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ABSTRACT 1 

The genetic mechanisms underlyingthe relationshipofindividual heterozygosity 2 

(IndHet)withheterosis and homeostasisare not fully understood. Such an understanding, however, 3 

would have enormous value as it could be used to identifytrees better adapted to environmentstress. 4 

Dendrochronologydata, in particular the individualaverageradial increment growth of wood 5 

measured as the averagetree ring width (AvTRW)and the varianceof tree ring width (VarTRW)were 6 

used as proxies for heterosis(growth rate measured as AvTRW)and homeostasis (stability of the 7 

radial growth of individual trees measured as VarTRW), respectively.These traits were then usedto 8 

test the hypothesisthatIndHetcan be used to predict heterosisandhomeostasis of individual 9 

trees.Wood core and needle samples were collected from 100 trees of Siberian larch (Larix sibirica 10 

Ledeb.) across two populationslocated in Eastern Siberia. DNA samples wereobtained from the 11 

needles of each individual tree and genotyped foreight highly polymorphic microsatellite loci. Then 12 

mean IndHetcalculated based on the genotypes of eight loci for each tree was correlatedwith the 13 

statistical characteristics of the measured radial growth (AvTRWand VarTRW)and the individual 14 

standardized chronologies. The analysis did not reveal significant relationships between the studied 15 

parameters. In order to account for the strong dependence of the radial growth on tree age the age 16 

curves were examined. An original approach was employed to sort trees into groups based on the 17 

distance between these age curves. No relationship was found between these groups and the groups 18 

formed based on heterozygosity. However, further work with more genetic markers and increased 19 

sample sizes is needed to test this novel approach for estimating heterosis and homeostasis. 20 

Keywords: Dendrochronology; Tree ring width; Radial growth; Individual heterozygosity; 21 

Microsatellite markers; Heterosis; Homeostasis; Climate change; Environmental stress 22 

 23 

Introduction 24 

The concept of individual homeostasis in a heterogeneous environment as indicated by the low 25 

impact of environmental factors(temperature, precipitation, etc.) on individual development was 26 

first introduced by Walter Cannon (1929). It was further developed into the concept of 27 

developmental homeostasis (Dobzhansky and Wallace, 1953), genetic homeostasis (Lerner, 28 
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1954),developmental stability (Mather, 1953; Thoday, 1955) and phenotypicstability (Lewis, 1 

1954).The concept was based onthe observationthat individualswith 2 

higherindividualheterozygosity(IndHet) were characterized bya more stable growth pattern andless 3 

impacted byenvironmental factors, such as, for instance,temperature and precipitation (see Livshits 4 

and Kobyliansky, 1985 for early review). The concept was revisited and reevaluated multiple times, 5 

but still needs additional studies and experimental data to improve our understanding of the 6 

molecular basis and genetic mechanisms underlying individual homeostasis and heterosis (see for 7 

more recent review Woolf and Markow, 2003; Hochholdinger and Hoecker, 2007; Fridman, 2015; 8 

Lippman and Zamir, D., 2007; Nicoglou, 2015; Peirson, 2015). 9 

Stable growth pattern and the problem of individual responseto environmental stress should 10 

receive special attention in light of global climate change. Long-term changes in climates as well as 11 

short-term fluctuations in weather are of special concern for long-lived, sessile plant species such as 12 

forest trees, because unlike freely moving organisms, such as most animals and some plants they 13 

cannot purposefully search for a favorable habitat and move to it, and have to withstand 14 

environmental stresses during their lifetime as long as, for instance, 300-400 years on average and 15 

up tomaximum 750 years for Siberian larch (Larix sibirica Ledeb.) (Vaganov et al., 2006).Conifers, 16 

such as pine, larch and spruce, are the keystone species of the boreal forest ecosystems that could be 17 

both significantly affected by global climate change and at the same time play a very important role 18 

in the mitigation of climate change effectsdue totheir ability to store large amounts of carbon 19 

(Kasischke and Stocks, 2000; Soja et al., 2007; Nelson et al., 2008; Chen and Luo, 2015; Gauthier 20 

et al., 2015). Conifers have a substantial adaptive capacity at the individual tree level due to the 21 

high phenotypic plasticity and at the population level due to the high genetic variation (Hamrick, 22 

2004; Santos-del-Blanco et al., 2013). However, genetic mechanisms of this high adaptability at 23 

both individual and population levels are still not fully understood. Siberian larch was selected for 24 

study here as it is one of the major boreal tree species in Eurasia (Kobak et al., 1996; Abaimov, 25 

2010; Shuman et al., 2011). 26 
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We consider two main hypotheses for thegenetic mechanismsthat may explainwhy 1 

individualswith higherIndHetcould beless impacted byenvironmental factors and demonstrate 2 

higher heterosis: 1)overdominance (seereview by Hansson and Westerberg,2002), and 2) 3 

dominance, because highly heterozygous individuals by definition have lower levels 4 

ofinbreedingand less inbreeding depression(see,e.g., David,1999; Reed et al., 2012; Gonzalez-Varo 5 

et al., 2012; Abrahamsson et al.,2013). Both these genetic mechanisms could be responsible for the 6 

stablegrowth of individual trees with higher IndHet and their resistance to fluctuations in the 7 

environment, i.e. homeostasis can be associated with heterosis due to either the higher fitness of 8 

heterozygotes because of dominance (when the detrimental or less favorable recessive alleles that 9 

weaken the individual adaptability in homozygotes are masked and do not affect the individual 10 

fitnessin heterozygotes) and/or overdominance (when heterozygotes have higher fitness than any of 11 

homozygotes). Either case would lead to the natural selection of trees with higher IndHet, and one 12 

can expect that trees that are more resistant to (and more independent from) the environmental 13 

stress would have both a more stable development and a higher IndHet. Maladaptive seedlings and 14 

trees would occur in the population, however, as a genetic segregation load that could be a heavy 15 

price that a population would need to pay to maintain a high level of heterozygosity (Altukhov, 16 

1991). Therefore, we expect also that there is an optimal level of IndHet. Exceeding this optimal 17 

level may lead to an increase of the segregation load and thus IndHet can be regulated by selection 18 

making extremely heterozygous trees less adaptive and less stable. 19 

In addition, severalvariants ofcertain multimeric enzymes can be formed in heterozygotes, 20 

which acting together may be more efficientthan the single form of the enzyme foundin 21 

homozygotes (Berger, 1976).In this case,heterosisandhomeostasiscan bedue tooverdominance of 22 

heterozygotes. Moreheterozygous individualsare better adapted according to the theory of 23 

balancingselectionin favorof heterozygotes. The mechanisms ofheterosisandhomeostasisare 24 

poorlyunderstood, however, and available dataare very contradictory. 25 
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Both heterosisandhomeostasishave beenstudiedin different organisms, includingtree species 1 

and usingdifferent traits and geneticmarkers, such asallozymes(e.g., Ledig et al., 1983; Mitton and 2 

Grant, 1984; Strauss, 1986; Bush et al., 1987;Strauss and Libby, 1987; Zouros et al.,1988; Jelinski, 3 

1993; Gonzalez-Varo et al., 2012), microsatellitesorso-calledsimple sequence repeats - SSRs (e.g., 4 

Abrahamsson et al., 2013; Zgaga et al.,2013),as wellas single nucleotide polymorphisms- SNPs 5 

(e.g., Govindaraju et al.,2009; Chelo and Teotonio, 2013).Correlation of IndHetwith various 6 

physiological, morphological and biochemicaltraits ofheterosisandhomeostasis(stable 7 

development)wasestimated in these studies.Traits used includedbilateral asymmetry(see Livshits 8 

and Kobyliansky, 1991; Parsons, 1992;Leung et al., 2000 for early reviews and more recent 9 

