θ, 0 < θ < T . Integrating by
parts with respect to τ in the last term we are led to the equality∫ θ

0

ki−1
δ

[
(ui − a, ψiu) + η

〈
Mψiu, ψ

i
u

〉
M

]
dτ +

1

2

〈
M

∫ θ

0

ki−1
δ ψiudt,

∫ θ

0

ki−1
δ ψiudt

〉
M

=
(
− a0 + U0 −

∫ θ

0

Fdt,

∫ θ

0

ki−1
δ ψiudt

)
+

∫ θ

0

(
F,

∫ τ

0

ki−1
δ (t)ψiudt

)
dτ. (3.15)
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Estimating the right part of (3.15) with the use of (2.5) and the Gronwall lemma yields

4η

∫ θ

0

ki−1
δ

〈
Mψiu, ψ

i
u

〉
M
dτ +

〈
M

∫ θ

0

ki−1
δ ψiudt,

∫ θ

0

ki−1
δ ψiudt

〉
M
≤

4
(
eθ − 1

)
m1

C2
3 (θ). (3.16)

where C3 = ‖a0 − U0‖+ 2θmaxt∈[0,T ] ‖F‖. By (2.5), (2.6), (3.14) and (3.16),

〈
M(ψiu, ψ

i
u

〉
M
≤ 1

η2m1
C2

3 (τ)
[
2(eτ − 1)1/2 + 1

]2
. (3.17)

We now multiply (3.10) by (ψiu)t in terms of the inner product in L2(Ω) and integrate by
parts in the second and third summands of the resulting equation. This yields

(uit, (ψ(ui))t) + η
〈
M(ψiu)t, (ψ

i
u)t
〉
M

= −ki−1
δ

〈
M(ψiu), (ψiu)t

〉
M

+ (uit, (ψ(a))t) +
(
f, (ψiu)t)

)
.

By estimating the right side of this equality with regard to (2.5), (3.17) and the assumption V,
we obtain

ψ0‖uit‖2 + η
〈
M(ψiu)t, (ψ

i
u)t
〉
M
≤ ψ0

{
‖at‖2 +

1

(ηm1ψ0)1/2

[
‖f‖+

ki−1
δ (t)

η
C̃3(t)

]}2

. (3.18)

Here C̃3(t) = C3(t)
(
2(et − 1)1/2 + 1

)
.

We are now in a position to reach an estimate for ki(t). By (3.9), (3.12) and (3.18),[
Φ− (uit, b)

]
(ϕ1 + Ψ)−1 ≥

{
Φ− γ(t)‖b‖ − δ(t) C̃3(t)‖b‖

(η3m1ψ0)1/2

}
(ϕ1 + Ψ)−1

where γ(t) =
(
‖at‖ + (ηm1ψ0)−1/2‖f‖

)
‖b‖. In view of (3.5) the last expression is nonnegative

when

δ(t) ≤ (Φ(t)− γ(t))(η3m1ψ0)1/2

C̃3(t)‖b‖
≡ δ′(t).

On the other hand, by (3.6), there is t1, 0 < t1 ≤ T , such that for 0 ≤ t < t1[
Φ− (uit, b)

]
(ϕ1 + Ψ)−1 ≤

{
Φ + γ(t) + δ(t)

C3(t)‖b‖
(η3m1ψ0)1/2

(
2(et − 1)1/2 + 1

)}
α−1 ≤ δ(t).

