Multidimensional Boundary Analog of the Hartogs Theorem in Circular Domains

Alexander M. Kytmanov*
Simona G. Myslivets ${ }^{\dagger}$
Institute of Mathematics and Computer Science Siberian Federal University
Svobodny, 79, Krasnoyarsk, 660041
Russia

Received 06.06.2017, received in revised form 12.07.2017, accepted 17.10.2017
This paper presents some results related to the holomorphic extension of functions, defined on the boundary of a domain $D \subset \mathbb{C}^{n}$, $n>1$, into this domain. We study a functions with the one-dimensional holomorphic extension property along the complex lines.

Keywords: functions with the one-dimensional holomorphic extension property, circular domain. DOI: 10.17516/1997-1397-2018-11-1-79-90.

Introduction

This paper presents some results related to the holomorphic extension of functions, defined on the boundary of a domain $D \subset \mathbb{C}^{n}, n>1$, into this domain. We consider a functions with the one-dimensional holomorphic extension property along the complex lines.

The first result related to our subject was obtained M.L.,Agranovsky and R.E.Valsky in [1], who studied functions with the one-dimensional holomorphic continuation property into a ball. The proof was based on the properties of the automorphism group of a sphere.
E. L. Stout in [2] used the complex Radon transformation to generalize the Agranovsky and Valsky theorem for an arbitrary bounded domain with a smooth boundary. An alternative proof of the Stout theorem was obtained by A. M.Kytmanov in [3] by using the Bochner-Martinelli integral. The idea of using the integral representations (Bochner-Martinelli, Cauchy-Fantappiè, logarithmic residue) has been useful in the study of functions with the one-dimensional holomorphic continuation property (see review [4]).

The question of finding different families of complex lines sufficient for holomorphic extension was put in [5]. As shown in [6], a family of complex lines passing through a finite number of points, generally speaking, is not sufficient. Thus, a simple analog of the Hartogs theorem should be not expected.

Various other families are given in [7-11]. In [12-16] it is shown that for holomorphic extension of continuous functions defined on the boundary of ball,there are enough $n+1$ points inside the bal, not lying on a complex hyperplane. This result was generalized by the authors n-circular domains.

[^0]
1. Main results

Let D be a bounded domain in \mathbb{C}^{n} with a smooth boundary. Consider the complex line of the form

$$
\begin{equation*}
l_{z, b}=\left\{\zeta \in \mathbb{C}^{n}: \zeta=z+b t, t \in \mathbb{C}\right\}=\left\{\left(\zeta_{1}, \ldots \zeta_{n}\right): \zeta_{j}=z_{j}+b_{j} t, j=1,2, \ldots, n, t \in \mathbb{C}\right\}, \tag{1}
\end{equation*}
$$

where $z \in \mathbb{C}^{n}, b \in \mathbb{C} \mathbb{P}^{n-1}$.
We will say that a function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along the complex line $l_{z, b}$, if $\partial D \cap l_{z, b} \neq \varnothing$ and there exists a function $F_{l_{z, b}}$ with the following properties:

1) $F_{l_{z, b}} \in \mathcal{C}\left(\bar{B} \cap l_{z, b}\right)$,
2) $F_{l_{z, b}}^{l_{z, b}}=f$ on the set $\partial D \cap l_{z, b}$,
3) function $F_{l_{z, b}}$ is holomorphic at the interior (with respect to the topology of $l_{z, b}$) points of set $\bar{D} \cap l_{z, b}$.

Let Γ be a set in \mathbb{C}^{n}. Denote by \mathfrak{L}_{Γ} the set of all complex lines $l_{z, b}$ such that $z \in \Gamma$, and $b \in \mathbb{C P}^{n-1}$, i.e., the set of all complex lines passing through $z \in \Gamma$.

We will say that a function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along the family \mathfrak{L}_{Γ}, if it has the one-dimensional holomorphic extension property along any complex line $l_{z, b} \in \mathfrak{L}_{\Gamma}$.

We will call the set \mathfrak{L}_{Γ} sufficient for holomorphic extension, if the function $f \in \mathcal{C}(\partial D)$ has the one-dimensional holomorphic extension property along all complex lines of the family \mathfrak{L}_{Γ}, and then the function f extends holomorphically into D (i.e., f is a $C R$-function on ∂D).

