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The paper discusses the correctness of the inverse problem on finding an unknown coefficient dependent
on t in the nonlinear pseudoparabolic equation of the third order with an additional information on the
boundary. The existence and uniqueness theorem is proven. The proof of the theorem is carried out
by the reduction of the original inverse problem to the equivalent one with an operator equation for the

unknown coefficient.
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1. Introduction

This paper is devoted to the inverse problems of the identification of coefficients in the

pseudoparabolic equation
(u+ Lyu)e + Lou = f (1.1)

with the differential operators Ly and Ly of even order with respect to spacial variables. Such
equations arises in the models of the heat transfer, filtration in the fissured media, quasi-
stationary processes in the crystalline semiconductor (see more detailed review in [10, 11]).

The study of inverse problems for pseudoparabolic equations goes back to 1980s. The first
result [9] refers to the inverse problems of determining a source function f in (1.1) with linear
operators Ly and Ly of the second order, L1 = Ly. We should mention also the results in [4, 8]
concerning with coefficient inverse problems for linear equation (1.1). In [8], the uniqueness
theorem is obtained and an algorithm of determining a constant a in the second order term
is constructed. In [4], the solvability is established for two inverse problems of recovering the
unknown coefficients in terms u (the lowest term of Lou) and wuy of (1.1).

In [7], the inverse problem of finding the coefficient & depending on time in the equation

(u+nMu)s + kEMu+ gu=f (1.2)

with integral data on the boundary is examined. Here M is a second order linear differential
operator in the space variables. Sufficient solvability and uniqueness conditions for a solution to
the problem of identification of the coefficient k(t) are established.

In the present article we establish solvability and uniqueness of solutions to the inverse prob-
lem of finding an unknown coefficient k¥ = k(t) in the nonlinear equation (1.2) with the use of an
additional information on the boundary (see (2.1)—(2.4)).
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2. Statement of the Problem and Preliminary Results

Let Q be a bounded domain in R™ with a boundary 092 € C2?, T is an arbitrary real number
and Qr = Q% (0,7) a cylinder in R" with the lateral boundary Sy = 9 x (0,7'). The points
of Q are denoted by x, the points of [0,7T] by ¢, and the points of Q1 by (¢, z). Below we use the
following notation: |- || and (-,-) are the norm and the inner product of L*(2); | - [|; and (-, -)

are the norm of W (Q) and the duality relation between W4 (Q) and W, 7 (Q) (j = 1,2).

Let M : W3 (2) — (W3 (2))* is a linear differential operator of the form M = —div(M(z)V)+
m(x)I where M(z) = (m;;(x)) is a matrix of functions m;;(x), 4,7 = 1,2,...,n, m(x) is a scalar
function and I is the identity operator. We consider the following inverse problem. For a given
constant n and functions f(¢,z), (¢, ), Us(x), w(t,x), v1(t), p2(t) find the pair of functions
(u(t, x), k(t)) satisfying the equation

J

(u+nMi(u)) + k() M(u) = f(t,z), (t,z)€ Qr, (2.1)

the initial condition
(u+ nM¢(u))|t:0 =Up(x), z€Q, (2.2)

the boundary data
u=pB(tx), (t,z)€ Sr, (2.3)

and the condition of overdetermination
A(Y(u))e oY (u) _

[ {2 sk 2 ) s+ a 0() = 2t 2.4

for t € (0,T]. Here a% = (n, M(z)V) and n is the unit outward normal vector to 9f2.

If w(t,z) =1 and ¢ = 0, then the integral condition of overdetermination (2.4) means, for
instance, the total discharge of a liquid through the surface of the ground.

We assume that the following conditions are fulfilled.

L. M is an operator of elliptic type, that is, there exist positive constants m; and ms such
that for any v € W3 (2)

malollf < (Mv,v), < mollv|? (2.5)
and m(z) > 0 in Q.
II. my;(z), Omy;/0x; , i,5,l =1,2,...,n, and m(z) are bounded in 2 and the operator M
is selfadjoint, that is m;;(z) = mj;(z) for ¢,j =1,2,...,n.
ITI. The function ¥(p) is an injection of (—oo, +00) onto itself. The injection is continuous
and monotone, i. e.