In particular, t1 can be chosen so that the inequality

ε(t) ≡ 2(et − 1)1/2

(η3m1ψ0)1/2

[
C3(T ) + T 1/2 max

t∈[0,T ]
‖F‖

]
max
t∈[0,T ]

‖b‖ ≤ qα1 (3.19)

holds on [0, t1] where 0 < q < 1 is a constant which will be defined below. Then in view of (3.5),
(3.6)

α−
C3(t) maxt∈[0,T ] ‖b‖

(η3m1ψ0)1/2

(
2(et − 1)1/2 + 1

)
≥ α1 − ε(t) ≥ (1− q)α1 > 0

and [
Φ− (uit, b)

]
(ϕ1 + Ψ)−1 ≤ δ(t) (3.20)

for

δ(t) ≥ (Φ + γ(t))(η3m1ψ0)1/2

α(η3m1ψ0)1/2 − C̃3(t)‖b‖
≡ δ′′(t)
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on [0, t1]. Moreover, δ′ ≥ δ′′ on an interval [0, t∗], t∗ ≤ t1. Really, in view of (3.5) and (3.19) the
inequality α1Φ(t)− αγ(t) ≥ α1Φ0 holds on [0, t1]. Therefore

δ′ − δ′′ ≥ (η3m1ψ0)1/2
{
α1Φ0 − 2ε(t)Φ

}{
α1C̃3(T ) max

t∈[0,T ]
‖b‖
}−1

where Φ = maxt∈[0,T ] |Φ(t)|. Taking t∗ from the condition

ε(t∗) ≤ α1 min

{
Φ0

2Φ
, q

}
(3.21)

we have δ′ − δ′′ ≥ 0 for all t ∈ [0, t∗]. Thus, by (3.20),

0 ≤ ki(t) ≤ δ′′(t), i = 1, 2, . . . (3.22)

for t ∈ [0, t∗]. Setting δ(t) = δ′′(t) in (3.9) we conclude based on the last estimate that kiδ(t)
coincides with ki(t) on [0, t∗] for every i = 1, 2, . . ..

Let us now turn to the estimation of Mψ(u). Integrating (3.10) with respect to t from 0 to
τ , 0 < τ ≤ t∗, and multiplying by Mψ(ui) in terms of the inner product in L2(Ω) we are led to
the equation

η‖Mψ(u)‖2 +
(∫ τ

0

ki−1Mψ(ui)dt,Mψ(ui)
)

=
(
− ui + U0 +

∫ τ

0

fdt,Mψ(ui)
)
. (3.23)

Multiplying this equality by ki−1, integrating with respect to τ from 0 to θ and estimating the
right term of the result with (2.16) we obtain

η

∫ θ

0

ki−1‖Mψ(ui)‖2dτ +
∥∥∥∫ θ

0

ki−1Mψ(ui)dt
∥∥∥2

≤ C2
4

η

∫ θ

0

ki−1dτ, (3.24)

where the constant C4 > 0 depends on mesΩ, p, c, C1, T , ‖U0‖ and maxθ∈[0,T ]{‖ψ(a)‖, ‖f‖}.
Furthermore, rearranging the second term from the left side to the right one in (3.23) and
estimating with (3.22) and (3.24), we arrive at the estimate

‖Mψ(ui)‖ ≤ C4

η3/2

[(∫ θ

0

δ′′(τ)dτ
)1/2

+ 1

]
. (3.25)

Let us define the operator A : L∞(0, t∗) → L∞(0, t∗) that takes each element each y(t) ∈
L∞(0, t∗) to the element

Ay(t) =
[
ϕ2 − (at − f, b)− η

〈
M(ψ(a))t, b

〉
M

+ ((a− uy)t, b)
]
(ϕ1 + Ψ)−1

where uy is a solution of the problem (2.1)–(2.3) with k(t) = y(t). In accordance with Lemma 2.1
the problem (2.1)–(2.3) has a unique solution uy ∈ L∞(0, t∗;L2p(Ω)) for every y(t) ∈ L∞(0, t∗).
Therefore the operator A is well defined for each y ∈ L∞(0, t∗). Moreover, by (3.22), the operator
A maps the set Y (t∗) = {y(t)|y(t) ∈ L∞(0, t∗), 0 ≤ y(t) ≤ δ′′} into itself.