Theorem A. Let $n=2$ and D be a bounded strictly convex circular domain with twice smooth boundary and a function $f(\zeta) \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\{a, c, d\}}$, and the points $a, c, d \in D$ do not lie on one complex line in \mathbb{C}^{2}, then the function $f(\zeta)$ extends holomorphically into D.

We denote by \mathfrak{A} the set of points $a_{k} \in D \subset \mathbb{C}^{n}, k=1, \ldots, n+1$, which do not lie on a complex hyperplane in \mathbb{C}^{n}.

Theorem B. Let D be a bounded strictly convex circular domain with twice smooth boundary in \mathbb{C}^{n} and the function $f(\zeta) \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\mathfrak{A}}$, then the function $f(\zeta)$ extends holomorphically into D.

2. Construction of the Szegö kernel

Let $\mathcal{H}(D)$ be the space of holomorphic functions in D with the topology of uniform convergence on compact subsets of D, and $\mathcal{H}(\bar{D})$ be the space of holomorphic functions in a neighborhood of \bar{D} with the corresponding topology. Consider the measure $d \mu=g(\zeta) d \sigma$, where $g(\zeta) \in \mathcal{C}^{1}(\partial D), g(\zeta)>0$, and $d \sigma$ is the Lebesgue measure on ∂D. The space $\mathcal{H}(\bar{D})$ is the subspace in $\mathcal{L}^{2}(\partial D)$ with the measure $d \mu$ on ∂D. By the Maximum Modulus Theorem the mapping $\mathcal{H}(\bar{D}) \longrightarrow \mathcal{L}^{2}(\partial D)$ is injective. By $\mathcal{H}^{2}=\mathcal{H}^{2}(\partial D)$ we denote the closure of $\mathcal{H}(\bar{D})$ in \mathcal{L}^{2}.

Consider a restriction mapping $r: \mathcal{H}(\bar{D}) \longrightarrow \mathcal{H}(D)$. The mapping r extends by continuity from \mathcal{H}^{2} in $\mathcal{H}(D)$.

Lemma 1 (Lemma 4.1. [17]). The restriction mapping $r: \mathcal{H}(\bar{D}) \longrightarrow \mathcal{H}(D)$ is continuous, if $\mathcal{H}(\bar{D})$ is considered in the topology induced by the space \mathcal{L}^{2}.

Therefore, the mapping r extends by continuity to the map $i: \mathcal{H}_{\tilde{\prime}} \longrightarrow \mathcal{H}(D)$. In this case, we say that for functions $f \in \mathcal{H}^{2}$ there is a holomorphic continuation $\tilde{f}=i(f)$ in D. Further on, this continuation will be denoted by the same symbol f.

In [17] as the measure considered by the Lebesgue measure $d \sigma$ on the boundary of the domain, in our case, for the measure $d \mu=g(\zeta) d \sigma$ the proof is similar.

Since the space \mathcal{H}^{2} is a Hilbert separable space, then there exists an orthonormal basis

$$
\begin{equation*}
\left\{\varphi_{k}\right\}_{k=1}^{\infty} \tag{2}
\end{equation*}
$$

in the metric \mathcal{L}^{2}. Therefore, any function $f \in \mathcal{H}^{2}$ extens in a Fourier series:

$$
\begin{equation*}
f(\zeta)=\sum_{k=1}^{\infty} c_{k} \varphi_{k}(\zeta) \tag{3}
\end{equation*}
$$

with respect to the basis (2), which converges in the topology of \mathcal{L}^{2}, where $c_{k}=\left(f, \varphi_{k}\right)=$ $\int_{\partial D} f(u) \bar{\varphi}_{k}(u) d \mu(u)$. Then

$$
f(\zeta)=\sum_{k=1}^{\infty}\left(\int_{\partial D} f(u) \bar{\varphi}_{k}(u) d \mu(u) \varphi_{k}(\zeta)\right)=\int_{\partial D} f(u) \sum_{k=1}^{\infty} \bar{\varphi}_{k}(u) \varphi_{k}(\zeta) d \mu(u)
$$

Denote $K(\zeta, \bar{u})=\sum_{k=1}^{\infty} \varphi_{k}(\zeta) \bar{\varphi}_{k}(u)$ and $K(\zeta, \bar{u}) \in \mathcal{H}(\bar{D})$ on $\zeta \in \bar{D}$ for a fixed $u \in D$.
Lemma 2. We can choose an orthonormal basis $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ in \mathcal{H}^{2} which consists of functions φ_{k} in $\mathcal{H}(\bar{D})$.