Kurbalija et al., 2011; Weisensee, 2013), growth rate (Ledig et al., 1983; Mitton and Grant, 1984; 10 

Strauss, 1986; Bush et al., 1987; Strauss and Libby, 1987; Zouros et al., 1988; Jelinski, 1993), and 11 

skeletal meristic traits (Zink et al., 1985). 12 

The main objective of our study was to examine relationships between the level of heterosis 13 

and homeostasis measured using dendrochronology traits, such as the averagetree ring width 14 

(AvTRW)and the varianceof tree ring width (VarTRW),and IndHetmeasured with genome wide 15 

genetic markers, such as microsatellite loci (SSRs). In this initial study we usedrandom (and, 16 

therefore, likely intergenic) genomic SSRs that are supposedly selectivelyneutralgeneticmarkers. 17 

Microsatellite loci were chosen because they are highly informative and relativelyinexpensive for 18 

measuring genome-wideindividual heterozygosity (but see Väli et al., 2008). They have high 19 

mutation rate, high levels of polymorphism, relativelyuniform distributionacross the genome, broad 20 

representation, and are relativelysimpleto detect andto genotype (e.g., Schlötterer, 2000). 21 

In our study we used a novel approach to address homeostasisfrom perspectives oftwo 22 

disciplines-dendrochronologyand populationgenomics(Gonzalez-Martinez et al.,2006; Krutovsky 23 

and Neale, 2005; Krutovsky,2006).Thisapproach allows us tomore effectivelystudy 24 

theadaptabilityof natural populationsto globalclimate change(King et al.,2013), and how genetic 25 

variationmay be affected(Pauls et al.,2013). For the first time here we propose to usetree ring data 26 
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to estimate stability and homeostasis.TheAvTRW and VarTRW parameters are 1 

particularlyusefulbecausetheylikely correlatewith veryimportantenvironmentaland climaticfactors 2 

such asprecipitation, temperature, and length of growthperiod (Vaganov et al., 1996, 1999, 2006). 3 

The maintask inour studywas to test thehypothesisthat IndHetis associatedwith 4 

AvTRWandVarTRW.In the earlygenetic studies some evidencewas obtained suggestingthatIndHet 5 

is positively associated withheterosis –a higher viability and strongeradaptive traitswere observed 6 

inhybridsobtained from crossingparents that weregeneticallydifferentanddistantfrom each other. It 7 

was expressed as higher resistance toenvironment change or stress, increased growth rate and 8 

biomass growth, etc. (Schnable and Swanson-Wagner, 2009; Schnable and Springer, 2013; Feng et 9 

al., 2015). 10 

Ifmoreheterozygoustreesare characterized by a more stablehomeostasis, then theirdevelopment 11 

should be less dependent onthe environment. Therefore our expectation was to find a negative 12 

correlationbetweenIndHetand VarTRW.If AvTRW can be considered as anadaptive trait, then one 13 

can expect a positive correlationbetween IndHetand AvTRW due to heterosis. 14 

There may, however, be an optimal level of IndHet resulting in nonlinear relationships between 15 

IndHet with AvTRW and VarTRW. HighIndHetcan leadto an increased the segregationload in 16 

thepopulationand causean imbalancein the individual development.On the other hand, 17 

lowIndHetmay resultfrom inbreeding,in whichfrequency of homozygotesforunfavorablerecessive 18 

alleles increase.This in turncould adversely affect AvTRW, causing a negative correlation ofthe 19 

level ofhomozygositywith AvTRWandalso disrupthomeostasis. The latter would be manifested as a 20 

positivecorrelation between the levelof homozygosityandVarTRW.Dendrochronological and 21 

genetic data werecollected for the same individual trees to assessAvTRW,VarTRW, andIndHet and 22 

to test these hypotheses. 23 

 24 

Materials and methods 25 

Plant material 26 
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Wood сores of Siberian larchwere collectedin July, 2014,from the following two populationsin 1 

theShira region ofKhakasia:1)the predominantly larch forestmixed with pine and some birch trees 2 

on a gentle southeastern slope (2-5°, 600-700 m a.s.l.) near the Shira-Berenzhak highway (this 3 

population is denoted as “BER”; Fig. 1);and 2) the larchlight forest on a steep western slope (up to 4 

30°, 600-800 m a.s.l.)from the top to the base of the hill in the vicinity of theEfremkino village (this 5 

population is denoted as “EFR”; Fig. 1). The distance between the BER and EFR populationsis 6 

approximately25km.Fifty trees of approximately similar age were randomly sampled in each 7 

population according to the dendrochronological principles (standing apart mature trees with 8 

minimal nonclimatic impacts) (Cook and Kairiukstis, 1990), taking also into account availability of 9 

live branches to collect needles for DNA isolation.Two wood cores were taken from each tree to 10 

measure tree rings.Needles were also collected fromthesametreesfor DNA isolation and genotyping. 11 

Tree-ring width data processing 12 

Initialextraction ofwood coresandmeasurement of the tree-ringwidth (TRW) were performed 13 

using standard procedures(Cook and Kairiukstis, 1990).Asemi-automateddevice LINTAB-5and a 14 

specializedprogramTSAP Win were employed (Rinn,2011). Cross-dating of the original serieswas 15 

performed using the COFECHA program(Holmes,1998). About fivecores from each 16 

populationwerepartially broken because the larchwoodin the study area was particularly brittle. 17 

Consequently,thetime seriesobtainedfrom these cores were missing from two to three rings. For 18 

further work the estimatesfor these cores wereadjusted using the ARSTAN program (Cook, Krusic, 19 

2005). This was accomplished by constructing a 20-year spline, on which the TRW 20 

fluctuationsobserved on the duplicatecorefrom the sametree were superimposed. The mean time 21 

series for each tree were obtained by averagingmeasured TRW values for duplicate cores (Fig.2). 22 

Most cores did not pass through the pith due to the frequently observed offset of the pith from 23 

the geometric center of the tree cross-section and the sampling imperfection. The pith wasalso 24 

damagedin 2-3 trees per population.We estimated the numberof missinginnermost rings (pith offset, 25 

PO)usingthe radius of curvatureand the widthof theinnermostavailable rings, while taking into 26 
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account thecross-dating results for duplicate cores from the same tree (Duncan, 1989, Esper et al., 1 

2009). Usingthe ARSTAN program we plotted the age trend curves for each tree using the 2 

following two approaches: 1)spline having the length equal to67% of the length of the series 3 

and2)an exponential function or in the case of this resulting in negative valuesonthe exponential 4 

curve, a linear function. 5 

The calculation of the distance between the agecurves𝐴 t was carried outfor the age interval6-6 

127years (using the median Me of the parameterPOand the cambialageTof the treesmeasured in the 7 

year 2014).The distances ∆𝑖𝑗  were calculatedforeach pair ofi andjtreeusing the formula: 8 

 ∆ij =
1

t2−t1+1
  Ai t − Aj t  

t2
t=t1

, (1) 9 

where 𝑡1 = max(𝑃𝑂𝑖 , 𝑃𝑂𝑗 , 𝑀𝑒(𝑃𝑂)) and 𝑡2 = min(𝑇𝑖 , 𝑇𝑗 , 𝑀𝑒(𝑇))are the commonborders for the 10 

considered trees in the certain age interval,taking into account the aboverestrictions.The resulting 11 

tableof the distanceswas employed to perform hierarchical clusteranalysis of the localset oftrees. 12 