(¥(p1) = ¥(p2))(p1 — p2) 2 0 (2.6)

for all py,pa € (—00,+00), p1 # p2. The mapping ¥~ (v) from L?*(Q) to LI(Q) (¢ > 2) is
demicontinuous (1 ~!(p) — the inverse of ¥(p)).
We denote by a(t, z), and b(¢, z) the solutions of the problems

Miyp(a) =0 BQ, a|aQ = B(t, z), (2.7)
Mb=0 BQ, b|89 =w(t,x),

and introduce the additional notation:

(Muvy,v3),, = (M(2)Vv, Voa) + (m(z)vr,v2), 01,02 € W3 (Q);

M

-
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U(t) = <M1p(a),b>17M7 F(t,z) =a; — f(t,z), V= tre%%}%] U(t), o= térf(i)%] ©1(%).

The existence and uniqueness of the solution to the problems (2.7) and

(u(0,z) + 77M¢(U(07$)))’t:0 = Up(z), U(07$)’89 = 5(0,z) (2.9)

are ensured by the Lemma 1.1 [6]. The trace u|;—g = ug belongs to LP(2) and 1 (ug) € WE(Q).
Moreover, the solutions of the problems (2.7) and (2.9) satisfy the comparison theorem (see
Lemma 1.2 [6]).

By the solution of the direct problem (2.1)-(2.3) we mean the function u of class V =
{v]v(v) € C([0,T]; W3 (Q)),v + nMp(v) € C([0,T); Wy *(Q))} which satisfies the equation

{(u+nMp(u)e,v), + (Mp(u),v), = (f,v),

for Vv € L2(0,T; W21 (2)), the identity (u+nMv(u)),v) Up,v), and the condition (2.3).

1|t:0:<

Lemma 2.1 Let the assumptions I-III are fulfilled, 0Q C C2%, k € L*=(0,T), f €
C([0,T); L*(2)), Uy € L3*(Q), ¥(B) € Cl([O,T];W;/Q(aQ)), n be a positive constant. Then
the following assertions hold.

1) The direct problem (2.1)-(2.8) has a unique solution u € V.

2) If in addition ¥(B) € C([0,T; W23/2(8Q)) and for all p € (—o0,400) the inequality

v (p)| > clpl? (2.10)

holds with constants ¢ > 0 up > 1, then u € W where W = {v|¢(v) € L>(0,T; W(Q)),
v e L>®(0,T; L?(Q)), (v+nMi(v))y € L>=(0,T; L*(Q))}.

Proof. 1) Let us define the function ¥ = ¢ (u) — 1h(a) and rewrite the problem (2.1)~(2.3) in
terms of .

[ @+ (@) — a+nMy], + k(t) My = F, (2.11)
[~ (4 +(a)) — a+nMP]|,_ =Uo—a(0,z), |y, =0. (2.12)

In the hypotheses of the theorem the nonlinear operator M mapping L>°([0,T); WZI(Q)) into
L>°([0,T); Wy 1(Q)) by the rule Mv = ¢~ (v 4 ¥(a)) — a + nMuv, is radially continuous and
strongly monotone. Then, by Theorem 2.2 [3, Chapter 5|, the problem (2.11)-(2.12) has a unique
solution ¢ € C([0,T); W4 () and Mv € C*([0,T]; Wy *(R2)). Hence, ¥(u) € C([0,T]; W4 (2))
and u + nMy(u) € CL((0,T]; Wy (@),

We estimate the norm of 1 (u) in C([0, T]; W3 (2)). In view of (2.11) and (2.12), the integration
of (2.1) with respect to ¢ from 0 to 7, 0 < 7 < T" and the multiplication of the result by ¥(u) in
terms of the duality between W3 (Q) and W, *(Q) gives:

(1= 0, 50) 4 (M), D), = (U~ a0+ [ [F = KOMI@ar ) (213

where ag(z) = a(0,x). Estimating the right term of (2.13) with the help of the Cauchy inequality,
(2.5), (2.6) and applying the Gronwall lemma, one can obtain the inequality

7 1 T 2 miK2T?
2 2 2 _
[9IR < s [||UO ao||W2,1(Q)+T/0 HFHW;(Q)dt} exp(“h ) =0 (214)