Proof. Since the space $\mathcal{H}(\bar{D})$ is separable, then there exists a countable everywhere dense set. It will be the same in \mathcal{H}^{2}, since \mathcal{H}^{2} is the closure of $\mathcal{H}(\bar{D})$. Using the process of Gram-Schmidt orthogonalization for the functions from this set, we get orthonormal basis in \mathcal{H}^{2} consisting of functions $\varphi_{k} \in \mathcal{H}(\bar{D})$.

Lemma 3. If D is a bounded strictly convex domain with a smooth boundary, then we can choose a polynomials basis $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$.

Proof. Since the domain D is strictly convex, the set \bar{D} is polynomially convex and compact. On such sets functions, holomorphic in its neighborhood, are uniformly approximated by the polynomials [18]. Consequently, the polynomials are dense in the class of functions from $\mathcal{H}(\bar{D})$ and therefore from \mathcal{H}^{2}. Applying the Gram-Schmidt orthogonalization to this set we get an orthonormal basis in \mathcal{H}^{2} consisting of polynomials.

Let us call the function $g(\zeta)$ invariant under rotations, if $g\left(\zeta_{1}, \ldots, \zeta_{n}\right)=g\left(e^{i \varphi} \zeta_{1}, \ldots, e^{i \varphi} \zeta_{n}\right)$ for all $\varphi \in[0,2 \pi)$.

Lemma 4. If D is a bounded strictly convex circular domain with a smooth boundary and a function $g(\zeta)$ is invariant under rotations, we can choose a basis $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ of homogeneous polynomials.

Proof. Indeed, in this case, the measure $d \mu$ is also invariant under rotations, so the homogeneous polynomials of different degrees of homogeneity are orthogonal in \mathcal{H}^{2}.

Further on, we assume that the basis is chosen in accordance with Theorem 5.1 [17]. According to this theorem the continuation of the kernel $K(\zeta, \bar{u})$ has the property:

$$
i(f)(z)=\int_{\partial D} f(\zeta) K(z, \bar{\zeta}) d \mu(\zeta), \quad z \in D
$$

where $K(z, \bar{\zeta})=\sum_{k=1}^{\infty} i\left(\varphi_{k}\right)(z) i\left(\bar{\varphi}_{k}\right)(\zeta)$ and the series converges uniformly on compact subsets of $D \times D$. This kernel we call the Szegö kernel. Then

$$
\begin{equation*}
f(z)=\int_{\partial D} f(\zeta) K(z, \bar{\zeta}) d \mu(\zeta) \tag{4}
\end{equation*}
$$

where $f(z)$ is identified with $\tilde{f}(z)=i(f)(z)$ and $f \in \mathcal{H}^{2}$.
We define the Poisson kernel

$$
P(z, \zeta)=\frac{K(z, \bar{\zeta}) \cdot K(\zeta, \bar{z})}{K(z, \bar{z})}=\frac{K(z, \bar{\zeta}) \cdot \bar{K}(z, \bar{\zeta})}{K(z, \bar{z})}=\frac{|K(z, \bar{\zeta})|^{2}}{K(z, \bar{z})}
$$

and $K(z, \bar{z})=\sum_{k=1}^{\infty} \varphi_{k}(z) \bar{\varphi}_{k}(z)=\sum_{k=1}^{\infty}\left|\varphi_{k}(z)\right|^{2} \geqslant 0$.
Lemma 5. The kernel $K(z, \bar{z})>0$ for any $z \in D$.
Proof. Let $k(z, \bar{z})=0$ for some $z \in D$. Then $\varphi_{k}(z)=0$ for all $k=1,2, \ldots$, so

$$
\begin{equation*}
\varphi_{k}(z)=\int_{\partial D} \varphi_{k}(\zeta) K(z, \bar{\zeta}) d \mu(\zeta)=0 \tag{5}
\end{equation*}
$$