The clusteringat each step was performedusing the method ofcomplete linkage. 13 

Standardization of the raw tree-ring width data was processed in two steps with ARSTAN. At 14 

the first step, age trends described above were removed, thus standard (std) individual series and 15 

generalized (averaged) chronologies were obtained. At the second step, we removed autocorrelation 16 

of the first order (ac1) and obtained residual (res) individual series and chronologies. 17 

Statistical characteristics of individual series and chronologies used included mean value 18 

(mean, that is AvTRW for the raw data), standard deviation (stdev, that is VarTRW for the raw 19 

data),mean coefficient of sensitivity (sens),autocorrelation of the first order (ac1),expressed 20 

population signal (eps), interseries average correlation coefficient (rbar), and correlation of 21 

individual series with their master chronology (R). Significance of differences between different 22 

groups of trees was tested using Student's t-distribution. 23 

Climatic data 24 
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Monthlyclimatic datafordendroclimatological analysis were obtained from the Climatic 1 

Research Unit (CRU) database (http://climexp.knmi.nl/selectfield_obs2.cgi)fora gridwith a step of 2 

0.5°forthe four points that are closest to thedendrochronologicalpolygons(Fig.1) for the period1901-3 

2014. The following data wereused: theaverage temperature, total precipitation, and the Palmer 4 

Drought Severity Index (PDSI).Climate variableswere compared at different points, as well as with 5 

the instrumental data from the weather station"Shira" for temperature(1966-2012)and 6 

precipitation(1937-2012).Correlation coefficientswere calculatedfor the 7 

followingperiods:September-November, December-February, March-May, June-August andfor the 8 

full-year period from Septemberto August(Table1). 9 

The interannual changesof temperature and precipitation for the most importantsummer period 10 

are illustrated in Fig. 3.While the CRU dataare well-correlated among each other, the correlation 11 

with the data fromthe weather station “Shira”is much lower, especially for 12 

precipitation.Thisdiscrepancy maybe because 1) the CRUdata were obtained by interpolationfrom 13 

other sources, possibly reflecting regional climate rather than weather at a specific point or2) the 14 

possibility of inaccurate instrumentation or human error at the weather station during a certain 15 

period. We decided to use the CRU climatic datafor further analysis because these data havelonger 16 

duration and are expected to have higher reliability over the full period. 17 

The BER sampling populationis located 7km from grid point3, whereas the sampling 18 

populationEFR is3 kmfrom the center of the area(point8)bounded by the neighboringgridpoints. For 19 

the climaticresponse analysis we useddata for grid point3 for the BERchronologies and the 20 

averaged data forpoints1-4 for the EFR chronologies. 21 

Genotyping with nuclearmicrosatellite loci 22 

To estimategenetic polymorphismof the two populationsof Siberian larchand individual tree 23 

heterozygosity,we usedthe eight best performing and the most polymorphic nuclearmicrosatellite 24 

loci (SSRs)that werepreviously developedfor Japanese larch(L. kaempferi Sarg.) -locibcLK, and for 25 

alpinelarch(L. lyallii Parl.)and westernlarch(L. occidentalis Nutt.) -lociUAKly and UBCLX (Table2), 26 
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and then adaptedfor theSiberian larch(Oreshkova et al.,2013). Thecharacteristics of these markers 1 

and the PCR conditions of their amplificationare presented inTable 2. 2 

Individual samplesof total DNAwereextracted from100-200mgof needles per tree. 3 

Extractionswere performedaccording to the standardprotocol forplant 4 

tissuesusingcetyltrimethylammonium bromide, CTAB(Devey et al., 1996). 5 

The fragment analysis and sizing of the amplified individual allelesof the microsatellitelociand 6 

theirgenotypingwere doneusing6% polyacrylamide gel electrophoresis(PAGE) inTris-EDTA-borate 7 

electrodebuffer.Gelswere stainedinethidium bromide solution and visualized using the system of gel 8 

documentation. The fragmentlengthswere determinedby comparisonwith the standardDNA ladder 9 

(plasmidpBR322 DNAdigested by the HpaII restriction enzyme) using the Photo-Capt software.To 10 

more precisely determine thelengths of the PCR fragments (microsatellite alleles) 11 

multiplecomparisonsof variantsof eachlocuswere performed by running them onthe 12 

samegel.Genetic diversityparameters including individual heterozygosity were estimatedusing the 13 

GenAlEx 6.41 software (Peakall and Smouse,2006). 14 

Correlation Analysis 15 

All relationships between variables were analyzed using Pearson's correlation 16 

coefficients.Significance of correlation was tested using Student's t-distribution. We also applied 17 

multifactorial analysis of variance using the Variance Components ANOVA/ANCOVA module in 18 

the STATISTICA software (StatSoft Inc., Tulsa, OK, USA) to estimate relationship of IndHet with 19 

AvTRW and VarTRW (using IndHet as a dependent variable, population as fixed effect, and 20 

AvTRW and VarTRW as random effects), but it gave results similar to the correlation analysis, 21 

therefore, these data are not presented here. 22 

Results 23 
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Genetic variation was high in both populations across all loci, varying from 3 to 15 alleles per 1 

locus (Table 3). Observed heterozygosity (Ho) varied from 0.040 to 0.560 per locus and was 0.315 2 

and 0.260 on average for all loci in BER and EFR populations, respectively. 3 

Both parameters AvTRW and VarTRW hadpositive, but weak and statistically nonsignificant 4 

correlations withIndHet (Table 4, Fig.4).At thesame time,AvTRW and VarTRWwere 5 

positivelycorrelatedat a highly significant level. Relationships of IndHet were estimated using 6 

absolute values formeasured parameters (raw) of the individual seriesof radialgrowth, as well as 7 

with two types of standardized (std and res) parameters (Table 5, Fig.5). All correlation coefficients 8 

were close to zero and nonsignificant. 9 

Since the radial growthlargelydepends on thetree age,a phenomenon referred to as theage trend, 10 

we also compared thegroups of trees characterized by differentlevels of IndHet with the groups 11 

(clusters) of trees characterized by different agecurves,determined by hierarchical classification 12 

using two methods of age curves estimation (spline / exponential function).Theobtained age 13 

curvesand the depth ofthe dataset aligned by the cambialage,i.e.,the number of treesfor each age, are 14 

shown in Fig. 6, the cluster subsets are shownin Figures7 and 8, and the dendrogramsof 15 

classification are shown in Fig.9. Differentmethods of calculating the 16 

agecurvesyieldedsignificantlydifferent results of classification, although certain common 17 

patternsmay be found. Nevertheless, no commonpatterns in thedistribution of trees with 18 

differentIndHetwere found in either case. 19 

Each population(BER and EFR)was then partitioned intotwo subsets after 20 

removingtreesyounger than 50 years from the analysis. The first subset “low IndHet” – with the 21 

indexof individualheterozygosityin the range of 0-0.25, and the second subset “high IndHet” –with 22 

IndHet in the range of 0.375-0.75.For eachsubsetstandard dendrochronological procedures were 23 

then performed,andthe generalizedstandard(std)and residual(res)chronologies were obtained.The 24 

statistical characteristicsof the chronologies obtained using theARSTAN software areshown in 25 

Table6. Foreach subset, standarddendroclimatologicalanalysis was carried out.Correlation 26 
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coefficientsof thechronologieswiththe monthly total precipitation,average temperatureand the PDSI 1 

were found to be significant for some months (Fig.10). 2 

 3 

Discussion 4 

The highly significant and positivecorrelation between AvTRW and VarTRW was interesting. 5 