The equation (3.8) can be treated as the operator equation

k = Ak. (3.26)

In the hypotheses of the theorem A is a contraction operator on Y (t∗). Indeed, let y1(t), y2(t) ∈
Y (t∗) and uy1, uy2 be the solutions of the problem (2.1)–(2.3) with k = y1 and k = y2, respec-
tively. The solutions uyj , j = 1, 2, satisfy (3.16)–(3.18) with yj(t) instead of kiδ. From (3.17) and
assumption V it follows that

ψ0‖uyj‖1 ≤ ‖ψ(uyj)‖1 ≤
C̃3(t∗)

ηm1

[
2(et

∗
− 1)1/2 + 1

]
+ max
t∈[0,t∗]

‖ψ(a)‖1 ≡ C5. (3.27)
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Let us consider the difference of the equations (2.1) for {uy1, y1} and {uy2, y2}.[
uy1 − uy2 + ηMwy

]
t

+ y1Mwy = (y2 − y1)Mψ(uy2) (3.28)

where wy ≡ ψ(uy1)−ψ(uy2). By integrating this equality with respect to t from 0 to τ , 0 < τ ≤ t∗,
taking the inner product of the resultant relation by wy in L2(Ω) and integrating by parts with
respect to x, we obtain(

uy1 − uy2, wy
)

+
〈
ηM

(
wy +

∫ τ

0

y1wydτ
)
, wy

〉
M

=
〈∫ τ

0

(y2 − y1)Mψ(uy2)dt, wy

〉
M
. (3.29)

Let us multiply this relation by y1(τ) and integrate with respect to τ from 0 to θ, 0 < θ ≤ t∗.
By estimating the right side of the resultant equation with regard to (3.16) and (3.27), we are
led to the inequality

η

∫ θ

0

y1

〈
Mwywy

〉
M
dτ +

〈
M

∫ θ

0

y1wydτ,

∫ θ

0

y1wydτ
〉
M
≤ C6

(∫ θ

0

|y2 − y1|dt
)2

(3.30)

where the constant C6 > 0 depends on η, m2, t∗, C5 and max0≤τ≤t∗ δ
′′(τ) We now rearrange the

last term of the left side to the right side of (3.29) and estimate the right side of the obtained
equality with (3.27) and (3.30). By the assumption IV, we have

2ψ0

∥∥uy1 − uy2

∥∥2
+ η
〈
Mwy, wy

〉
M
≤ 1

η
(C6 +m2C5)2

(∫ θ

0

|y2 − y1|dt
)2

. (3.31)

Furthermore, we take the inner product of (3.28) by (wy)t in L2(Ω), integrate by parts with
respect to x and rewrite the resultant equality as follows:(

(uy1 − uy2)2
t , ψ
′(uy1)

)
+ η
〈
M(wy)t, (wy)t

〉
M

= −
(
(uy1 − uy2)t, (wy)t(uy2)t

)
−y1

〈
Mwy, (wy)t

〉
M

+ (y2 − y1)
〈
Mwy, (wy)t

〉
M
. (3.32)

Estimating the right side of (3.32) with regard to the fact that, by (3.1), (3.13), (3.18) and
(3.31), the assumption IV and the embedding theorem,

‖uy1 − uy2‖L4(Ω) ≤
κ

m
1/2
1 ψ0

〈
Mwy, wy

〉1/2
M
≤ κ(C6 +m2C5)

ηm
1/2
1 ψ0

∫ θ

0

|y2 − y1|dt,

ψ
1/2
0 ‖(uy2)t‖L4(Ω) ≤ ‖ψ′(uy2)(uy2)t‖L4(Ω) ≤ max

t∈[0,t∗]

{
‖(ψ(a))t‖L4(Ω) + ψ

1/2
0 ‖at‖

}
+

1

(ηm1)1/2
max
t∈[0,t∗]

[
‖f‖+

δ′′

η
C3(t∗)