_ —
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(K = maxyc(o,7 |k(t)|), whence

o)l < 172 + [[p(a)]s- (2.15)

2) If (2.10) holds, then, by (2.15), we have

1
lulloney < 2 (€12 + lwt@)l). (2.16)

Furthermore, integrating (2.1) with respect to ¢ from 0 to 7, 0 < 7 < T and multiplying by
M(u) in terms of the inner product of L?(§2) we reach the equality

WM = (W w M) + ([ gt arow) - ([ kOdv00@ M), (217

In view of (2.16), (2.17) estimating the right term of this relation with the help of the Cauchy
inequality and applying the Gronwall lemma to the resulting relation gives:

\/5 p=1 K321
[M(u)|| < 7((mesﬂ) % ||ullpr o) + 10l +Ttg[10a>;] Ifll)e=m = Co. (2.18)

From (2.14), (2.18) and the inequality [5, Chapter 2]
[oll2 < x([[Mvl]| + [[v]l1) (2.19)
for v € W21 (Q) N WZ(Q), where the constant y depends on n, m1, mes(), we obtain the estimate
l()ll> < x(Ca + 1) + [¥(@)]l> = Cj. (2.20)
(2.1) and (2.20) implies that (u + nM1(u)), € L°°(0,T; L*(Q2)). The lemma is proved.

Lemma 2.2 Let the assumptions I-1II are fulfilled and the hypotheses of Lemma 2.1 providing
the existence of the solution u € W to the direct problem (2.1)-(2.3) holds. Suppose that k(t) > 0
on [0,T). Then the following assertions are valid.

1) If f > 0 almost everywhere in Qr, Uy > 0 almost everywhere in Q and 8 > 0 almost
everywhere on St, then uw > 0 for almost all (t,x) € Q7.

2) If a — f > 0 almost everywhere in Qr and a(0,x) — Uy > 0 almost everywhere in ), then
u < a for almost all (t,x) € Qr.

Proof. 1) We multiply (2.1) by the function exp (% fot k(7)dr) and transfer the first summand
to the right side of the obtained relation. Renaming ¢ as 6 and integrating this relation with
respect to # from 0 to t, 0 < t < T and integrating by parts with respect to 6 in the term
contained u; we are led to the equality

1 [t t oL 1 [t

w+ nMp(u) = Uy exp ( - 7/ de) +/ <7u + f) exp ( - 7/ kd7>d9. (2.21)
nJo o 71 nJe

Let us consider the iterative scheme:

wl + nMap(ut) = Up exp ( _ ;/t k:dT) + /Ot (%ui—l + f) exp ( — 71]/‘: k:dT)dG, (2.22)

0
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Let v* and v be the solutions of the equations Mv' = u® and Mv = u, respectively, v*|s, =
v|s, = 0. We subtract (2.21) from (2.22) at the iteration i and multiply the difference by v — v
in terms of the inner product of L?(Q2). By (2.6), after integration by parts with respect to
space variables and estimation of the right term in the resulting relation one can prove that
vraimaxsepo,r) ||[v" — vll1 = 0 and hence u* — w in L*(0,T; Wy 1)) as i — oco. Moreover,
u',u € L?”(Qr) by Lemma 2.1, which implies that u’ — u weakly in L?(Qr) as i — oo. In
accordance with lemma 1.2 [6] u® > 0, i = 1,2,.... Then u > 0 for almost all (¢,7) € Q7.

2) Let now the hypotheses of the second assertion hold. By the assertion 2) of lemma 1.2 [6]
u? < a for almost all (t,x) € Qr, i = 1,2,.... Since u! — u weakly in L?(Qr) as i — oo and
a € L*”(Qr), this inequality holds for u for almost all (t,z) € Q7. The lemma is proved.