Since any function $f \in \mathcal{H}^{2}$ decomposes into the Fourier series (3), $f(\zeta)=\sum_{k=1}^{\infty} c_{k} \varphi_{k}(\zeta)$. Applying the mapping i, we get that $f(z)=\sum_{k=1}^{\infty} c_{k} i\left(\varphi_{k}\right)(z)=0$ in virtue of (5), i.e. $f(z)=0$ in D for all functions $f \in \mathcal{H}^{2}$, which is impossible.
Lemma 6. A function $f \in \mathcal{H}(\bar{D})$ admits the integral representation

$$
\begin{equation*}
f(z)=\int_{\partial D} f(\zeta) P(z, \zeta) d \mu(\zeta) \tag{6}
\end{equation*}
$$

for $z \in D$.
Proof. By definition of the kernel $P(z, \zeta)$ and from the integral representation (4) we have

$$
\begin{aligned}
& \int_{\partial D} f(\zeta) P(z, \zeta) d \mu(\zeta)=\int_{\partial D} f(\zeta) \frac{K(z, \bar{\zeta}) \cdot K(\zeta, \bar{z})}{K(z, \bar{z})} d \mu(\zeta)= \\
&=\frac{1}{K(z, \bar{z})} \int_{\partial D}(f(\zeta) K(\zeta, \bar{z})) K(z, \bar{\zeta}) d \mu(\zeta)=\frac{f(z) K(z, \bar{z})}{K(z, \bar{z})}=f(z)
\end{aligned}
$$

Corollary 1. If the space $\mathcal{H}(\bar{D})$ is dense in the space $\mathcal{H}(D) \cap \mathcal{C}(\partial D)=\mathcal{A}(D)$, then a function $f \in \mathcal{A}(D)$ admits the integral representation (6).

Suppose that the domain D satisfies the condition
(A) : for any point $\zeta \in \partial D$ and any neighborhood $U(\zeta)$ the Szegö kernel $K(z, \bar{\zeta})$ is uniformly bounded by $z \in D$ and $z \notin U(\zeta)$.

Further, we assume that the domain D satisfies the condition (A).

Theorem 1. Let D be a strictly convex domain in \mathbb{C}^{n} and the kernel $K(z, \bar{\zeta})$ satisfies the Hölder condition with exponent $\frac{1}{2}<\alpha \leqslant 1$ for $\zeta \in \partial D$ and a fixed $z \in D$. Then the domain D and the kernel $K(z, \bar{\zeta})$ satisfy the condition (A).

Proof. Let

$$
\begin{equation*}
D=\left\{z \in \mathbb{C}^{n}: \rho(z)<0\right\} \tag{7}
\end{equation*}
$$

where $\rho \in \mathcal{C}^{2}(\bar{D})$ and $\left.\operatorname{grad} \rho\right|_{\partial D} \neq 0$. For the proof we use Corollary 26.13 [3] for the Leray integral representations for holomorphic functions $f \in \mathcal{A}(D)$ in strictly convex domains:

$$
f(z)=\frac{(n-1)!}{(2 \pi i)^{n}} \int_{\partial D} \frac{f(\zeta) \sum_{k=1}^{\infty} \delta_{k} d \bar{\zeta}[k] \wedge d \zeta}{\left[\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)\right]^{n}}
$$

where

$$
\delta_{k}=\left|\begin{array}{ccc}
\rho_{\zeta_{1}}^{\prime} & \ldots & \rho_{\zeta_{n}}^{\prime} \\
\rho_{\zeta_{1} \bar{\zeta}_{1}}^{\prime \prime} & \ldots & \rho_{\zeta_{n}}^{\prime \prime} \bar{\zeta}_{1} \\
\rho_{\zeta_{1} \bar{\zeta}_{n}}^{\prime \prime} & {[k]} & \rho_{\zeta_{n} \bar{\zeta}_{n}}^{\prime \prime}
\end{array}\right|, \quad k=1, \ldots, n
$$