(
2(et

∗
− 1)1/2 + 1

)]
≡ C7

we are led to the relation

ψ0

∥∥(uy1 − uy2)t
∥∥2

+ η
〈
M(wy)t, (wy)t

〉
M
≤
[
C8

∫ t

0

|y2 − y1|dτ + C ′8|y2 − y1|
]2

(3.33)

where κ is the constant from the inequality of embedding W 1
2 (Ω) into L4(Ω), the posi-

tive constant C8 depends on mi, i = 1, 2, ψ0, η, κ, C5, C6, C7 and maxt∈[0,t∗] δ
′′; C ′8 =

(η3m1)−1/2C3(t∗)(2(et
∗ − 1)1/2 + 1).

On the other hand, according to the definition of the operator A

Ay1 −Ay2 = ((uy1)t − (uy1)t, b)(ϕ1 + Ψ)−1.
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By (3.2), (3.7), (3.21) and (3.33), one can show that

|Ay1 −Ay2| ≤
‖b‖
α
‖(uy1)t − (uy1)t‖ ≤

‖b‖
αψ

1/2
0

C8

∫ t

0

|y2 − y1|dτ +

{
1

2
+
ε(t∗)

α

}
|y2 − y1|

on [0, t∗]. By (3.21), we conclude that if q < min
{

1, α
2α1

}
, then q1 ≡

{
1
2 + ε(t∗)

α

}
< 1 and

|Ay1 −Ay2| ≤
√

2 maxt∈[0,T ] ‖b‖
αψ

1/2
0

C8

∫ t

0

|y2 − y1|dτ + q1|y2 − y1|. (3.34)

Introducing the equivalent norm
 ·

µ
= vraimaxt∈(0,t∗)

{
| · |e−µt

}
in L∞(0, t∗), we obtain

the inequality

Ay1 −Ay2


µ
≤
(
C8 maxt∈[0,T ] ‖b‖

αψ
1/2
0 µ

+ q1

)y2 − y1


µ

(3.35)

from (3.34). If
C8 maxt∈[0,T ] ‖b‖

αψ
1/2
0 µ

+ q1 < 1, (3.36)

then A is a contraction operator in the sense of the norm
 · 

µ
on Y (t∗). Hence by the

contraction mapping principle the operator A has a unique fixed point in Y (t∗).
Let us come back to the iterative scheme (3.10)–(3.12). As mentioned above, kiδ(t) = ki(t)

on [0, t∗] for every i = 0, 1, 2, . . .. By (3.22) and (3.35)

Aki −Aki−1

µ
≤
(

maxt∈[0,T ] ‖b‖
αψ

1/2
0

C8

µ
+ q1

)ki − ki−1
µ

,

which implies by (3.36) that the sequence ki converges in sense of the norm of L∞(0, t∗) as
i→∞, its limit k∗(t) is the solution of the equation (3.26) and satisfies the estimate (3.22).

Let u∗ is the solution of the problem (2.1)–(2.3) with k = k∗. Applying the arguments proved
the estimates (3.31) and (3.33) to the difference of the equations (3.10) and (2.1) with k = k∗[

ui − u∗ + ηM(ψ(ui)− ψ(u∗))
]
t

+ k∗M(ψ(ui)− ψ(u∗)) = (k∗ − ki)Mψ(ui). (3.37)

one can obtain the inequalities

2ψ0

∥∥ui − u∗∥∥2
+ η‖ψ(ui)− ψ(u∗))‖21 ≤

1

η

(
(C6 +m2C5)

∫ θ

0

|k∗ − ki|dt
)2

, (3.38)

ψ0

∥∥(ui − u∗)t
∥∥2

+ ηm1‖(ψ(ui)− ψ(u∗))t‖21 ≤ 2
[
C8

∫ t

0

|k∗ − ki|dτ + C ′8|k∗ − ki|
]2
.