3. The existence and uniqueness of the solution to the in-
verse problem

From hereafter we suppose that the following condition on v (p) is fulfilled.
IV. The function ¥(p) is continuously differentiable on (—oo, +00). Moreover, ¢'(p) > 19 > 0
where 1y is a constant and for every o > 0 there exists a constant L(c) > 0 such that for all

p1,p2 € [~0,0]
19 (p1) = ' (p2)| < L(0)|p1 — pal- (3.1)
By the solution of the inverse problem (2.1)—(2.4) we mean the pair of functions {u,k}
which belongs to the class W (t*) x C([0,t*]), tme W(t*) = {v|¢(v) € C([0,t*]; WZ(Q)), v €
C([0,t*]; L*(2)), v, € L>=(0,t*; L3(Q)), (¢(v)): € L>®(0,t*; WZ(Q))} and satisfies the equation
(2.1) for almost all (¢,2) € Qr and the conditions (2.2)—(2.4) for t € [0,t*] where 0 < t* < T.

Theorem 3.1 Let n < 4 and the assumptions I-IV are fulfilled. Let also

(i) 92 C C2, f € C([0, T LA(R), $(B) € CH([0,T);W3'*(9Q) N L=(09)), Uy € L*(Q),
1,02 € C(10,T]), w € C([0,T]; W% (09));

(ii) f > 0 almost everywhere in Qr and Uy > 0 for almost all x € Q; B and w are nonnegative
almost everywhere on St;

(iii) there is a number oo > 0 such that

©®1 + \IJ 2 «,
ap(x) — Up(x) >0,
F(t,z) = ar— f >0,

® = pa+ (1) = (M@)o + S max [(lodd + =L yoi] 9

where ®g > 0 is a constant,

2
] = o — )1/2||a0_

S U bl| > 0. 3.6
(Pt 0||t16%3’§] o] > (3.6)

-5 -
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Then there exists t*, 0 < t* < T, such that the inverse problem (2.1)—(2.4) has a unique solution
{u,k} € W(t*). Moreover, the estimates

0<u<a, 0 <k(t) <6*(t) (3.7)
hold for 0 <t <t¢* and x € 2 where §*(t) is a continuous function on [0,t*].

Proof. We reduce the problem (2.1)—(2.4) to an equivalent inverse problem with a nonlinear
operator equation for k(t). To this end, we multiply (2.1) by the solution b of the problem (2.8)
in terms of the inner product in L?(2) and integrate by parts with respect to = at the second
and third summands. By (2.4), this yields

(ut,b>—mwlk(t)+n/m<¢</3>>t—ds+k /w —ds-(f, b),

whence in view of the fact that

| w@gds = @@ty [ 08 Tds = (Mula)b),, = ¥
we obtain the equation
k(t) = [<I> — (at,b) + (@ — u)y, b)] (o1 +0)" L (3.8)
Let a function (¢) is positive and continuous on [0,T]. We define the cut-off function
0, z(t) <0,
z5(t) = ¢ z(t), 0<z(t) <6(1), (3.9)

o(t), =(t) > d(t),

for every z(t) € L°>°(0,T) and consider the following iterative scheme:

(u' + nMw(ui))t + kN M) = f(t, ), (t,z) € Qr, (3.10)

(u® + M (u ’t o =Uo(z), €, u'|s, = B(t, ), (3.11)

E'(t) = [®— (ar,0) + ((a —u'),0)] (o1 + ), i=1,2,..;  K°(t) =4(t). (3.12)
By Lemma 2.2 and the assumption IV, the solution u’ satisfies (3.7) and

»(0) < ¥(u') < U(a) (3.13)

for every i = 1,2, .... Moreover, u’ and 9 (u’) satisfy the estimates (2.14)—(2.16), (2.18) and (2.20)
where K = max;co,71 (1)

Let us now integrate (3.10) with respect to ¢ from 0 to 7, 0 < 7 < T, and multiply the result
by ¢! = 1(u') —1(a) in terms of the inner product of L?(2). Integrating by parts in the second
and third summands we obtain

=)+ (mrd) + [ M) = (Uo—ao— [ Fau). @y

Further, we multiply (3.14) by k%(7) and integrate by 7 from 0 to 6, 0 < § < T Integrating by
parts with respect to 7 in the last term we are led to the equality

/a (0 — ay ) + n( M, ), Jdr + ;<M/9 Hlid /0 kg,lwidt>1\/[

0 0 0
0 0 ) ] 0 T ]
= (a0 +Up - / Fdt, / Ky k) + / @ / K ukdt)dr. (3.15)
0 0 0 0

-6 —
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Estimating the right part of (3.15) with the use of (2.5) and the Gronwall lemma yields