This phenomenon can be explained if under unfavorable conditions most (if not all) trees grow 6 

slower regardless of their genotype, but under favorable conditions some trees may respond better 7 

via increased radial growth. 8 

It is difficult todraw a conclusionabout the relationships of AvTRW and VarTRW parameters 9 

withIndHet based on the data presented here.Although the correlations were nonsignificant, they 10 

were nonlinear rather than linear (Fig. 4). Therefore, the effect of individual heterozygosity could 11 

be very complex, and there may be an optimal intermediate level, when low individual 12 

heterozygosity could be as detrimental as a very high value (Altukhov et al., 1986; Altukhov, 1996, 13 

1998, 1999; Altukhov and Sheremet’eva, 2000; Altukhov and Moskaleichik, 2006; Olano-Marin et 14 

al., 2011; Thoß et al., 2011). 15 

Attempts to reveal the relationshipsbetween IndHet and individual series statistical 16 

characteristics and age curve groups did not give significant results. Use of generalized 17 

chronologies of subsets with low and high IndHet was more successful. The most significant and 18 

stable differences were found for expressed population signal (eps), which was higher for more 19 

heterozygous chronologies at all stages of standardization (Table 6). The same but less significant 20 

regularity was observed for the interseries correlation coefficients (R) and sensitivity (sens) 21 

coefficients. These patternssuggesta trend towardsmore pronouncedcommon external signalsin 22 

treeswith higherheterozygosity because both R and epsare measures of common variation of 23 

individualgrowth series in the chronology, especially since eps can be interpreted as a measure of 24 

closeness between individual series and theoretical chronology of entire population (Wigley et al., 25 

1984).As common environmental factors become more extreme, the populationsexhibit a higher 26 
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synchrony in growth patterns of individual trees and thus the common signal (Cook, 1985; Briffa 1 

and Jones, 1990).In the same environment, a common signal also depends on tolerance of plants to 2 

local conditions (Merian and Lebourgeois, 2011).Autocorrelation (ac1) 3 

intheheterozygouschronologies, on the contrary, was lower (althoughthis differencewas 4 

significantinonly one population): that is, the radial growthinthe current yearwas less dependent 5 

ongrowth inthe previous year. Therefore,on the basis ofidentifiedtrends, we can assume thatfor trees 6 

withhigherheterozygosity there was a more pronouncedeffect of factors common for the entire 7 

population(climate, general characteristics ofthe landscape and thesoil), especially climatic 8 

variables with their high-frequency variation. For less heterozygous trees, the impact 9 

ofindividualstress factors, such as microenvironment andcompetitive relationship, was more 10 

important, which can be cautiously interpreted as their individual development is less stable. 11 

Climatic response varied depending on heterozygosity. There wasa stronger negativeresponse 12 

to thewarm season temperatures for the data subsetswith highIndHetin both populations anda 13 

stronger positiveresponse to thePDSI and the spring-summer precipitation, as a factor decreasing 14 

water deficit stress in plants, inthe BER population. On the contrary, in the more humid and thus 15 

less extreme environmental conditions ofthe EFR population, the positive effect of increased 16 

precipitation and less severe drought (PDSI) was more pronouncedfor the data subset with low 17 

IndHet. The dendroclimatic analysis,however, generally confirmed an expected pattern of positive 18 

relationship between heterozygosity and common signal strength in moderately extreme conditions 19 

of water availability. 20 

The lack of correlation between IndHet and characteristics of radial growth can be explained by 21 

the ascertainment bias caused by typically selecting only the most polymorphic microsatellite 22 

markers in the genome, which may lead to reduced sensitivity for judging genome-wide levels of 23 

genetic diversity. Väli et al. (2008) tested this potential limitation of microsatellite-based 24 

approaches by correlating nucleotide diversity in noncoding regions of eight different carnivore 25 

populations assessed by sequencing 10 introns (5.4–5.7 Kb) in 20 individuals of each population 26 
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with mean multilocus heterozygosities based on microsatellite genotyping (10–27 markers) of the 1 

same animals. Although there was a positive correlation between microsatellite marker 2 

heterozygosity and nucleotide diversity at the population level, no significant correlation was found 3 

at the individual level. These results imply that the variability of microsatellite marker sets typically 4 

used in population studies may not accurately reflect the underlying genomic diversity. This 5 

suggests that researchers should consider using resequencing-based approaches for assessing 6 

genetic diversity when accurate inference is critical, as it maybe in our case. 7 

Another problem could be associated with a relatively high frequency of null-alleles that can 8 

mask heterozygotes. The high F-values observed in several loci in both populations (Table 3) can 9 

be a signature of null-allele presence. Inbreeding can also inflate F-values, and self-pollination 10 

seems higher in larch compared to other conifers (Knowles et al., 1987; Oreshkova et al.,2013), but 11 

it cannot explain uneven distribution of F-values across loci. 12 

SSR markers alone did not allow us to discriminate two main hypotheses: overdominance vs. 13 

dominance, but only to test the association of IndHet with the average tree-ring width (AvTRW) 14 

and with the variance of the tree-ring width (VarTRW) used as proxy traits for heterosis and 15 

homeostasis, respectively. In the following studies we plan to use also supposedly adaptive genetic 16 

markers, i.e. microsatellites closelylinked with functionalandadaptivegenes, and sequence data – 17 

that are SNPsin the coding (preferably nonsynonymous SNPs) regions, as well as supposedly 18 

selectively neutral SNPs in noncoding regions for comparison.A description of thedifferent types 19 

ofgenomicmarkersproposedin our study and alsorecommendedfor the study ofthe impact of 20 

globalclimate changeon the genetic variabilityof populations and species is provided in Angeloni et 21 

al. (2012). 22 

 23 

Conclusions 24 

Dependence of some radial growth characteristics of Siberian larch trees on their individual 25 

heterozygosity was investigated. Application of different approaches demonstrated that partitioning 26 
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the populations into two groups (subsets) with low and high individual heterozygosity, respectively, 1 

and the subsequent comparison of their chronologies provided additional valuable information. It 2 

can be assumed that radial growth of trees with high IndHet responded more strongly to the climatic 3 

changes because of their faster recovery after extreme stress. On the contrary, radial growth of trees 4 

with low IndHet is more autoregressive and is more affected by continuously acting stress factors. 5 

In our further work we plan to increase the number of loci to make them more genome wide for 6 

more accurate estimation of individual heterozygosity and for better detection of environmental 7 

signals. 8 

 9 

Acknowledgements 10 

We thank Dr. Alexei A. Ibe (Forest Protection Centre of Krasnoyarsk Territory, Krasnoyarsk, 11 

Russia) for help with sampling and Dr. Judy Brooks(Blinn College, College Station, Texas, 12 

USA)and Dr. Tom D. Byram (Texas A&M Forest Service, College Station, Texas, USA) for 13 

proofreading and significantly improving the original manuscript. This study was supported by 14 

research grants No. 14-04-01462 from the Russian Foundation for Basic Research and 15 

No. 14.Y26.31.0004 from the Government of the Russian Federation and by the President Grant 16 

No. НШ-3297.2014.4 for Government Support of Young Russian Scientists and the Leading 17 

Scientific Schools of the Russian Federation. 18 

 19 

References 20 

Abaimov, A.P., 2010. Geographical distribution and genetics of Siberian larch species. In Osawa, 21 

A., Zyryanova, O.A., Matsuura, Y., Kajimoto, T., Wein, R.W. (eds.): Permafrost Ecosystems: 22 

Siberian Larch Forests. Ecological Studies 209, 41–58. 23 

Abrahamsson, S., Ahlinder, J., Waldmann, P., García-Gil, M.R., 2013. Maternal heterozygosity and 24 

progeny fitness association in an inbred Scots pine population. Genetica 141, 41–50. 25 



