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Phenological responses of vegetation to climate, in particular to the
ongoing warming trend, have received much attention. However,
divergent results from the analyses of remote sensing data have
been obtained for the Tibetan Plateau (TP), the world’s largest high-
elevation region. This study provides a perspective on vegetation
phenology shifts during 1960–2014, gained using an innovative ap-
proach based on a well-validated, process-based, tree-ring growth
model that is independent of temporal changes in technical proper-
ties and image quality of remote sensing products. Twenty compos-
ite site chronologies were analyzed, comprising about 3,000 trees
from forested areas across the TP. We found that the start of the
growing season (SOS) has advanced, on average, by 0.28 d/y over
the period 1960–2014. The end of the growing season (EOS) has
been delayed, by an estimated 0.33 d/y during 1982–2014. No sig-
nificant changes in SOS or EOS were observed during 1960–1981.
April–June and August–September minimum temperatures are the
main climatic drivers for SOS and EOS, respectively. An increase of
1 °C in April–June minimum temperature shifted the dates of xylem
phenology by 6 to 7 d, lengthening the period of tree-ring forma-
tion. This study extends the chronology of TP phenology farther
back in time and reconciles the disparate views on SOS derived from
remote sensing data. Scaling up this analysis may improve under-
standing of climate change effects and related phenological and
plant productivity on a global scale.
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Phenology has a profound impact on vegetation growth (1),
carbon balances of terrestrial ecosystems (2), and climate

change feedback mechanisms (3). The importance of phenology has
prompted many studies, mainly using ground-based observations
(4–7), which provide useful phenological information at the species
level. However, such studies are also quite time-intensive and typ-
ically focus on a few individuals in restricted geographic areas,
which often limits their applicability to larger spatiotemporal scales.
Changes in plant phenology can be detected on larger spatial scales
through near-surface remote sensing, using digital repeat photog-
raphy (8), but this approach remains limited to the stand level.
Another commonly used approach is satellite remote sensing, which
can cover large areas (9–11); however, this method has yielded
inconsistent results on the Tibetan Plateau (TP) (9, 12, 13).
The TP, with an average altitude of over 4,000 m above sea level

(a.s.l.), covers more than 2 million square kilometers and is strongly
affected by ongoing climate change. Due to its vast area, and its
position in subtropical latitudes with high incoming solar radiation,
changes in vegetation period duration may have major conse-
quences for regional climate and for carbon sequestration in

regional ecosystems. Trends of the Normalized Difference Vege-
tation Index (NDVI) derived from Global Inventory Modeling
and Mapping Studies (GIMMS) data, which are obtained from
Advanced Very High Resolution Radiometer (AVHRR) data,
have indicated that the regionally averaged onset of the spring
growth season for alpine steppes and meadows started early from
1982 to the mid-1990s but was delayed from the mid-1990s to
2006 (12). Yu et al. (12) hypothesized that winter and spring
warming had resulted in delayed spring growth seasons on the
TP. In contrast, Zhang et al. (9) identified a continuous ad-
vancing trend in vegetation green-up from 1982 to 2011 on the
TP after merging data from the GIMMS NDVI-based start of
the vegetation growing season from 1982 to 2000 with Systeme
Probatoire d’Observation dela Tarre (SPOT) NDVI-based start
of the growing season from 2001 to 2011. Shen et al. (13) argued
that the method used by Zhang et al. (9) did not consider the
effects of the nongrowing season NDVI on retrieved green-up
dates, and spring phenology showed no significant trend dur-
ing the period 2000–2011 after correcting for the increased
nongrowing season NDVI. These claims sparked considerable
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controversy regarding the rate and amplitude of change in TP
spring phenology, and the extent to which climatic drivers were
responsible for any of these purported changes (10, 14–16). It has
been suggested that the observed delay in spring growth detected
from the mid-1990s to 2006 was a measurement artifact due to the
reduced quality of the AVHRR NDVI data since 2001 (9).
These conflicting results can be attributed to inherent defects