$d \zeta=d \zeta_{1} \wedge \ldots \wedge d \zeta_{n}, d \bar{\zeta}[k]=d \bar{\zeta}_{1} \wedge \ldots \wedge d \bar{\zeta}_{k-1} \wedge d \bar{\zeta}_{k+1} \wedge \ldots \wedge d \bar{\zeta}_{n}$.
The denominator of the kernel $\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right) \neq 0$ for $\zeta \in \partial D, z \in \bar{D}$ and $\zeta \neq z$. Indeed, the equality $\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)=0$ defines a complex tangent plane to ∂D at the point ζ. If the domain D is strictly convex, then the tangent plane intersects the boundary of D only at a point ζ.

For the domain D the Szegö kernel $K(z, \bar{\zeta})$ is the (generalized) Cauchy-Fantappiè (Leray) kernel by Corollary 26.13 [3], so the same domain satisfy the condition (A).

Consider the restriction of the form

$$
L(z, \zeta, \bar{\zeta})=\frac{\sum_{k=1}^{\infty} \delta_{k} d \bar{\zeta}[k] \wedge d \zeta}{\left[\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)\right]^{n}}
$$

to ∂D, then it would be

$$
\begin{aligned}
& L(z, \zeta, \bar{\zeta})= \\
& \qquad \begin{aligned}
&=\frac{\psi(\zeta, \bar{\zeta}) d \sigma(\zeta)}{\left[\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)\right]^{n}}=\frac{\psi(\zeta, \bar{\zeta}) d \mu(\zeta)}{g(\zeta)\left[\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)\right]^{n}}= \\
&=\frac{\psi_{1}(\zeta, \bar{\zeta}) d \mu(\zeta)}{\left[\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}-z_{n}\right)\right]^{n}}=\widetilde{L}(z, \zeta, \bar{\zeta}) d \mu(\zeta)
\end{aligned}
\end{aligned}
$$

The proof of Theorem 1 shows that

$$
\begin{equation*}
K(z, \bar{\zeta})=\widetilde{L}(z, \zeta, \bar{\zeta}) \tag{8}
\end{equation*}
$$

for $\zeta \in \partial D$.
Lemma 7. The function $K(z, \zeta)$ is unbounded as $z \rightarrow \zeta$ and $\zeta \in \partial D, z \in D$.
Proof. Consider the point $z^{0} \in D$, then the domain D is a strongly star-shaped with respect to z^{0}, i.e. for any point $\zeta^{0} \in \partial D$ the segment $\left[z^{0}, \zeta^{0}\right] \in \bar{D}$. Let this segment have the form $\left\{z \in D: z=\zeta^{0}+t\left(z^{0}-\zeta^{0}\right), 0 \leqslant t \leqslant 1\right\}$. Then

$$
\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}^{0}-z_{1}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}^{0}-z_{n}\right)=t\left(\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}^{0}-z_{1}^{0}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}^{0}-z_{n}^{0}\right)\right)
$$

If $z \rightarrow \zeta^{0}$, then $t \rightarrow 0$ and $\left(\rho_{\zeta_{1}}^{\prime}\left(\zeta_{1}^{0}-z_{1}^{0}\right)+\ldots+\rho_{\zeta_{n}}^{\prime}\left(\zeta_{n}^{0}-z_{n}^{0}\right)\right) \rightarrow 0$. Then $K(z, \zeta) \rightarrow \infty$ for $z \rightarrow \zeta$, $\zeta \in \partial D$.

3. Poisson kernel and its properties

For a function $f \in \mathcal{C}(\partial D)$ we define the Poisson integral:

$$
P[f](z)=F(z)=\int_{\partial D} f(\zeta) P(z, \zeta) d \mu(\zeta)
$$

In strictly convex domain that satisfy the condition (A), from Equality (8) and the form of the kernel $P(z, \zeta)$, it follows that this kernel is a continuous function for $z \in D$ and then the function $F(z)$ is continuous in D.

Theorem 2. Let D be a bounded strictly convex domain in \mathbb{C}^{n} satisfying the condition (A), and $f \in \mathcal{C}(\partial D)$, then the function $F(z)$ continuously extend onto \bar{D} and $\left.F(z)\right|_{\partial D}=f(z)$.