16 
 

Altukhov, Y.P., 1991. The role of balancing selection and overdominance in maintaining allozyme 1 

polymorphism. Genetica 85, 79–90. 2 

Altukhov, Yu.P., Gafarov, N.I., Krutovskii K.V., Dukharev, V.A., 1986. Allozyme variability in a 3 

natural population of Norway spruce (Picea abies [L.] Karst.). III. Correlation between levels of 4 

individual heterozygosity and relative number of inviable seeds. Genetika (Russian) 22(12): 5 

2825-2830 (translated in English as Soviet Genetics (1987) 22: 1580-1585). 6 

Altukhov, Yu.P., 1996. Genome Heterozygosity, Sexual Maturation Rate, and Longevity. Dokl. 7 

Akad. Nauk 348, 842-845. 8 

Altukhov, Yu.P., 1998. Allozyme Heterozygosity, Sexual Maturation Rate, and Longevity. Russ. J. 9 

Genet. 34, 751-750. 10 

Altukhov, Yu.P., 1999. Genomic Heterozygosity, Metabolic Rate, and Longevity. Dokl. Akad. 11 

Nauk 369, 589-592. 12 

Altukhov, Yu.P., Sheremet’eva, V.A., 2000. Genomic Heterozygosity and Human Longevity. Dokl. 13 

Akad. Nauk 371, 197-199. 14 

Altukhov, Yu.P., Moskaleichik, F.F., 2006. Allozyme Heterozygosity, Metabolic Rate, Sexual 15 

Maturation Rate, and Longevity. Dokl. Akad. Nauk 410, 842-846. 16 

Angeloni, F., Wagemaker, N., Vergeer, P., Ouborg, J., 2012. Genomic toolboxes for conservation 17 

biologists. Evol. Appl. 5, 130–143. 18 

Berger, E., 1976. Heterosis and the maintenance of enzyme polymorphism. Am. Naturalist 110, 19 

823-839. 20 

Briffa, K.R., Jones, P.D., 1990. Basic chronology statistics and assessment. In Methods of 21 

dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, 22 

Dordrecht, the Netherlands. pp. 137–152. 23 

Bush, R.M., Smouse, P.E., and Ledig, F.T., 1987. The fitness consequences of multiple-locus 24 

heterozygosity: the relationship between heterozygosity and growth rate in pitch pine (Pinus 25 

rigida Mill.). Evolution 41, 787-798. 26 



17 
 

Cannon, W.B., 1929. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431. 1 

Chen, C., Liewlaksaneeyanawin, C., Funda, T., Kenawy, A., Newton, C.H., El-Kassaby, Y.A., 2 

2009. Development and characterization of microsatellitelociinwesternlarch(Larix occidentalis 3 

Nutt.). Mol. Ecol. Res. 9, 843–845. 4 

Chen, H.Y.H., Luo,Y., 2015. Net aboveground biomass declines of four major forest types with 5 

forest ageing and climate change in western Canada's boreal forests. Global Change Biology 6 

21, 3675–3684. 7 

Chelo, I.M., Teotonio, H., 2013. The opportunity for balancing selection in experimental 8 

populations of Caenorhabditis elegans. Evolution 67, 142–156. 9 

Cook, E.R., 1985. A time series analysis approach to tree ring standardization. Thesis. University of 10 

Arizona, Tucson, Arizona. 11 

Cook, E.R., Kairiukstis,L.A. (eds.) 1990. Methods of Dendrochronology. Applications in the 12 

Environmental Sciences. 394 p. Kluwer Academic Publishers, Dordrecht, Boston, London. 13 

Cook, E.R., Krusic, P.J., 2005. Program ARSTAN (Version 41d). 14 

http://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software. 15 

David, P., 1999. A quantitative model of the relationship between phenotypic variance and 16 

heterozygosity at marker loci under partial selfing. Genetics 153(3), 1463–1474. 17 

Devey, M.E., Bell, J.C., Smith, D.N., Neale, D.B., Moran, G.F., 1996.Agenetic linkage map for 18 

Pinus radiatebased on RFLP, RAPD, and microsatellite markers. Theor. Appl. Genet. 92(6), 19 

673–679. 20 

Dobzhansky, Th., Wallace, B., 1953. The genetics of homeostasis in Drosophila. Proc. Nat. Acad. 21 

Sci. USA 39, 162-171. 22 

Duncan, R.P., 1989. An evaluation of errors in tree age estimates based on increment cores in 23 

kahikatea (Dacrycarpus dacrydioides). New Zealand Natural Sciences 16, 31-37. 24 

Esper, J., Frank, D., Büntgen, U., Kirdyanov, A.,2008. Influence of pith offset on tree-ring 25 

chronology trend. Tree Rings in Archaeology, Climatology and Ecology 7, 205-210. 26 



18 
 

Feng, S., Chen, X., Wu, S., Chen, X., 2015. Recent Advances in Understanding Plant Heterosis. 1 

Agricultural Sciences 6, 1033-1038. 2 

Fridman, E., 2015 Consequences of hybridization and heterozygosity on plant vigor and phenotypic 3 

stability. Plant Sci. 232, 35–40. 4 

Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., Schepaschenko, A.D., 2015. Boreal 5 

forest health and global change. Science 349, 819–822. 6 

Gonzalez-Martinez, S.C., Krutovsky,K.V., Neale, D.B.,2006. Forest tree population genomics and 7 

adaptive evolution. New Phyt. 170(2), 227–238. 8 

Gonzalez-Varo, J.P., Aparicio, A., Lavergne, S., Arroyo, J., Albaladejo, R.G., 2012. Contrasting 9 

heterozygosity-fitness correlations between populations of a self-compatible shrub in a 10 

fragmented landscape. Genetica 140, 31–38. 11 

Govindaraju, D.R., Larson, M.G., Yin, X., Benjamin, E.J., Rao, M.B., Vasan, R.S., 2009. 12 

Association between SNP Heterozygosity and Quantitative Traits in the Framingham Heart 13 

Study. Annals Hum. Genet. 73, 465–473. 14 

Hamrick, J.L., 2004. Response of forest trees to global environmental changes. Forest Ecology and 15 

Management 197(1-3), 323-335. 16 

Hansson, B., Westerberg, L., 2002. On the correlation between heterozygosity and fitness in natural 17 

populations. Mol. Ecol. 11, 2467–2474. 18 

Hochholdinger, F., Hoecker, N., 2007. Towards the molecular basis of heterosis. Trends Plant Sci. 19 

12(9), 427–432. 20 

Holmes, R.L., 1999. Dendrochronology program library. Users manual. Laboratory of TreeRing 21 

Research, University of Arizona. 22 

Isoda, K., Watanabe, A., 2006. Isolation and characterization of microsatellite loci fromLarix 23 

kaempferi. Mol. Ecol. 6, 664–666. 24 



19 
 

Jelinski, D.E., 1993. Associations between environmental heterogeneity, heterozygosity, and 1 

growth rates of Populus tremuloides in a Cordilleran Landscape. Arctic and Alpine Res. 25(3), 2 

183-188. 3 

Kasischke, E.S., Stocks, B.J. (editors), 2000. Fire, Climate Change, and Carbon Cycling in the 4 

Boreal Forest. Springer-Verlag New York, Inc. Ecological Studies 138. 463 p. 5 

Khasa, D.P., Newton, C.H., Rahman, M.H., Jaquish, B., Dancik, B.P., 2000. Isolation, 6 

characterization, and inheritance of microsatellite loci in alpine larch and western larch. 7 