4(ef - 1)

- C3(0). (3.16)

0 0 0
477/ kg—1<Mw;,wi>MdT+<M/ kg—lngdt,/ kf;lw;dt> <
0 0 0 M
where C3 = [[ag — Up|| + 20 max,cjo,7) | F]|. By (2.5), (2.6), (3.14) and (3.16),

(M8, < n%mo;f‘(f) 20" — 1)V 4 1] (3.17)

We now multiply (3.10) by (%) in terms of the inner product in L?*(Q2) and integrate by
parts in the second and third summands of the resulting equation. This yields

(uy, (Y(u’))e) + (MWL), (¢Z)t>M = —k§i N (M@}), (¢Z>t>M + (uf, (¥(@)e) + (f, (L))

By estimating the right side of this equality with regard to (2.5), (3.17) and the assumption V,
we obtain

ks (1)

Solldl? + (ML), (i)Y, < wo{mtn? n 11+ é:«t)}} (318)

1
(nmatpg)t/? {
Here C3(t) = Cs(t) (2(e! — 1)/2 4 1).

We are now in a position to reach an estimate for k*(t). By (3.9), (3.12) and (3.18),
_Gs@®bll
(n3matho)t/?

where y(t) = ([|la:|| + (mmatho) ~H2(|£]))]1b]]. In view of (3.5) the last expression is nonnegative
when
(@) (O _ e
Cs(t)]/bll -
On the other hand, by (3.6), there is t1, 0 < t; < T, such that for 0 <t < t;

2 - )]+ 07 = fo a0l - 500 b+ 0

6(t) <

C3(t) |1l
(nPmatpg)/?

In particular, t; can be chosen so that the inequality

[<1> — (ul, b)] (p1+ )7 < {(I) +y(t) +5(t) (2(e" = 1)/2 4 1)}a—1 <4§(1).

e(t)

2(et — 1)1/2
(m3matho)1/? [

holds on [0, ¢1] where 0 < ¢ < 1 is a constant which will be defined below. Then in view of (3.5),
(3.6)

1/2 < 1
Co(T) +T"/% max 17 o bl < gan (3.19)

C3(t) maxye(o, 7y [0

o= — e G DY) Zan—e(t) 2 (1= gan >0
and
[@ — (uf,b)] (1 + W) ! < 65(t) (3.20)
for
5(t) > (@ + () (Pmarhe)/2 5 (1)

a(nPmte) /2 — Cs(t) bl

-7 —
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on [0,t1]. Moreover, §' > ¢” on an interval [0, ¢*], t* < t;. Really, in view of (3.5) and (3.19) the
inequality a3 ®(t) — ay(t) > a1 Pg holds on [0,t1]. Therefore
_ - —1
§ =48> (173m11/10)1/2{a1<1>0 - 25(t)¢}{a103(T) max, Hb||}

tel0,T

where ® = max;e[o,7] |®(t)|. Taking t* from the condition

o

(1) < in{ —2 3.21
() < armin{ 2.} .21

we have ¢’ — ¢” > 0 for all ¢ € [0,¢*]. Thus, by (3.20),
0<k(t)<d'), i=1,2... (3.22)
for t € [0,¢*]. Setting §(t) = 6”(¢) in (3.9) we conclude based on the last estimate that k%(¢)

coincides with k(t) on [0,t*] for every i = 1,2,.. ..

Let us now turn to the estimation of M (u). Integrating (3.10) with respect to ¢ from 0 to

7, 0 < 7 < t*, and multiplying by Mt (u?) in terms of the inner product in L?(Q) we are led to
the equation

nllMap(w)|? + (/OT ki_le(ui)duMl/J(ui)) - (—ui + Uy +/OT fdt7M¢(ui)). (3.23)