in satellite remote sensing data quality (9), such as coarse spa-
tiotemporal resolution and limitations in phenology retrieval
methodology (13, 17). It is claimed that satellite-derived vege-
tation indices are easily contaminated by adverse atmospheric
conditions, such as varying aerosol concentrations (10, 15).
Other background factors, including changes in snow cover (16)
or vegetation coverage due to grassland degradation and/or
freezing−thawing cycles (10, 14), have been identified as possible
causes of inaccuracy, especially in cases in which the signal is
weak in vegetation green-up times detected by satellites (13). It is
clear that large uncertainties remain in estimates of the remote
sensing-derived variability of vegetation phenology and its cli-
mate drivers on the TP. Moreover, datasets from satellite remote
sensing and ground-based observations only cover the last 30 y,
which limits statistical confidence in trend detection. A dataset
covering a much longer period would therefore help to resolve
current disagreements and increase statistical confidence levels.
Herein, we suggest a method, based on well-validated, process-

based, Vaganov−Shashkin (VS)-oscilloscope model simulations of
tree-ring growth data (18), to provide a unique record of vegeta-
tion phenological variability over the period 1960–2014. In this
model (SI Appendix, Materials and Methods), daily weather station
records are used to estimate the daily tree-ring growth rate, which
is transformed into a daily rate of xylem cell production. These
estimates identify the dates of the first and last differentiated xy-
lem cells, representing the start and the end of the growing season
for each year (SOS and EOS, respectively). The simulated integral
growth rate during the growing season can be transformed to tree-
ring indices by specific procedures used in the model (SI Appendix,
Materials and Methods). Resulting predictions of tree-ring width
chronologies can be compared with the actual tree-ring width
data. In this study, the model was adjusted until a significant
correlation with observations was achieved (P < 0.05) (SI Ap-
pendix, Materials and Methods and Fig. S4). Each year of the
chronology was thus tied to SOS and EOS values. The method has
been validated for conifers using field observations of the re-
lationship between daily temperature and cambial cell division
rates (Materials and Methods). The objective of this study was (i) to
provide robust evidence for the variability of phenological records
modeled from TP tree-ring data for 1960–2014, and to assess
differences between the subperiods 1960–1981 and 1982–2014—
the modeled phenological time series are compared with satellite
remote sensing-derived phenological data; and (ii) to evaluate the
relative effects of temperature and precipitation (including snow),
with different seasonal targets, on the variability of tree-ring
phenology, from the arid to humid TP subregions.

Results
Characteristics of Tree-Ring Phenology over the Period 1960–2014. A
clear, advancing trend in SOS was observed across the TP during
1960–2014. The averaged SOS ranged from the middle of May to
the middle of June with a site-specific SD (σ) ranging from 8.8 d
to 24.9 d (1960–2014) (Fig. 1A). The SOS advanced over time at
each of the 20 combined sites (SI Appendix, Fig. S5). The trend
in 60% of the analyzed series was significant at P ≤ 0.01. In an
additional 15% of all series, the trend was significant at P ≤ 0.05,
resulting in a total of 75% of series passing the significance level.
However, the advancing trend of SOS was not significant during
the period 1960–1981 in any of the four subregions (SI Appendix,
Table S3), or over the entire study region (Fig. 1A). In contrast,
during the subperiod 1982–2014, clear (P < 0.01) advancing