Genome 43(3), 439–448. 8 

Khasa, D.P., Jaramillo-Correa, J.P., Jaquish, B., Bousquet, J., 2006. Contrasting microsatellite 9 

variation between subalpine and western larch, two closely related species with different 10 

distribution patterns. Mol. Ecol. 15, 3907-3918. 11 

King, G.M., Gugerli, F., Fonti, P., Frank, D.C., 2013. Tree growth response along an elevational 12 

gradient: climate or genetics? Oecologia 173(4), 1587-1600. 13 

Knowles, P., Furnier, G.R., Aleksiuk, M.A., Perry, D.J., 1987. Significant levels of self-14 

fertilizationin natural populations of tamarack. Can. J. Bot. 65, 1087–1091. 15 

Kobak, K.I., Turchinovich, I.Y., Kondrsheva, N.Yu., Schulze, E.D., Schulze, W., Koch, H., 16 

Vygodskaya, N.N., 1996. Vulnerability and adaptation of the larch forest in Eastern Siberia in 17 

climate change. Water Air and Soil Pollution 92(1–2), 119–127. 18 

Krutovsky, K.V., 2006. From Population Genetics to Population Genomics of Forest Trees: 19 

Integrated Population Genomics Approach. Russ. J. Genet. 42(10), 1088–1100. 20 

Krutovsky, K.V., Neale, D.B., 2005. Forest genomics and new molecular genetic approaches to 21 

measuring and conserving adaptive genetic diversity in forest trees, pp. 369-390 in 22 

Conservation and Management of Forest Genetic Resources in Europe, edited by Th. Geburek 23 

and J. Turok. Arbora Publishers, Zvolen. 24 



20 
 

Kurbalija, Z., Stamenkovic-Radak, M., Pertoldi, C., Jelic, M., Savic-Veselinovic, M., Andelkovic, 1 

M., 2011. Heterozygosity maintains developmental stability of sternopleural bristles 2 

inDrosophila subobscura interpopulation hybrids. J. Insect Sci. 11, 1-21. 3 

Ledig, F.T., Guries, R.P., Bonefield, B.A., 1983. The relation of growth to heterozygosity in pitch 4 

pine. Evolution 37, 1227-1238. 5 

Lerner, I.M., 1954. Genetic homeostasis. Oliver and Boyd, Edinburgh, 134 pp. 6 

Leung, B., Forbes, M.R., Houle, D., 2000. Fluctuating asymmetry as a bioindicator of stress: 7 

comparing efficacy of analyses involving multiple traits. Am. Nat. 155, 101–115. 8 

Lewis, D., 1954. Gene-environment interaction: A relationship between dominance, heterosis, 9 

phenotypic stability and variability. Heredity 8, 333-356. 10 

Lippman, Z.B., Zamir, D., 2007. Heterosis: revisiting the magic. Trends Genet. 23(2), 60–66. 11 

Livshits G., Kobyliansky, E., 1985. Lerner's concept of developmental homeostasis and the problem 12 

of heterozygosity level in natural populations. Heredity 55, 341-353. 13 

Livshits G., Kobyliansky, E., 1991. Fluctuating asymmetry as a possible measure of developmental 14 

homeostasis in humans: a review. Hum. Biol. 63, 441–466. 15 

Mérian, P., Lebourgeois, F., 2011. Consequences of decreasing the number of cored trees per plot 16 

on chronology statistics and climate-growth relationships: a multispecies analysis in a 17 

temperate climate. Can. J. For. Res. 41, 2413–2422. 18 

Mitton, J.B. and Grant, M.C., 1984. Associations among protein heterozygosity, growth rate, and 19 

developmental homeostasis. Ann. Rev. Ecol. Syst. 15, 479-499. 20 

Nelson, E.A., Sherman, G.G., Malcolm,J.R., Thomas, S.C., 2008. Combating climate change 21 

through boreal forest conservation: resistance, adaptation, and mitigation. Unpublished report 22 

for Greenpeace Canada. Faculty of Forestry, University of Toronto, Toronto, ON. 50 pp. 23 

(http://www.greenpeace.org/canada/Global/canada/report/2008/4/combating-cc-boreal-forest-24 

preservation.pdf) 25 

http://www.greenpeace.org/canada/Global/canada/report/2008/4/combating-cc-boreal-forest-preservation.pdf
http://www.greenpeace.org/canada/Global/canada/report/2008/4/combating-cc-boreal-forest-preservation.pdf


21 
 

Nicoglou, A., 2015. The evolution of phenotypic plasticity: Genealogy of a debate in genetics. 1 

Studies in the History of Biological and Biomedical Sciences 50, 67-76. 2 

Olano-Marin, J., Mueller, J.C. and Kempenaers, B., 2011. Heterozygosity and survival in blue tits 3 

(Cyanistes caeruleus): contrasting effects of presumably functional and neutral loci. Mol. Ecol. 4 

20, 4028–4041. 5 

Oreshkova, N.V., Belokon, M.M., Jamiyansuren, S., 2013. Genetic diversity, population structure, 6 

and differentiation of Siberian larch, Gmelin larch, and Cajander larch on SSR-marker data. 7 

Russian Journal of Genetics 49(2), 178-186. 8 

Parsons, PA., 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic 9 

stress. Heredity 68, 361–364. 10 

Pauls, S.U., Nowak, C., Balint, M., Pfenninger, M., 2013. The impact of global climate change on 11 

genetic diversity within populations and species. Mol. Ecol. 22, 925–946. 12 

Peakall, R., Smouse, P.E., 2006. GenAlEx V6: Genetic analysis in Excel. Population genetic 13 

software for teaching and research. Mol. Ecol. Notes 6(1), 288-295. 14 

Peirson, B. R. E. 2015. Plasticity, stability, and yield: The origins of Anthony David Bradshaw’s 15 

model of adaptive phenotypic plasticity. Studies in the History of Biological and Biomedical 16 

Sciences 50, 51-66. 17 

Reed, D.H., Fox, C.W., Enders, L.S., Kristensen, T.N., 2012. Inbreeding–stress interactions: 18 

evolutionary and conservation consequences. Annals of the New York Academy of Sciences 19 

1256, 33–48. 20 

Rinntech, 2011. LINTAB. Precision Ring by Ring. http://www.rinntech.com/Products/Lintab.htm 21 

Santos-del-Blanco, L., Bonser, S.P., Valladares, F., Chambel, M.R., Climent, J.M., 2013. Plasticity 22 

in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: 23 

adaptive responses to environmental stress. J. Evol. Biol. 26, 1912–1924. 24 

http://www.rinntech.com/Products/Lintab.htm


22 
 

Schnable, P.S., Swanson-Wagner, R.A., 2009. Heterosis. In: J.L. Bennetzen and S.C. Hake (Eds.), 1 

Handbook of Maize: Its Biology. Springer Sci.+Business Media, New York, USA, pp. 457-2 

468. 3 

Schnable, P.S., Springer, N.M., 2013. Progress Toward Understanding Heterosis in Crop Plants. 4 

Annual Review of Plant Biology 64, 71-88. 5 

Schlötterer C., 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371. 6 

Shuman, J.K., Shugart, H.H., O’Halloran, T.L., 2011. Sensitivity of Siberian larch forests to climate 7 

change. Glob. Change Biol. 17, 2370–2384. 8 

Soja, A.J., Tchebakova, N.M., French, N.H.F., Falnnigan, M.D., Shugart, H.H., Stocks, B.J., 9 

Sukhinin, A.I., Parfenova, E.I., Chapin F.S., Stackhouse, P.W., 2007. Climate-induced boreal 10 

forest change: predictions vs. current observations. Glob. and Planetary Change 56, 274-296. 11 

Strauss, S.H., 1986. Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus 12 

attenuata. Genetics 113, 115–134. 13 

Strauss, S.H., Libby, W.J., 1987. Allozyme heterosis in radiata pine is poorly explained by 14 

overdominance. Am. Nat. 130, 879–890. 15 

Thoday, J., 1955. Balance, heterozygosity and developmental stability. Cold Spring Harbor Symp. 16 

