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This paper contains some results related to a holomorphic extension of integrable functions f,
defined on the boundary of D C C", n > 1, into this area. It’s about integrable functions with
one-dimensional holomorphic extension property along the complex lines.

In the complex plane C results about functions with one-dimensional holomorphic extension
property is trivial. Therefore, our results are significantly multidimensional.

In papers [1-3] considered sufficient conditions for families of holomorphic extension of inte-
grable functions of complex lines, passing through an open set, belonging to the field D, through
the germ generating manifolds in the complex hypersurface.

For instance, Globevnik [4] shows that for continuous functions on the boundary of n points
is not sufficient for holomorphic continuation. The paper [5] consider, a family of complex lines
passing through the final (n + 1) the number of points lying in the n-circular field D in C™ and
f continuous on the boundary. In this paper we generalize this result for integrable functions.

Let D be a complete strictly convex bounded region in C™ with smooth boundary and with

0 0

center at zero, ie, together with each point 20 = (29,...,2%) € D, it contains polydisc

{z€C": |z| <2}, k=1,...,n}.
We denote DV = {(|z1],...,|2s]) : z € D} image field D in absolute octant
RE={(21,...,20): |2p| >0, k=1,...,n}.

Let be 9D = {(|z1],...,|zn]) : 2 € OD}.

Let us consider finite measure p on dDT. The measure j is a massive on the Shilov boundary
[6, sec. 11], if for any the set E C OD™T of zero measure p satisfies the condition 0D+ \ E D
S(D"), where S(D1) is the image of the Shilov boundary S(D) in absolute octant. In this
case, S(D1) = dD*. From Theorem 3.1 [7] follows that Lebesgue measure p on the boundary
of this area is massive. Henceforth we will always assume, that the measure p is massive.

We define kernel Szegd of field D

h((2) = aaC™2%, (1)

a=0
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where
1 1
Qa = =
S [ ICRedu [ oGP (G Py
oD+ oD+
and « = {ay,...,q,} is a multi-index such that & > 0 (i.e ax > 0, k = 1,...,n) and 2% =
2t z8 el =1 .+ an.

We recall the definition the functions of the class HP(D).
Holomorphic function f € HP(D) (p > 0), if

sup [ |f(¢ —ev(())[Pdo < +oo,
e0.J9oD

where do is an element of surface D, and v(¢) is unit vector to ecternal normal to the surface
0D at point (.

It is well known that the normal boundary values of the function f € HP(D) belong to the
class LP(0D) (by measure do).

The existence of Szegd kernels in n-circular domains is given by the following theorem:

Theorem 1. Let on OD™ given finite measure p. In order for any function f € HP(D),(p > 1),
existed integral representation Szegd

dg

?7 ZED, (2)

. 1 -
F2) = i /a RS

where
A\C\ = {C Cl = |C1|ei017"'7<n = ‘Cn|ei6na 0 S ak < 27T7 k= 1,...,TL, |C| € aD+}7

A _d6 dg,

[T
and Szego kernel h((,z) = h((121,--.,Cuzn) at fized z € D included on ¢ 6 O(D), and at fived
¢ € 9D included on z 6 O(D), is necessary and sufficient in order to measure p is massive.

Theorem for continuous functions is given in [6], and in the case of a class of functions H? is
obtained approximation of functions f(z) functions f(r¢) at r — 1 —0,r < 1, in the metric HP.
Thus a series of (1) by the Theorem 1 converges absolutely for ¢ € D and z € D and uniformly
for ¢ € D and z € K, where K is arbitrary compact from D.

It is clear that the border 0D = |J Aj¢. It should be noted the obvious property of the
I¢leaD+
Szegd kernel:

h(¢, z) = h(C, 2) = h(z,C).

We introduce a Poisson kernel

~ h(G,2)h(¢,2) RS 2)
PCA) =G = he)

Note that the the core P((, ) is defined for ¢ € D and z € D, since h(z,z) > 0.