trends were observed in the semihumid and humid subregions
(SI Appendix, Table S3). Continued but statistically insignificant
(P > 0.01) SOS advance was seen in each of the four subregions
from 2000 to 2014, probably due to the short calibration period
(SI Appendix, Fig. S6). Over the full study period (1960–2014),
significant (P < 0.01) advancing trends were observed in all
four subregions (SI Appendix, Table S3). The rate of advance
was −0.28 d/y for the entire study region. From 2000 to 2011, we
also found a continued but insignificant advancing trend of all
of the averaged SOS (slope = −0.41, P = 0.17). However, the
advancing trend (slope = −0.80, P = 0.05) was significant during
2000−2009. EOS mainly occurred in the middle of September
during the period 1960–2014 (Fig. 1B). From 1960 to 2014, 80%
of the combined sites showed significant (P < 0.10) delays (SI
Appendix, Fig. S7). When the values for all sites were averaged,
we noted clear delaying trends for 1960–2014 (0.16 d/y) and
1982–2014 (0.33 d/y) (both P < 0.01); whereas the trend for the
subperiod 1960–1981 (−0.01 d/y) was not significant (P = 0.95) (Fig.
1B). Over the period 1960–2014, the length of the growing season
(LOS) increased significantly (P < 0.01) across all subregions, as well
as over the entire TP. From 1982 to 2014, significantly (P < 0.05)
extended LOSs were identified in all four subregions. On average,
the advancing SOS (−0.28 d/y) contributed 64% of the significantly
(P < 0.01) extended LOSs during the period 1960−2014, whereas
43% of the extension was contributed during the period 1982–2014.
In total, due to earlier SOS and delayed EOS, the growing season
length increased by 24.2 d during 1960–2014.

Tree-Ring Phenology Response to Climate Variation. The correlation
(SI Appendix, Fig. S8) between climate factors and SOS from
1960 to 1981 showed that pregrowing season temperatures, es-
pecially April through June temperatures, significantly affected
SOS at 16 of the tree-ring combined sites (P < 0.05; henceforth,
all significant correlations refer to P < 0.05). Similar temperature
factors appeared to drive SOS during 1982–2014 (SI Appendix,
Fig. S9). Seventeen out of 20 combined sites were significantly
influenced by April through June mean, minimum, or maximum
temperatures. Such an intensified climatic signal was consistent

Fig. 1. Characteristics of all of the averaged (A) SOS and (B) EOS across the
study region during the period 1960–2014. Dashed lines indicate linear
trends for the periods 1960–2014 (black line), 1982–2014 (red line), and
1960–1981 (blue line). Error bars indicate the SD among the 20 composite
sites. Significant (P < 0.01) advancing (delaying) trends in SOS (EOS) were
detected for the periods 1960–2014 and 1982–2014. During 1960–1981,
however, only an insignificant (P > 0.05) tendency was identified.
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with a significant (P < 0.01) and recognizable spring warming
trend since 1982 (SI Appendix, Fig. S10). Over the full study
period (1960–2014; SI Appendix, Fig. S11), April through June
minimum temperatures significantly affected SOS at 18 (90%) of
the combined sites. Negative effects of April through June pre-
cipitation on SOS were also significant at most of the sampled
sites (80% of sites in the arid and semiarid subregions; 60% of
sites in the semihumid and humid subregions during the two
periods 1982–2014 and 1960–2014) (SI Appendix, Figs. S9 and
S11). Such correlations indicate that higher preseason pre-
cipitation generally results in earlier SOS in the study region. We
also checked correlations for SOS and monthly mean and max-
imum snow depth (SI Appendix, Fig. S12). There was no de-
tectable trend or pattern in the snow depth data, suggesting that
the influence of snow depth on SOS was, at best, ambiguous. We
noted that, on the regional scale, there was a strong correlation
with temperature and precipitation from April to June. This
correlation was stable during 1982–2014 and throughout the
entire study period 1960–2014 (SI Appendix, Fig. S13). Partial
correlation analyses further revealed that, when controlling for
April through June precipitation, the correlation between SOS
and April through June minimum temperature was –0.69; when
controlling for temperature, the correlation with precipitation
was –0.35 during the full period 1960–2014. We thus suggest that
the April through June mean minimum temperature has the
strongest influence on TP SOS. EOS for all our study subregions
was mainly determined by temperatures in the late summer or
early autumn (August through September), whereas the effects
of precipitation on EOS were statistically insignificant (SI Ap-
pendix, Figs. S14−16). At most sites, the temperature influence
in the subperiod 1960–1981 was lower than that during 1982–
2014. However, the September mean, maximum, and minimum
temperatures positively (P < 0.05) affected TP EOS during all
investigated periods (SI Appendix, Fig. S17). The highest corre-
lation (r = 0.78, P < 0.01) was detected between August through
September minimum temperatures and EOS during the full
1960–2014 period (Fig. 2). An increase of 1 °C in August through
September minimum temperatures resulted in a delay of 6.20 d
in EOS.