Proof. Theorem 1 and Lemma 7 show that the kernel $P\left(\zeta, t\left(z^{0}-z\right)\right)$ tends uniformly to zero outside any neighborhood of the point ζ for $\zeta, z \in \partial D, z^{0} \in D, \zeta \neq z$ and $t \rightarrow 1$. Moreover $P(z, \zeta)>0$ and $P[1](\zeta)=1$. Consequently, the Poisson kernel $P(z, \zeta)$ is an approximative unit [19, Theorem 1.9].

Consider the differential form

$$
\omega=c \sum_{k=1}^{n}(-1)^{k-1} \bar{\zeta}_{k} d \bar{\zeta}[k] \wedge d \zeta
$$

where $c=\frac{(n-1)!}{(2 \pi i)^{n}}$. Find the restriction of this form to ∂D for the domain D of the form (7). Then by Lemma 3.5 [20], we get

$$
d \bar{\zeta}[k] \wedge d \zeta=(-1)^{k-1} 2^{n-1} i^{n} \frac{\partial \rho}{\partial \bar{\zeta}_{k}} \cdot \frac{d \sigma}{|\operatorname{grad} \rho|}
$$

Therefore, the restriction of ω to ∂D is equal to

$$
d \mu=\left.\omega\right|_{\partial D}=\frac{(n-1)!}{2 \pi^{n}} \sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}} \cdot \frac{d \sigma}{|\operatorname{grad} \rho|} .
$$

We denote

$$
g(\zeta)=\frac{(n-1)!}{2 \pi^{n}} \sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}} \cdot \frac{1}{|\operatorname{grad} \rho|}
$$

Lemma 8. If D is a strictly convex circular domain, then $g(\zeta)$ is a real-valued function that does not vanish on ∂D.

Proof. For circular domain $\rho\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\rho\left(\zeta_{1} e^{i \theta}, \ldots, \zeta_{n} e^{i \theta}\right), 0 \leqslant \theta \leqslant 2 \pi$, differentiating this equality with respect θ, we get

$$
0=\sum_{k=1}^{n} i \zeta_{k} e^{i \theta} \frac{\partial \rho}{\partial \zeta_{k}}-\sum_{k=1}^{n} i \bar{\zeta}_{k} e^{-i \theta} \frac{\partial \rho}{\partial \bar{\zeta}_{k}}
$$

Then we get $\sum_{k=1}^{n} \zeta_{k} \frac{\partial \rho}{\partial \zeta_{k}}=\sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}}$ for $\theta=0$. The function $g(\zeta)$ means being real that

$$
\sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}}=\overline{\sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}}}=\sum_{k=1}^{n} \zeta_{k} \frac{\partial \rho}{\partial \zeta_{k}}
$$

The function $g(\zeta) \neq 0$ on ∂D, since the complex tangent plane does not pass through zero at the point ζ. Therefore, the function $g(\zeta)$ preserves sign on ∂D.

Therefore, we can assume that $g(\zeta)>0$ on ∂D. Therefore, $d \mu=g d \sigma$ is a measure and for it all previous constructions are true.

Lemma 9. Let D be a strictly convex $\left(p_{1}, \ldots, p_{n}\right)$-circular domain, i.e.

$$
\rho\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\rho\left(\zeta_{1} e^{i p_{1} \theta}, \ldots, \zeta_{n} e^{i p_{n} \theta}\right), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

where p_{1}, \ldots, p_{n} are positive rational numbers. Then the function

$$
\sum_{k=1}^{\infty} \bar{\zeta}_{k} p_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}}
$$

is real-valued and not zero.
Proof repeats the proof of the previous Lemma 8.
The function ρ can be chosen so that $\mid \operatorname{grad} \rho \|_{\partial D}=1$, then

$$
d \mu=c_{1} \sum_{k=1}^{n} \bar{\zeta}_{k} \frac{\partial \rho}{\partial \bar{\zeta}_{k}} d \sigma
$$

where $c_{1}=\frac{(n-1)!}{2 \pi^{n}}$.
Consider the family of complex lines $l_{z^{0}, b}$ of the form (1) passing through the point $z^{0} \in D$, where $b \in \mathbb{C P}^{n-1}$. Calculate the form ω in the variables b and t, we get