Multiplying this equality by k'~!, integrating with respect to 7 from 0 to § and estimating the
right term of the result with (2.16) we obtain

o , 0. Loz Ccr ot
,7/ k"_1||M1p(ul)||2dT+H/ B Mt sf/ K~ ldr, (3.24)
0 0 0

where the constant Cy > 0 depends on mesQ, p, ¢, C1, T, ||Up|| and maxgejo,r{|[v(a)ll, [ f]}-
Furthermore, rearranging the second term from the left side to the right one in (3.23) and
estimating with (3.22) and (3.24), we arrive at the estimate

M (|| < 77%12 {(/09 5"(T)d7)1/2 + 1}. (3.25)

Let us define the operator A : L>=(0,t*) — L*(0,¢*) that takes each element each y(t) €
L*>(0,t*) to the element

Ay(t) = [p2 = (ae = £,0) = n(M(¥(a)e, b) ,, + ((a = uy)e,0)] (01 + )7

where u, is a solution of the problem (2.1)—(2.3) with k(¢) = y(¢). In accordance with Lemma 2.1
the problem (2.1)—(2.3) has a unique solution u, € L>(0,t*; L??(Q)) for every y(t) € L>(0,t*).
Therefore the operator A is well defined for each y € L>°(0, ¢*). Moreover, by (3.22), the operator
A maps the set Y (¢*) = {y(t)|y(t) € L>(0,t*),0 < y(t) < §"} into itself.

The equation (3.8) can be treated as the operator equation

k = Ak. (3.26)

In the hypotheses of the theorem A is a contraction operator on Y (¢*). Indeed, let y; (%), y2(¢) €
Y (t*) and uy1,uy2 be the solutions of the problem (2.1)-(2.3) with & = y; and k = y,, respec-
tively. The solutions u,;, j = 1,2, satisfy (3.16)—(3.18) with y;(¢) instead of k%. From (3.17) and
assumption V it follows that

Cs(t")

ollugg s < ()l € B2 [2 ~ 12 1)+ max (@l =Cs (327)

— 8 —
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Let us consider the difference of the equations (2.1) for {uy1,y1} and {uy2,y2}.
[uyl — Uy2 + WMwy]t +yrMwy = (y2 — y1) My(uy2) (3.28)

where wy, = ¥ (uy1)—1(uy2). By integrating this equality with respect to t from0to 7,0 < 7 < t*,
taking the inner product of the resultant relation by w, in L*(2) and integrating by parts with
respect to x, we obtain

(1 — wy2, wy) + <77M(wy + /OT ylwydT)va>M = </07(y2 = y1) My (uy2)dt, wy>M~ (329)

Let us multiply this relation by y;(7) and integrate with respect to 7 from 0 to 6, 0 < 6 < ¢*.
By estimating the right side of the resultant equation with regard to (3.16) and (3.27), we are
led to the inequality

0 0 0 0 9
77/ y1<Mwywy>MdT + <M/ ylwydT,/ ylwyd7'> < C6</ lya — y1|dt) (3.30)
0 0 0 M 0

where the constant Cs > 0 depends on 7, ma, t*, Cs and maxo<,<¢+ 0”(7) We now rearrange the
last term of the left side to the right side of (3.29) and estimate the right side of the obtained
equality with (3.27) and (3.30). By the assumption IV, we have

1 o 2
2%”%1 - “y2H2 Jr77<]\4wyawy>1\4 < 5(06 + m205)2(/ ly2 — yl\dt) . (3.31)
0

Furthermore, we take the inner product of (3.28) by (wy); in L?(f), integrate by parts with
respect to  and rewrite the resultant equality as follows:

((“yl - uy?)%» @bl(uyl)) + 77<M(wy)t» (wy)t>M = _((“yl — Uy2)t, (wy)t(u?ﬂ)t)
—y1(Mwy, (wy)e) ,, + (Y2 — y1)(Mwy, (wy)e),,- (3.32)

Estimating the right side of (3.32) with regard to the fact that, by (3.1), (3.13), (3.18) and
(3.31), the assumption IV and the embedding theorem,

| /\

1/2 Cﬁ +m205
[uy1 — uyallpa(a) < m1/2 (Muwy, wy) TPy / ly2 — y1dt,

¢yWWth4)<WWWQWMHMM1<IMX{W()Hhm1+WMWM}

1
+(77m )12 te cfo. t*

MHZ@<xw¥nW+ﬂ:@

we are led to the relation

t 2
Wol| (uy1 — Uy2)tH2 + (M (wy)s, (wy)e),, < {Cs/ ly2 — y1ldT + Cglyz — yll} (3.33)
0

where k is the constant from the inequality of embedding W} (Q) into L*(f), the posi-
tive constant Cg depends on m;, i = 1,2, 9o, 0, k, Cs, Cs, C7 and maxycjo4-)0”; Cg =
(11Pma) "1 205 (t) (2" — 1)V + 1),