Discussion
This study developed an innovative approach that combines
long-term phenology from remote sensing measurements and
tree-ring formation for detecting land surface components in
earth system models. Based on the validation of our modeling
results with the available monitoring data (SI Appendix,Materials
and Methods), our long-term (1960–2014) tree-ring phenology
series is the longest and most robust yet available for the TP.

Comparison with Remote Sensing Data. According to our modeling
results, all averaged tree-ring xylem phenology series showed
significant (P < 0.01) advancing trends from 1982 to 2014, al-
though different rates were detected within the four subregions
of the TP. Contrasting and inconsistent results derived from
remote sensing data are mainly explainable by different investi-
gation periods. During the period 1998–2011, a continuous ad-
vancing trend (slope = –0.32 d/y, P = 0.16) of our averaged SOS
was identified. Such an advance was also detected by different
remote sensing data from AVHRR, SPOT, and Moderate Res-
olution Imaging Spectroradiometer (MODIS) (9) over the same
period. Moreover, for the different periods of 1998−2014
(slope = –0.24 d/y, P = 0.18), 2000–2009 (−0.80 d/y, P = 0.05),
2000–2011 (slope = –0.41 d/y, P = 0.16), and 2000–2014 (slope =
–0.28 d/y, P = 0.22), consistent advancing trends of SOS were
found by our study. We therefore argue that analysis of a short
time series is not sufficient for reliable trend detection, and,
instead, a much longer phenological period is critical in resolving
current inconsistencies in results derived from remote sensing
data. Our approach to establish the longest record of vegetation
phenological variability that is also independent of changes in
the technical properties of satellite sensors, data coverage, and
image quality (e.g., cloudiness) is thus appropriate for addressing
such issues.
The methods in determining phenological dates from the re-

mote sensing datasets may also impart some bias. The trend
toward earlier vegetation green-up dates (1.9 d per 10 y) de-
tected by the Gaussian-Midpoint and Harmonic Analysis of
Time Series (HANTS)-Maximum methods was almost 5 times
greater than that detected by the Timesat-Savitzky–Golay
(SG) method (0.4 d per 10 y) (19), indicating the uncertainty
inherent in such remote sensing methods. The latest vegetation
phenological data are based on integrated results by applying
multiple methods to remote sensing data (20). The green-up
onset dates represent the consolidated annual mean of the
plateau-scale green-up date. For the period 2000–2011, the
phenological data were derived from four vegetation indices:
three NDVIs from AVHRR, SPOT, and MODIS, and one En-
hanced Vegetation Index (EVI) from MODIS. For the period
1982–1999, the data were determined from AVHRR NDVI.
Five methods were used to derive each vegetation index (for
details, see ref. 21). We compared our tree-ring-based pheno-
logical series with the remote sensing results of green-up onset
dates (20) over the period 1982–2011. They showed similar de-
creasing trends, confirming that a marked advance of spring
phenology has occurred during the past 30 y. Good year-by-year
similarity between our modeled SOS and the remote sensing re-
sults (20) was also achieved during the common period 1982–2011
(Fig. 3A), as indicated by their significant correlation of 0.63 (P <
0.01). Moreover, we also found a significant correlation (r = 0.70,
P < 0.01) with the data of regionally averaged green-up dates (9)
for meadow and steppe vegetation types throughout the TP
during the period 1982–2011 (Fig. 3A). It was noted that the
remote sensing-retrieved green-up dates were validated by in situ
phenological observations from 18 agrometeorological stations
on the TP during 2003–2011. However, when comparing our
modeled SOS with the AVHRR SOS of meadow vegetation
derived using White et al.’s (22) method (12), we found no sig-
nificant correlation (r = –0.15, P = 0.58, 1982–1997), probably
due to the SOS retrieval method used. We also found significant
correlations (Fig. 3B) with the end date of the growing season for
all vegetation types throughout the TP extracted from AVHRR
Leaf Area Index (LAI) data (23) during the period 1982–2011.
Moreover, a correlation (Fig. 3B) (r = 0.41, P = 0.11) close to the
significant level was found between our modeled EOS and the
end date of the growing season for vegetation (meadow) on the TP
between 1982–1997 (12), compared with weak negative cor-
relation (r = –0.15) between our modeled SOS with the AVHRR