$$
\begin{aligned}
& d \zeta=d \zeta_{1} \wedge \ldots \wedge d \zeta_{n}=d\left(z_{1}^{0}+b_{1} t\right) \wedge \ldots \wedge d\left(z_{n}^{0}+b_{n} t\right)= \\
& \quad=d\left(b_{1} t\right) \wedge \ldots \wedge d\left(b_{n} t\right)=t^{n-1} d t \wedge\left(b_{1} d b[1]-b_{2} d b[2]+\ldots+(-1)^{n-1} b_{n} d b[n]=\right. \\
& \quad=t^{n-1} d t \wedge \sum_{k=1}^{n}(-1)^{k-1} b_{k} d b[k]=t^{n-1} d t \wedge \nu(b)
\end{aligned}
$$

where $\nu(b)=\sum_{k=1}^{n}(-1)^{k-1} b_{k} d b[k]$. Here we use the fact that $b \in \mathbb{C P}^{n-1}$.
Now we calculate

$$
\begin{aligned}
& \sum_{k=1}^{n}(-1)^{k-1} \zeta_{k} d \zeta[k]= \\
& =\sum_{k=1}^{n}\left(z_{k}^{0}+b_{k} t\right) d\left(z_{1}^{0}+b_{1} t\right) \wedge \ldots \wedge d\left(z_{k-1}^{0}+b_{k-1} t\right) \wedge d\left(z_{k+1}^{0}+b_{k+1} t\right) \wedge \ldots \wedge d\left(z_{n}^{o}+b_{n} t\right)= \\
& \\
& \quad=\sum_{k=1}^{n}(-1)^{k-1} z_{k}^{0} d \zeta[k]+\sum_{k=1}^{n}(-1)^{k-1} b_{k} t d \zeta[k]= \\
& =\sum_{k=1}^{n}(-1)^{k-1} z_{k}^{0} t^{n-2} d t \wedge \chi(b)+\sum_{k=1}^{n}(-1)^{k-1} z_{k}^{0} t^{n-1} d b[k]+\sum_{k=1}^{n} b_{k} t^{n} d b[k]
\end{aligned}
$$

where $\chi(b)$ is a differential form of degree $(n-2)$. From here we get that

$$
\begin{aligned}
& \left.\omega\right|_{\partial D}=\left.c \sum_{k=1}^{n}(-1)^{k-1} \bar{\zeta}_{k} d \bar{\zeta}[k] \wedge d \zeta\right|_{\partial D}= \\
& =c \sum_{k=1}^{n}(-1)^{k-1} \bar{z}_{k}^{0} \bar{t}^{n-1} t^{n-1} d \bar{b}[k] \wedge d t \wedge \nu(b)+c \sum_{k=1}^{n}(-1)^{k-1} \bar{b}_{k} \bar{t}^{n} t^{n-1} d \bar{b}[k] \wedge d t \wedge \nu(b)= \\
& \quad=(-1)^{n} c d t \wedge\left(\sum_{k=1}^{n}(-1)^{k-1} \bar{z}_{k}^{0}|t|^{2 n-2} d \bar{b}[k] \wedge \nu(b)+\bar{t}|t|^{2 n-2} \nu(\bar{b}) \wedge \nu(b)\right)= \\
& \quad=(-1)^{n-1} c|t|^{2 n-2} d t \wedge\left(\sum_{k=1}^{n}(-1)^{k-1} \bar{z}_{k}^{0} d \bar{b}[k]+\bar{t} \nu(\bar{b})\right) \wedge \nu(b)
\end{aligned}
$$

Thus, we have Lemma:
Lemma 10. The form $\left.\omega\right|_{\partial D}$ in the variables b and t has the form

$$
\left.\omega\right|_{\partial D}=(-1)^{n-1} c|t|^{2 n-2} d t \wedge\left(\sum_{k=1}^{n}(-1)^{k-1} \bar{z}_{k}^{0} d \bar{b}[k]+\bar{t} \nu(\bar{b})\right) \wedge \nu(b)
$$

Consider the modified Poisson kernel

$$
Q(z, w, \zeta)=\frac{K(z, \bar{\zeta}) \cdot K(\zeta, w)}{K(z, w)}
$$

For $w=\bar{z}$ we obtain $Q(z, \bar{z}, \zeta)=P(z, \zeta)$ and $K(z, \bar{z})>0$. Therefore, there exists a neighborhood U of the diagonal $w=\bar{z}$ in $D_{z} \times D_{w}$ in which $K(z, w) \neq 0$.