Proposition 1. If f € HP(D),(p > 1), then the formula is valid

L 1 d¢
flz)= 11mW[9D+dM Amf(C)P(sz)?7 z € D.
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Proof. By using the formula (2), we have

1 1 MEANCD &
(27”)" /8D+d'u A‘C‘f(C)P(CVz) C (2’/TZ)" /8D+d'u Amf(g) h(Z,z) C
1 N, de N
= G Ly [, (FOMCAEAT = 702 = 56)

since the function f({)h(¢,2) is holomorphic in ¢ € D for a fixed z € D. O

By Lemma 1 from [5], kernel Szegd at ¢ = z:

h(z,z) = Zaa|z|20‘ >0

az0

in D and h(z,z) — oo, if z — 9D.
~Assume that the region D satisfies the condition (A):
h(¢,rz) is uniformly bounded in z outside any neighborhood of ¢ at {,z € 9D and ¢ # 2, r — 1.

Theorem 2. If the area D satisfies the condition (A) and f € LP(OD), then the Poisson integral

1 ¢

F) =PI = i [ | rorera

is a real-analytic function in the region D and its boundary values in the metric LP coincides

with f on the 0D.

Proof. Real-analytic F(z) follows from the real-analyticity of the Szegd kernel and Poisson
kernel. From the condition (A) and Lemma 1 [5] follows that P((,rz) tends uniformly to zero
outside an arbitrary neighborhood of the point ¢ for (,z € 0D, { # z and r — 1. More-
over P((,z) > 0 u P[1](¢) = 1. Hence the Poisson kernel P((,z) is an approximate identity

8, Th. 1.9]. O

We use the notation d¢ = d{; A ... AdC,, dC[k] =dli A... ANdCe—1 AdChr1 A ... AdC,.

The denominator of kernel p¢, (G —21) +... +p¢, (Gn—2n) #0 at ¢,z € 9D u ( # z. Really,
¢, (C1—21) + ...+ pf, (o — 2zn) = 0 determines the complex tangent plane to dD at the point (.
If the area D is strictly convex, then the tangent plane intersects the boundary of the domain
only at the point (. The Szeg6 kernel area of the D is expressed by Leray kernel according to
Corollary 26.13 [6] and the view the denominator Szegd kernel thus does not vary, so such fields
satisfy the condition (A).

Differential form of N

w =3 (~1)1E i) de,

k=1
(n—1)!
(2mi)m

where ¢ = . We find this form of narrowing on thedD for the field of view

D={z€C": p(|z1]?,...,|z]?) <0},

0 0
where p(z) is twice smooth function grad p = (a—p7 oy P ) # 0 on 0D.
<1 Zn
We denote |z|> = tg, k =1,...,n. Then
Ip _ dp _
grad p = (%Zh ey aTzn) #0.
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Function p can be chosen such that | grad p| ’8D: 1. Let be v = w‘aD, then, as is easily verified
(look at example, [9, Lemma 3.5]),

B n B ap - n ap
V= C;Ckaékda = C;tkﬁtkda’

where do is the measure of Lebesgue on dD. In the case of n-circular areas do = doy -do’, where
do’ is measure defined by the form

1 d dc,
SN

(27”')71 G Cn ’

and doy is the measure of Lebesgue on dDT. Therefore

—~_ p ,
V= c;tka—%do+~da.

We denote
= tr—— doy. 3
K Ck§=1 ké)tk 0+ (3)

Lemma 1. If D is complete n-circular domain, then p is a measure on the D7 .
The proof of Lemma given in [5].

Corollary 1. If the area D is complete n-circular strictly convexr domain, then the measure p
is a massive measure on ODT.