Fig. 2. Comparisons between climate factors and (A and C) SOS and (B and
D) EOS for the period 1960–2014. Averaged SOS and EOS were mainly driven
by April through June minimum temperatures and August through Sep-
tember minimum temperatures, respectively.
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SOS of vegetation. This finding is understandable because the
signal at vegetation green-up times is much weaker and conse-
quently more easily contaminated than at withering times (13, 20).
In summary, our model’s predictions and the vegetation green-

up series derived from remote sensing data are closely matched
for the period 1982–2011. Our model-based tree-ring pheno-
logical results reconcile the inconsistency in remote sensing re-
sults. We conclude that results combining different vegetation
indices and methods may be more accurate than those derived
from a single index or method.
It should be noted that tree-ring-based results provide pheno-

logical data for the secondary growth of conifers, whereas remote
sensing detects the primary growth of vegetation, including the
phenology of shrubs and nonwoody species such as grasses or forbs.
Conifers are evergreen, and their stem cambium activity may start
at any time, as soon as a certain thermal threshold (24) or heat sum
(25) is reached. The sensitivity of cambium activity to temperature
gradually increases from winter to spring (26), suggesting that either
an accumulation of chilling or an increase in day length interact
with temperature to initiate the process of cell division in the
cambium. However, NDVI data include greening of herbs and
grasses during spring resprouting, or annual plants germinating
from seed. This process may need a longer time interval or can
cause heterogeneities in NDVI response over different vegetation
types or regions. Consequently, species-specific or life-form-specific
responses of phenology to climate change can be expected. The
significant correlation found between remote sensing-derived SOS
and our modeling results highlighted that their connection is not
casual but robust, although grasses and herbs have more-shallow
root systems than trees and therefore might respond differently

(27). A 4-y experiment monitoring the growth of spruce and fir on a
weekly basis detected synchronism of primary growth (bud and leaf)
and secondary (cambium) growth after budburst over the growing
season in boreal conifers in eastern Canada (28). Similar synchro-
nism between primary and secondary meristems was identified by
direct observations across spruce ecotypes growing in an ordinary
garden (29), and this was confirmed on a wider geographical scale
by comparing remote sensing chronologies with intraannual data of
xylem formation (30). The physiological explanation of the phe-
nological synchronicity between primary and secondary growth re-
mains an issue that is only partially resolved (28).
Overall, this study identified links in the dynamic of meristems

across taxa for a longer time interval than previously obtained. Our
results provide an independent reference with which to compare
results from previous studies based on remote sensing data.