From these relations it follows that ui → u∗ in C([0, t∗];L2(Ω)); ψ(ui) → ψ(u∗) in
C([0, t∗];W 1

2 (Ω)) and uit → u∗t in L∞(0, t∗;L2(Ω)) as i → ∞. Moreover, the estimates (3.7),
(3.17) and (3.18) for u∗ and u∗t holds.

Let us integrate (3.37) with respect to t from 0 to τ , 0 < τ ≤ t∗, take the inner product of
the resultant equality by Mψi = M(ψ(ui)− ψ(u∗)) in L2(Ω) and rewrite as

η‖Mψi‖2 = −(ui − u∗,Mψi)−
(∫ τ

0

k∗Mψidt,Mψi
)

+
(∫ τ

0

(k∗ − ki)Mψ(ui)dt,Mψi
)
.
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By applying the arguments similar to those in the proofs of (3.25) to the last relation with regard
to (3.22), (3.25) and (3.38), we are led to the inequality

‖Mψi‖2 ≤ C2
9

(∫ t∗

0

|k∗ − ki|dt
)2

exp
{ t
η

max
t∈[0,t∗]

δ′′
}

where the positive constant C9 depends on m2, c, C1, C5, C6, η, ψ0, T , ‖U0‖, ‖f‖, ‖ψ(a)‖ and
mesΩ. This proves thatMψ(ui)→Mψ(u∗) в C([0, t∗];L2(Ω)) as i→∞. ThereforeMψ(u∗) sat-
isfies the estimate (3.25). Moreover, the equation (3.37) suggests that M(ψ(ui))t → M(ψ(u∗))t
в L∞([0, t∗];L2(Ω)) as i → ∞. By (2.19), this means that ψ(ui) → ψ(u∗) in C([0, t∗];W 2

2 (Ω))

and (ψ(ui))t → (ψ(u∗))t in L∞([0, t∗];W 2
2 (Ω)) as i→∞.

Thus, the existence of the solution to the problem (2.1)–(2.3), (3.8) and, consequently, the
inverse problem (2.1)–(2.4) is proved. The uniqueness of the solution follows from the con-
tractibility of the operator A. Really, let {u1, k1} and {u2, k2} be two solutions of the problem
(2.1)–(2.3), (3.8). Then, by (3.35), the inequality

k2 − k1


µ

=
Ak2 −Ak1


µ
≤
(√

2 maxt∈[0,T ] ‖b‖
αψ

1/2
0

C8

µ
+ q1

)k2,−k1


µ
.

holds, which suggests in view of (3.36) that
k2 − k1

µ
≤ 0, i. e. k1 = k2 on [0, t∗]. This along

with (3.31) for {u1−u2, k1−k2} provides in turn that u1−u2 = 0 on [0, t∗]. Theorem is proved.
It may appear that the hypotheses of Theorem 3.1 are unwieldy and suspicious. However

the following example confirms that there are physically meaningful input data satisfying these
hypotheses.

Let us consider the nonlinear pseudoparabolic equation of filtration in the fissured rock [2].

(ut + εµBu(u))t +Bu(ζ(u)) = 0,

where u is the pressure of a liquid in pores, Bu = −(1/µ)div(l(u)∇) and µ is the viscosity of
the liquid. We can account for the weakly compressible liquid by setting ζ(u) = k(t)u where the
coefficient k(t) characterized the hydraulic properties of the fissured medium. In this case, we
are led to the equation (2.1) whereM = −∆, η = εµ, ψ(u) =

∫ u
0
l(z)dz, f ≡ 0. The permeability

l(u) is a continuous nonincreasing positive function of the pressure. Under such suppositions the
operator M and the function ψ(ρ) satisfy the assumptions I–IV.