Quant. Biol. 20:318-326. 17 

Thoß, M., Ilmonen, P., Musolf, K. and Penn, D.J., 2011. Major histocompatibility complex 18 

heterozygosity enhances reproductive success. Mol. Ecol. 20, 1546–1557. 19 

Vaganov, Е.А., Shiyatov, S.G, Mazepa, V.S., 1996.Dendroclimatic Study in Ural-Siberian 20 

Subarctic. Nauka, Siberian Publishing Firm RAS, ISBN: 5-02-031185-5, Novosibirsk. (In 21 

Russian; English Abstract). 22 

Vaganov, E.A., Hughes, M.K., Kirdyanov, A.V., Schweingruber, F.H., Silkin, P.P., 1999. Influence 23 

of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149-151. 24 

Vaganov, E.A., Hughes, M.K., Shashkin, A.V., 2006. Growth Dynamics of Conifer Tree Rings: 25 

Images of Past and Future Environments. Springer, Ecol. Studies ser. 183, 354 pp. 26 



23 
 

Väli, Ü., Einarsson, A., Waits, L., Ellegren, H., 2008. To what extent do microsatellite markers 1 

reflect genome-wide genetic diversity in natural populations? Molecular Ecology 17, 3808–2 

3817. 3 

Weisensee, K.E., 2013. Assessing the relationship between fluctuating asymmetry and cause of 4 

death in skeletal remains: A test of the developmental origins of health and disease hypothesis. 5 

Am. J. Hum. Biol. 25, 411–417. 6 

Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, 7 

with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 8 

201–213. 9 

Woolf, C.M., Markow, T.A., 2003. Genetic models for developmentalhomeostasis: historical 10 

perspectives. In Developmental Instability –Causes and Consequences (Polak, M., ed.), pp. 99–11 

114, OxfordUniversity Press. 12 

Zgaga, L., Vitart, V., Hayward, C., Kastelan, D., Polašek, O., Jakovljevic, M., Kolcic, I., Biloglav, 13 

Z., Wright, A.F., Campbell, H., Walker, B.R., Rudan,I., 2013. Individual multi-locus 14 

heterozygosity is associated with lower morning plasma cortisol concentrations. European 15 

Journal of Endocrinology 169, 59–64. 16 

Zink, R.M., Smith, M.F., Patton, J.L., 1985. Associations between heterozygosity and 17 

morphological variance. J. Hered. 76, 415–420. 18 

Zouros, E., Romero-Dorey, M., Mallet, A.L., 1988. Heterozygosity and growth in marine bivalves: 19 

further data and possible explanations. Evolution 42, 1332-1341. 20 

  21 



24 
 

Table 1 1 

Correlations between various climatic data series for the time interval 1966-2012. 2 

Sites 
Temperature Precipitation PDSI 

Fall Winter Spring Summer Year Fall Winter Spring Summer Year Fall Winter Spring Summer Year 

1-2 0.996 0.998 0.998 0.991 0.998 0.967 0.968 0.950 0.928 0.954 0.853 0.823 0.891 0.924 0.908 

1-3 0.993 0.996 0.998 0.990 0.996 0.886 0.843 0.843 0.834 0.896 0.781 0.688 0.783 0.880 0.815 

1-4 0.999 0.999 0.999 0.998 0.999 0.961 0.930 0.948 0.945 0.965 0.888 0.824 0.923 0.937 0.915 

2-3 0.999 0.999 0.999 0.998 0.999 0.954 0.932 0.949 0.954 0.966 0.818 0.776 0.877 0.921 0.896 

2-4 0.997 0.999 0.997 0.992 0.998 0.963 0.958 0.924 0.938 0.949 0.815 0.758 0.916 0.917 0.898 

3-4 0.996 0.998 0.998 0.993 0.998 0.947 0.968 0.893 0.942 0.953 0.918 0.865 0.914 0.938 0.920 

1-Mean 0.998 0.999 0.999 0.997 0.999 0.973 0.960 0.965 0.951 0.972 0.936 0.908 0.943 0.964 0.948 

2-Mean 0.999 1.000 0.999 0.998 0.999 0.992 0.990 0.988 0.984 0.987 0.925 0.913 0.963 0.970 0.965 

3-Mean 0.998 0.999 0.999 0.998 0.999 0.967 0.960 0.952 0.963 0.975 0.936 0.908 0.934 0.965 0.947 

4-Mean 0.999 1.000 0.999 0.998 1.000 0.987 0.989 0.969 0.984 0.986 0.964 0.941 0.982 0.978 0.974 

1-Shira 0.965 0.974 0.964 0.901 0.977 0.328 0.287 0.276 0.372 0.362 

     

2-Shira 0.967 0.970 0.965 0.914 0.975 0.359 0.403 0.339 0.514 0.420 

     

3-Shira 0.967 0.971 0.968 0.920 0.977 0.372 0.610 0.441 0.611 0.479 

     

4-Shira 0.967 0.975 0.967 0.911 0.979 0.417 0.507 0.433 0.516 0.452 

     

Mean-Shira 0.968 0.973 0.967 0.914 0.977 0.376 0.460 0.381 0.523 0.439 

     

 3 

4 
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Table 2 1 

Microsatellite loci genotyped in Siberian larch in this study. 2 

Locus Motif 
Annealing T 

(ºC) 

Number 

of alleles
a
 

Fragment 

size, bp 
Reference 

bcLK056 (AG)20 

Touchdown 

63-53ºС 

12/10 140-200 

IsodaandWat

anabe, 2006 

bcLK066 (TG)12 5/4 140-172 

bcLK224 (AG)17 9/4 130-168 

bcLK260 (TG)14(AG)9 5/5 80-126 

bcLK232 (AG)19 10/4 135-178 

bcLK235 (TC)9(AC)2AG(AC)14 

58ºС 

9/15 168-220 

UBCLXtet-1-22 (TATC)9(TA)12 8/3 175-250 Chenetal.,200

9 

UAKLly6 (GT)17 13/9 212-264 Khasaetal., 

2000, 2006 

a
First number is a number of microsatellite alleles published earlier; second one is a number of 3 

alleles discovered in this study. 4 

http://www.linguee.ru/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/annealing.html
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Table 3 1 

Genetic variation of eight microsatellite loci in two Siberian larch populations. 2 

Population
a
 Parameter bcLK056 bcLK224 bcLK066 bcLK260 bcLK235 UBC-1-22 UAKLly6 bcLK232 Mean±SE 

BER 

Na 10 4 4 5 15 3 9 4 6.8±1.5 

Ne 6.2 2.8 1.4 2.1 8.8 1.2 5.6 1.7 3.7±1.0 

Ho 0.340 0.180 0.260 0.340 0.560 0.040 0.380 0.420 0.315±0.056 

He 0.839 0.637 0.270 0.517 0.886 0.185 0.821 0.407 0.570±0.095 

F 0.595 0.717 0.037 0.343 0.368 0.784 0.537 -0.032 0.419±0.106 

EFR 

Na 9 3 4 5 9 3 7 3 5.4±0.9 

Ne 5.4 1.8 1.2 1.4 4.3 1.4 4.3 1.2 2.6±0.6 

Ho 0.420 0.200 0.180 0.120 0.440 0.260 0.320 0.140 0.260±0.043 

He 0.816 0.455 0.168 0.287 0.768 0.295 0.767 0.165 0.465±0.099 

F 0.486 0.561 -0.073 0.582 0.427 0.120 0.583 0.154 0.355±0.089 

Mean ± 

standard 

error (SE) 

over both 

populations 

BER & EFR 

Na 9.5±0.5 3.5±0.5 4.0±0.0 5.0±0.0 12.0±3.0 3.0±0.0 8.0±1.0 3.5±0.5 6.1±0.9 

Ne 5.8±0.4 2.3±0.5 1.3±0.1 1.7±0.3 6.5±2.2 1.3±0.1 4.9±0.7 1.4±0.2 3.2±0.6 

Ho 0.380±0.040 0.190±0.010 0.220±0.040 0.230±0.110 0.500±0.060 0.150±0.110 0.350±0.030 0.280±0.140 0.288±0.035 