Relationships Between Tree-Ring Phenology and Climate Factors. The
April through June minimum temperature appears to have had
the highest influence on SOS on the TP during the period 1960–
2014, as also demonstrated for other temperate, boreal, and tim-
berline ecosystems in the Northern Hemisphere (24). Because our
study region is characterized by high altitudes, it is reasonable that
temperature has a significant effect on the starting date of the
growing season. As a result, significant correlations between
temperature and SOS were obtained by the principle of limiting
factor, i.e., that just one factor can have an impact on a biosystem
at any particular moment of time in the VS model simulation.
Compared with the period 1960–1981, the 1982–2014 phenologi-
cal data showed a stronger temperature signal, consistent with the
observed significant (P < 0.01) spring warming after 1982 (SI
Appendix, Fig. S10). Clearly, increases in April through June
minimum temperatures were correlated with the earlier SOS
across the whole region (Fig. 2) (see refs. 31−33 for supporting
evidence). An increase of 1 °C in April through June minimum
temperature caused an advance of 6.94 d in the SOS of our study
region (Fig. 2). The results predicted by our model (∼7 d per 1 °C)
closely matched in situ observations of SOS derived from den-
drometer data of Qilian juniper [from an elevational gradient in
the northeastern TP (33)] and from microcoring data of European
larch from two elevational transects in Switzerland (34). Both
studies were based on the so-called “space-for-time/warming ex-
periments” approach (34), whereby long-term changes in the
timing and duration of tree growth per shift in degree Celsius (i.e.,
time) are substituted by changes along altitudinal transects (i.e.,
space). Monitoring results from 1,321 trees belonging to 10 conifer
species located at 39 sites in North America, Europe, and Asia
(29.62°N to 66.2°N, 72.87°W to 94.7°E, 60 m a.s.l. to 3,850 m a.s.l.)
also revealed that the length of the wood formation period in-
creased linearly at a rate of 6.5 d per 1 °C (24), which is consistent
with our results. During winter, the cambium is dormant (35), and
growth inactivity of the meristem is maintained even if the envi-
ronmental requirements (i.e., temperature, water, or day length)
are met. In late winter, a change from dormancy to a new state
occurs, called quiescence, when growth cannot occur unless the
environmentally favorable conditions required are present (26).
Favorable thermal conditions speed up cell production rates once
dormancy has been broken (36). Warmer spring temperatures also
allow cambial cells more time to divide and produce new tra-
cheids. Notably, localized heating experiments have been carried
out on tree stems at the end of winter and in early spring, which
induced a localized reactivation of the cambium (34, 37). In parts
of Europe, a warm spring in 2003 resulted in an earlier onset of
cambial activity of around 20 d compared with the succeeding
year, 2004 (38). Although these observations were limited to short
time periods and small sample sizes, we nonetheless believe that
they support our broader argument that spring phenology is mainly
driven by temperature variability across large parts of the temper-
ate regions of the Northern Hemisphere.

Fig. 3. Comparison of our simulated SOS and EOS with the respective series
derived from remote sensing data. (A) Shen et al. (20) spring vegetation
green-up dates: from 1982 to 1999, as determined from the AVHRR NDVI
data using five different methods; and for 2000–2011, extracted with the
same five methods from NDVIs observed by AVHRR, MODIS, and SPOT and
on the MODIS EVI. The AVHRR sensor was renewed in late 2000 and, because
it has been suggested that the AVHRR NDVI data quality has reduced from
2001 onward (9), Zhang et al. (9) spring vegetation green-up dates consist of
three time spans: from 1982 to 1997, retrieved from the AVHRR NDVI data;
for 1998–1999, retrieved from AVHRR and SPOT NDVI data; and for 2000–
2011, retrieved from NDVI datasets observed by MODIS and SPOT. Consistent
variability was found between our modeled SOS and remote sensing-based
results during 1982–2011. (B) Che et al. (23) interannual variations of aver-
aged end dates of vegetation growing season extracted from AVHRR LAI
data across the TP during the period 1982–2011 and Yu et al. (12) averaged
end dates of meadow vegetation growing season extracted from AVHRR
NDVI across the TP. Good agreement is observed among the extracted EOSs.
Our results provide an independent reference for comparison.
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Some studies (39–41) emphasized that snow depth and total
precipitation also play an important role in regulating spring veg-
etation phenology. For example, a study based on 3 y of wood
anatomical data (2009–2011) from five sampled trees in the arid
subregion of the northeastern TP (42) indicated that late spring
and early summer precipitation played a critical role in the onset
of xylogenesis. If this finding were true, we could expect a strong
correlation between SOS and moisture variability in the arid or
semiarid subregions, a somewhat weaker correlation in the semi-
humid or humid subregions and so on, with the limiting role of
precipitation decreasing as the subregion becomes more humid.
Indeed, we see such a pattern in our results (SI Appendix, Fig.
S18). We found a stronger influence of May through June pre-
cipitation on SOS in the arid and semiarid subregions compared
with that in the semihumid and humid subregions during both
subperiods 1960–1981 and 1982–2014, as well as in the full study
period 1960–2014 (SI Appendix, Fig. S18). Remote sensing based
results also confirmed that SOS was more sensitive to interannual
variations in preseason precipitation in the more arid areas than in
the wetter areas of the TP (20).
In conclusion, this study presents an independent series of