On the other hand, according to the definition of the operator A

Ayr — Ayz = ((uy1)e — (uy1)e, b) (1 + ‘I’)_l
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By (3.2), (3.7), (3.21) and (3.33), one can show that

bl [b]] ' 1 e(t)
[Ayr = Ayo| < | (uy1)e = (uyn)el| < awé/zCs ; 2 = yaldr + 9 5+ == rly2 — il

on [0,¢*]. By (3.21), we conclude that if ¢ < min {1, ;2-}, then ¢, = {1 + i)} < 1and

) 201
V2max;cjo 71 [|b]]
|Ay; — Ayo| < YP Cs / ly2 — y1ldT + q1ly2 — y1- (3.34)
Y
Introducing the equivalent norm | - | , = Uraimaxye (o) {|-]e7#t} in L>(0,¢*), we obtain

the inequality

C b
R A e

5 +q1> |2 w1 ], (3.35)
o M

from (3.34). If
Cg maxyeqo,7) ||bl|

aw1/2

then A is a contraction operator in the sense of the norm | . Iu on Y (t*). Hence by the
contraction mapping principle the operator A has a unique fixed point in Y (t*).

Let us come back to the iterative scheme (3.10)-(3.12). As mentioned above, k%(t) = k'(t)
on [0,t*] for every ¢ = 0,1,2,.... By (3.22) and (3.35)

i i max;eo,71 ||l C i i
| Ak — Ak 1|M§(te[m:+q1>|kk gy

1/2
Qg

+q <1, (3.36)

which implies by (3.36) that the sequence k’ converges in sense of the norm of L>(0,t*) as

i — 00, its limit k*(¢) is the solution of the equation (3.26) and satisfies the estimate (3.22).
Let u* is the solution of the problem (2.1)—(2.3) with & = k*. Applying the arguments proved

the estimates (3.31) and (3.33) to the difference of the equations (3.10) and (2.1) with k = k*

[ =+ M) = ()] + R M) - ) = (6 = )M (3.37)

one can obtain the inequalities

240 [u’

i * 2 1 o * i 2
(W) = < 3 ((CormaCs) [ =lar) . (339)

. ) . .12
ol (' = w|* + mmall (') — p))lF < 2[Cs [ K = Klar + Gkt — K|
0

From these relations it follows that u' — w* in C([0,t*]; L*(Q)); ¥(u') — (u*) in
C([0,t*]; W5 (2)) and ui — uj in L°°(0,t*; L?(2)) as i — oo. Moreover, the estimates (3.7),
(3.17) and (3.18) for u* and u; holds.

Let us integrate (3.37) with respect to ¢ from 0 to 7, 0 < 7 < t*, take the inner product of
the resultant equality by My = M (¢ (u’) — 1 (u*)) in L?(2) and rewrite as

Al M2 = —(ul — u*, M) / k* Myidt, M¢) (/Of(k* —ki)Mzb(ui)dt,Mw).
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By applying the arguments similar to those in the proofs of (3.25) to the last relation with regard
to (3.22), (3.25) and (3.38), we are led to the inequality

@2 2 " * i ? t "
[ My SCg(/O k" —k Idt) eXp{;tg[l(%ggﬁ }
where the positive constant Cy depends on ms, ¢, C1, Cs, Cs, 0, Yo, T, ||[Uoll, || f]l, |1(a)| and
mes(). This proves that My (u?) — My (u*) 8 C([0,t*]; L?(Q2)) as i — co. Therefore M1 (u*) sat-
isfies the estimate (3.25). Moreover, the equation (3.37) suggests that M (¢ (u®)); — M (¢(u*))s
B L>([0,t*]; L*(Q)) as i — oco. By (2.19), this means that ¢ (u’) — ¥ (u*) in C([0,t*]; WZ(2))
and ((u?)); — (¥(u*)) in L=([0,t*]; WE(Q)) as i — oo.