He 0.828±0.011 0.546±0.091 0.219±0.051 0.402±0.115 0.827±0.059 0.240±0.055 0.794±0.027 0.286±0.121 0.518±0.068 

F 0.540±0.055 0.639±0.078 -0.018±0.055 0.463±0.120 0.398±0.030 0.452±0.332 0.560±0.023 0.061±0.093 0.387±0.067 

a
 50 trees were genotyped in each population. Na – number of different alleles; Ne – number of effective alleles = 

1

 𝑝𝑖
2𝑛

𝑖=1

; Ho – observed heterozygosity 3 

= 
number  of  heterozygotes

𝑁
; He –expected heterozygosity = 1 −  𝑝𝑖

2𝑛
𝑖=1 ; F – fixation index = (He−Ho)/He = 1−(Ho/He); where N is number of trees 4 

genotyped, and pi is the frequency of the ith allele in the population. 5 
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Table 4 1 

Correlations between average tree ring width (AvTRW), variance of tree ring width (VarTRW) and 2 

individual heterozygosity of trees (IndHet). 3 

Population
a
 Parameter AvTRW/VarTRW IndHet/AvTRW IndHet/VarTRW 

BER R 0.805 0.215 0.265 

P 0.000* 0.134 0.063 

EFR R 0.660 0.203 0.203 

P 0.000* 0.156 0.158 

Combined 

(BER+EFR) 

R 0.726 0.146 0.122 

P 0.000* 0.147 0.225 

a
 50 trees were genotyped in each population. R - correlation coefficient, P - significance level (*P< 4 

0.001). 5 

6 
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Table 5 1 

Correlations of individual heterozygosity (IndHet) of trees with their radial increment growth 2 

statistics in two populations (BER and EFR). 3 

Population 

Para

mete

r 

raw std res 

mean 

(AvTRW) 

stdev(VarT

RW) 

sens ac1 R stdev sens ac1 stdev sens 

BER 

r 

p 

0.215 

0.134 

0.222 

0.122 

0.109 

0.449 

-0.142 

0.325 

-0.173 

0.231 

0.045 

0.757 

0.088 

0.542 

-0.117 

0.420 

0.047 

0.744 

0.050 

0.732 

EFR 

r 

p 

0.172 

0.234 

0.202 

0.159 

0.119 

0.412 

-0.035 

0.809 

0.190 

0.186 

0.017 

0.907 

0.115 

0.426 

-0.068 

0.637 

0.059 

0.684 

0.006 

0.969 

Combined 

(BER+EFR) 

r 

p 

0.126 

0.213 

0.111 

0.272 

0.054 

0.597 

-0.062 

0.540 

0.024 

0.814 

0.023 

0.822 

0.048 

0.635 

-0.038 

0.710 

0.005 

0.964 

0.002 

0.985 

r - correlation coefficient with IndHet, p- significance level (other parameters and abbrviations are 4 

explained in Materials and methods). 5 

  6 
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Table 6 1 

The mean values and standard deviations (mean ± standard deviation) of statistics for original (raw) 2 

and standardized (std and res) radial growth chronologies of two populations (BER and EFR) 3 

partitioned for groups with low and high individual heterozygosity (IndHet) of trees. 4 

Type of 

chronology 
Statistics 

Chronology 

BER EFR 

low IndHet high IndHet low IndHet high IndHet 

raw 

mean(AvTRW) 1.42±0.63 1.37±0.68 0.80±0.72*** 1.85±0.77** 

stdev(VarTRW) 0.74±0.26 0.75±0.34 1.13±0.45 1.11±0.45 

sens 0.36±0.07** 0.39±0.07** 0.44±0.11 0.47±0.10 

ac1 0.66±0.14 0.65±0.15 0.67±0.14** 0.59±0.12** 

rbar 0.57±0.12* 0.62±0.15* 0.56±0.10 0.59±0.08 

eps 0.94±0.05*** 0.96±0.02*** 0.94±0.04*** 0.97±0.01*** 

R 0.74±0.10 0.75±0.10 0.69±0.14*** 0.76±0.08*** 

std 

stdev 0.48±0.09* 0.51±0.12* 0.53±0.11 0.51±0.10 

sens 0.36±0.07** 0.39±0.07** 0.43±0.11 0.46±0.10 

ac1 0.57±0.14 0.56±0.17 0.54±0.11*** 0.43±0.14*** 

rbar 0.56±0.13** 0.62±0.15** 0.57±0.09** 0.62±0.09** 

eps 0.93±0.05*** 0.96±0.02*** 0.94±0.03*** 0.97±0.01*** 

res 

stdev 0.37±0.06* 0.39±0.07* 0.43±0.09 0.45±0.09 

sens 0.43±0.08* 0.46±0.08* 0.48±0.12 0.49±0.10 

rbar 0.62±0.09 0.65±0.10 0.60±0.07 0.62±0.09 

eps 0.94±0.06* 0.96±0.03* 0.95±0.03** 0.97±0.01** 

Number of cores 41 54 55 27 

Significance level of differences between groups with low and high individual heterozygosity: 5 

*p < 0.10, **p < 0.05,***p < 0.01.6 
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FIGURELEGENDS 1 

 2 

Fig. 1.Mapof the study area. Numbers1-4 and 8 indicategrid points for climatic dataCRU, 5 - the 3 

middle ofthe squaregridfor meteorological station"Shira", 6 and 7 - 4 

dendrochronologicalpolygonsfor populations Efremkino (EFR)and Berenzhak (BER), respectively. 5 

 6 

Fig. 2.Tree ring width(TRW) of the individual treesand the local measuredchronology(red line)in 7 

the BERpopulation along the years measured. 8 

 9 

Fig. 3.Summertemperatureand precipitationin the study area based on data fromdifferent sources 10 

(see Material and methods). 11 

 12 

Fig. 4.Correlation ofthe averagetree ring width (AvTRW)and the varianceof tree ring width 13 

(VarTRW) with individual heterozygosity(IndHet) of trees, andAvTRW vs. VarTRW measured in 14 

two populations (50 trees each) combined. 15 

 16 

Fig. 5.Scattering diagramsof the studied statistical characteristicsfor the measuredand 17 

standardizedindividualchronologiesof radial increment growthwith the individual heterozygosity 18 

(IndHet) of treesparameter. 19 

 20 

Fig. 6.Agecurves for the population BER,calculatedusing different methods. A(t), mm –age curve 21 

(function of age trend) of radial growth in millimeters, N –number of trees for each age. 22 

 23 

Fig. 7.Clusters of agecurves calculatedas splines. 24 

 25 

Fig. 8.Clusters of agecurves calculatedasexponential andlinear functions. 26 

 27 

Fig. 9.Hierarchicaldendrogramsfor the BERpopulation dataset(clusterization is based onthe 28 

agecurves). 29 

 30 

Fig. 10.The climaticresponsein the chronologies ofthe two localpopulation datasets(BER and EFR) 31 

withlower and higherheterozygosity.Dotted line indicates thesignificance threshold for P < 0.05. 32 