vegetation phenological records for the TP, covering the period
1960–2014. It is an example of an effective, robust approach to
the study of phenological variability in a long-term perspective.
The approach, converting daily weather data into the SOS and
EOS dates over the growing season based on a well-validated,
process-based tree-ring VS model, represents a major advance in
the emerging field of phenoclimatology. The generated pheno-
logical series serve as a baseline against which to assess previous
results based on other methods. Regular studies using this ap-
proach should be conducted to cross-validate observational, re-
mote sensing, and in situ (phenocam) estimates of climate-driven
trends in phenological patterns. Scaling up this analysis would
provide additional information on phenological responses of
terrestrial ecosystems to ongoing climate change across the
Northern Hemisphere.

Materials and Methods
Study Area. The study area covers the TP, which extends from 27°N to 40°N
and from 90°E to 101°E, with an average altitude of more than 4,000 m a.s.l.
The dominant vegetation types from southeast to northwest include forest
(broadleaf forest, coniferous and broadleaf mixed forest, and coniferous
forest), shrub, alpine meadow, alpine steppe, and desert, as well as some
intrazonal vegetation types, such as alpine vegetation and cultivated veg-
etation (Fig. 4). Scattered tree stands (mostly of juniper trees, Juniperus
tibetica) occur as relict forests, growing mainly on south-facing slopes up to
4,700 m a.s.l (43). To facilitate comparisons, we sorted the locations of all
available single-site records into one of four defined climatic subregions (44)
(Fig. 4 and SI Appendix, Tables S1 and S2).

Chronology Construction. We used 50 single-site tree-ring width series cov-
ering the period 1960–2014, in whole or in part. Forty-one series comprised
raw measurement data; the others were published standardized tree-ring
width chronologies: one from Yikeshu (45) and eight from sites at Zhongtie,
Jiangqun, Ningmute, Gongjue, Basu, Mangkang, Bianbamx, and Luolong
taken from ref. 46. In total, data from 3,006 trees were used in this study. We
grouped them into 20 composite sites based on the concordance between
chronologies (SI Appendix, Table S2). Matches were required to be signifi-
cantly correlated at P < 0.01. The mean tree-ring series intercorrelation,
signal-to-noise ratio, and expressed population signal of the composite
chronologies listed in SI Appendix, Table S2 further justified combining the
single-site series.

Raw measurement data were processed following standard dendrochro-
nological practice (47, 48). The standardized chronologies were used for
successive analyses. No significant differences were found when detrending
was carried out using a smoothing spline or a negative exponential function.

Tree-Ring Growth Process Modeling. We used an updated tree-ring physio-
logical VS procedure (VS-oscilloscope, vs-genn.ru/downloads/) to model the
tree-ring growth process and associated climatic drivers (18). The simulation
can be improved by a priori adjustments of its parameters to reflect local
tree growth conditions more accurately (18, 49). The daily time resolution is
one of the strengths of the process model; it is therefore superior to satellite
remote sensing data, which have a resolution that can range between 10 d
and half a month. The process model is thus capable of accurately simulating
the response of tree-ring growth to rapidly changing climatic variations (18,
49). For details and validation of the models, see SI Appendix.

Statistical Analyses. Trends in tree-ring phenological series were calculated
using linear least-squares regression; the statistical significance levels were
estimated with two-tailed significance tests. Correlations with climate data
were analyzed using the software DendroClim2002 (50) during their common
periods. Twenty adjoining climate stations close to the tree-ring sampling sites
were selected for analysis, starting with the earliest in 1955 and all ending in
2014. We also obtained data for monthly mean and monthly maximum snow
depth (51) to explore their relationship with tree-ring phenology variability for
the years 1979–2014, i.e., the period for which comparable datasets were
available. Partial correlation analyses were performed to determine the most
important factors influencing tree-ring phenological variability.
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