Thus, the existence of the solution to the problem (2.1)—(2.3), (3.8) and, consequently, the
inverse problem (2.1)—(2.4) is proved. The uniqueness of the solution follows from the con-
tractibility of the operator A. Really, let {u1,k1} and {ug, k2} be two solutions of the problem
(2.1)—(2.3), (3.8). Then, by (3.35), the inequality

Vamaxie i Il ¢
|k2_k1|u: |A/€2—Ak‘1|u§( at?/OQT] M8+Q1) |k27—k1lu-

holds, which suggests in view of (3.36) that I ko — k1 | L S0, i. e. k; = ko on [0,¢*]. This along
with (3.31) for {uy; —us, k; — ko} provides in turn that uy —ug = 0 on [0,¢*]. Theorem is proved.

It may appear that the hypotheses of Theorem 3.1 are unwieldy and suspicious. However
the following example confirms that there are physically meaningful input data satisfying these
hypotheses.

Let us consider the nonlinear pseudoparabolic equation of filtration in the fissured rock [2].
(ut + epBu(u))e + Bu(((u)) =0,

where u is the pressure of a liquid in pores, B, = —(1/u)div(l(u)V) and p is the viscosity of
the liquid. We can account for the weakly compressible liquid by setting ((u) = k(t)u where the
coefficient k(t) characterized the hydraulic properties of the fissured medium. In this case, we
are led to the equation (2.1) where M = —A, n = ep, ¢(u) = [;'1(2)dz, f = 0. The permeability
I(u) is a continuous nonincreasing positive function of the pressure. Under such suppositions the
operator M and the function v (p) satisfy the assumptions I-IV.

The steady-state initial condition [1] is appropriate to the condition (2.1) with Uy = a(0, ). In
the conditions (2.3) and (2.4) we set B(t, x) = 1/)_1(2?:1 a;x;+9q(t)), w(t, x) = Z?:l bjxi+gu(t)
and ¢; = 0. We suppose that Q C R3 = {z|z € R3,2; > 0,i = 1,2,3}, g.(0) > 0, gy(t) > 0,
g,(t) > 0, bi(t) > 0 on [0,7] and a;,b; > 0, i = 1,2,3. Let also 3;_, a;b; > a > 0. Then
the conditions (3.2)—(3.4), (3.6) are fulfilled. If wa(t) > o > 0 and the domain  is sufficiently
small, then the inequality (3.5) holds with some 0 < @y < ©g.
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Ob6paTHag 3aJja4a A1 HEJIMHEMHOIO IICEeBI0NapadoIM4ecKoro
ypaBHeHusI Tuia (pujabTpaiumn

Anua II1. JIro6anosa

B pabome obcyostcdaemces xKoppekmHnocmsd 06pamHoti 3a0ayu OMBCKAGHUA HEUSBECMHO020 KosPPuyuerma,

3A6UCAULE20 O BPEMEHU 6 HEAUHETHOM nceedonapa&mu%ecnom YpasHEHUU MPEMDBESO nop;u?%:a no do-

NOAHUMEALHOT, UHPOPMAUUL O PEWEHUU Ha 2parule. J[oKa3bi8aemca MEOPeMaE CYULECMBO8AHUA U €0UH-

CMBEHHOCMU CUADHO20 PEWEHUSA. Hpu dokasamenvcmae MEeoPEMDL UCTOOHAA 06pamnaﬂ 3adaua ceodumcea

K IKBUBANEHMHOT 3a40a4e C ONEPATMOPHVM YDABHEHUEM OAS HEUBECTIHO20 KOIPPULUEHMA.

Karouesvle crosa: aokarvHas MEOPEMA CYUWLECMBOBAHUA U eBuucmeeHHacmu, anpuopHas ouerKa, 06pam—

HaA 3a0a4a, HeAUHETHOE YPAGHEHUE BblCULE20 NOPAJKA, NCEBIONAPADOAUNECKOE YPABGHEHUE, PUALMPAUUSA
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