The steady-state initial condition [1] is appropriate to the condition (2.1) with U0 = a(0, x). In
the conditions (2.3) and (2.4) we set β(t, x) = ψ−1(

∑3
j=1 ajxj+ga(t)), ω(t, x) =

∑3
j=1 bjxj+gb(t)

and ϕ1 ≡ 0. We suppose that Ω ⊂ R3
+ = {x|x ∈ R3, xi ≥ 0, i = 1, 2, 3}, ga(0) > 0, gb(t) > 0,

g′a(t) ≥ 0, bi(t) ≥ 0 on [0, T ] and ai, bi ≥ 0, i = 1, 2, 3. Let also
∑3
j=1 ajbj ≥ α > 0. Then

the conditions (3.2)–(3.4), (3.6) are fulfilled. If ϕ2(t) ≥ ϕ0 > 0 and the domain Ω is sufficiently
small, then the inequality (3.5) holds with some 0 < Φ0 < ϕ0.

4. Aknowledgement

This research was supported by the Government of the Russian Federation under the grant
14.Y26.31.0006.

– 11 –



Journal of Siberian Federal University. Mathematics & Physics 0000, 0, 001–013

References

[1] G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of
homogeneous liquids in fissured blocks [strata], J. Appl. Math. Mech., 24(1960), 1286–1303
(Russian).

[2] M. Bohm, R.E. Showalter, Diffusion in Fissured Media, SIAM J. of Mathematical Anal.,
16(1985), 500–509.
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entialgleichungen. Mathematische Lehrbücher und Monographien, II. Abteilung, Mathema-
tische Monographien. Akademie-Verlag, Berlin 1974. V. 38.

[4] A.I. Kozhanov, O razreshimosti koeffitsientnikh obratnikh zadach dlya nekotorikh uravnenii
sobolevskogo tipa (On the solvability of the coefficient inverse problems for equations of
Sobolev type), Nauchniye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya
"Matematika. Phizika", 5(2010), 88–98. (Russian)

[5] J.-L.Lions, E. Magenes, Problemes aux Limites Non Homogenes et Applications. Vol. 1.
Travaux et Recherches Mathematiques. No. 17, Dunod, Paris, 1968.

[6] A.Sh. Lyubanova, On an inverse problem for quasi-linear elliptic equation, Journal of
Siberian Federal University. Mathematics and Physics, 8(2015), 38–48.

[7] A.Sh. Lyubanova, A. Tani, An inverse problem for pseudoparabolic equation of filtration.
The existence, uniqueness and regularity, Appl. Anal., 90(2011), 1557–1571.

[8] M. Sh. Mamayusupov, O zadache opredeleniya koeffitsiyentov psevdoparabolicheskogo urav-
neniya (The problem of determining coefficients of a pseudoparabolic equation), Studies in
integro-differential equations, Ilim, Frunze, 1983, no. 16, 290–297. (Russian)

[9] W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differ-
ential equation from overspecified boundary data, Appl. Anal., 10(1980), 231–242.

[10] R.E. Showalter, T.W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math.
Anal., 1(1970), 1–26.

[11] A.G. Sveshnikov, A.B. Alshin, M.O. Korpusov, Yu.D. Pletner, Lineyniye i nelineyniye urav-
neniya sobolevskogo tipa (Linear and nonlinear equations of the Sobolev type). Physmatlit,
Moskow, 2007.

Обратная задача для нелинейного псевдопараболического
уравнения типа фильтрации

Анна Ш. Любанова
В работе обсуждается корректность обратной задачи отыскания неизвестного коэффициента,
зависящего от времени в нелинейном псевдопараболическом уравнении третьего порядка по до-
полнительной информации о решении на границе. Доказывается теорема существования и един-
ственности сильного решения. При доказательстве теоремы исходная обратная задача сводится
к эквивалентной задаче с операторным уравнением для неизвестного коэффициента.

Ключевые слова: локальная теорема существования и единственности, априорная оценка, обрат-
ная задача, нелинейное уравнение высшего порядка, псевдопараболическое уравнение, фильтрация

– 12 –