We consider a modified Poisson kernel

h(C.2)h(¢,w)

Then at w = ¢ we get Q((,2,2) = P(C, 2) m h(Z,2) > 0. Therefore, there exists a neighborhood
U diagonals w = z in D, x D,,, wherein h(w, z) # 0.
We consider the function

O(z,w) =c f(C)Q((,z,w)du:c/ du J“(C)Q(C,,z,w)%7 (z,w) € D x D.
aD oD+ Ay

This function is a holomorphic on (z,w) € U, and at w = Z function ®(z,w) = F(z) and

TV P(z,w) _OTF(2)

e W @)
where
TP (z,w)  ON T FIANE M2 w)
0290w 025" - 920wt - - - B
85+7F(z) 361+‘.A+5n+v1+‘..vnF(Z)
0290z RS L Ys FACR FA L

and § = (01,...,0n), Y= (71,---,Vn)
Let be ¢ = bt, b € CP" !, t € C, whereas as shown in [10] (look also, [9, §15])

w= c% A A(b), (5)
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where A(b) is a differential form the type (n — 1,n — 1), not depend on the ¢.
In following we shall assume that there is a direction b° # 0 such that

(8°,¢) # 0 mst Beex ¢ € D. (6)
We denote by £ the set of complex lines of the form
ZZJ,:{CE(CRZCj:Zj+bjt7j:1,...,’rL7tE(C}, (7)

passing through a point z € I" in the direction of the vector b € CP" ! (direction b is defined up
to multiplication by complex number A # 0).

By Sard’s theorem for almost all z € C™ and for a fixed b € CP" ! intersection L., NOD
represents a set of finite number of piecewise smooth curves (except for the degenerate case where
oD N lz,b = @).

It is known that if f € £P(9D), p > 1, then for almost all 2 € D and almost all b € CP"~!
function f € LP(OD N1, ) (see [1]).

We say that the function f € LP(OD) possesses dimensional holomorphic extension property
along the complex lines 1, , € £ of the type (7), if almost all lines [, ; such that 0D N1, # @
there exists a function f; with the following properties

1) fie HP(DNly),

2) normal boundary values in the metric H? of function f; coincides with f on the set 9DNI
almost everywhere.

Let us consider the kernel of the Bochner-Martinelli

U(¢.2) = B IESN gyt S e g,

(i) 2~ ¢ —2pn

where d¢ = d(; A ... A d(,, and d([k] is obtained from d¢ by ejection differential d(j.
For a function f € LP(OD) we define the Bochner-Martinelli integral as follows:

Flz)= [ [fQU((2), z¢dD. (®)

Function F(z) is a harmonic outside the border domain and converges to zero as |z| — co.

We call set £r sufficient for holomorphic continuation, if the fact that f € LP(9D) has a
one-dimensional holomorphic extension property along for almost all complex lines of the family
£r follows that the function f holomorphically continued into D up to class functions HP.

Theorem 3. Let be D the bounded n-circular a strictly convexr domain and function f € LP(0D)
has a one-dimensional holomorphic extension property along the complex lines passing through
D(z,w)

(926 z=0

For continuous functions 3 is proved in [5].

the origin, then ®(0,w) = const u is a polynomial in w degree not higher ||4]|.
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O rossoMopdHOM ITPOJIOIXKEHNN MHTETPUPYEMbIX (DyHKIII
BJ/I0JIb KOHEYHBIX ceMeliCTB KOMIJIEKCHBIX ITPSIMbIX
B N-KPYTroBoii 00JIacT!

Baiipam II. OTremypartosn
KapakaJsmakckuii rocyZ1lapCTBEHHBI YHUBEPCUTET
Y.A6auposa, 1, Hykyc, 230112,

Vzbekucran

B pabome paccmompenv, cemeticmea KOMNAEKCHBIT NPAMBLT, NPOTOOAWUT weped Konewnoe (n+ 1) wucao

mouex, Aescawux 6 n-kpyz060t obaacmu D ¢ C" u f unmezpupyemvir na eparuye.

Karoueswie caosa: unmezpupyemuvie dyrryuu, 2onomopproe npodosscenue, sdpo Ceze, sdpo Ilyaccona,

KOMNNAEKCHDIE MIPAMDLE.
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