Consider the function

$$
\Phi(z, w)=\int_{\partial D} f(\zeta) Q(z, w, \zeta) d \mu(\zeta)
$$

which is defined for $(z, w) \in U$. It is holomorphic in $(z, w) \in U$, and for $w=\bar{z}$ we have $\Phi(z, w)=F(z)$ and

$$
\begin{equation*}
\left.\frac{\partial^{\delta+\gamma} \Phi(z, w)}{\partial z^{\delta} \partial w^{\gamma}}\right|_{w=\bar{z}}=\frac{\partial^{\delta+\gamma} F(z)}{\partial z^{\delta} \partial \bar{z}^{\gamma}}, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\frac{\partial^{\delta+\gamma} \Phi(z, w)}{\partial z^{\delta} \partial w^{\gamma}} & =\frac{\partial^{\delta_{1}+\ldots+\delta_{n}+\gamma_{1}+\ldots+\gamma_{n}} \Phi(z, w)}{\partial z_{1}^{\delta_{1}} \cdots \partial z_{n}^{\delta_{n}} \partial w_{1}^{\gamma_{1}} \cdots \partial w_{n}^{\gamma_{n}}} \\
\frac{\partial^{\delta+\gamma} F(z)}{\partial z^{\delta} \partial \bar{z}^{\gamma}} & =\frac{\partial^{\delta_{1}+\ldots+\delta_{n}+\gamma_{1}+\ldots+\gamma_{n}} F(z)}{\partial z_{1}^{\delta_{1}} \cdots \partial z_{n}^{\delta_{n}} \partial \bar{z}_{1}^{\gamma_{1}} \cdots \partial \bar{z}_{n}^{\gamma_{n}}}
\end{aligned}
$$

and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$.

4. Additional construction

Consider a mapping $\zeta=\chi(\eta): \bar{B} \longrightarrow \bar{D}$, where B is the unit ball in \mathbb{C}^{n} centered at zero taking zero to a $a \in D$. The mapping χ is be constructed as follows: Consider the complex lines $\lambda_{b}=\left\{\eta \in \mathbb{C}^{n}: \eta=b \tau, b \in \mathbb{C P}^{n-1}, \tau \in \mathbb{C}\right\}$ and $l_{a, b}=\left\{\zeta \in \mathbb{C}^{n}: \zeta=a+b t, b \in \mathbb{C P}^{n-1}, t \in \mathbb{C}\right\}$. The intersection $D_{a, b}=D \cap l_{a, b}$ is a strictly convex domain in \mathbb{C}; therefore, there exists a conformal mapping $t=\chi_{b}(\tau)$ of the unit disk $B \cap \lambda_{b}$ into $D_{a, b}$ taking $\tau=0$ to $t=0$. By the

Carathéodory Theorem [21], this mapping extends to a homeomorphism of the closed domains. Then to a point $\eta=b \tau \in B \cap \lambda_{b}$ there is assigned the point $\chi(\eta)=a+b \chi_{b}(\tau) \in D_{a, b}$. Lemmas 11-14 are formulated and proved in the same way as in the paper [22].

Lemma 11. Let D be a bounded strictly convex circular domain with twice smooth boundary in \mathbb{C}^{n}. Then $\chi(\eta)$ is well defined and is a \mathcal{C}^{1}-diffeomorphism from \bar{B} onto \bar{D}.

Henceforth, we assume that D is a bounded strictly convex circular domain with twice smooth boundary.

Lemma 12. The derivatives of $\chi(\eta)$ are holomorphic functions in τ for b fixed and where $\eta=b \tau$.
Lemma 13. Let the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along complex lines passing through $a \in D$. Then the function $f^{\star}(\eta)=f(\chi(\eta))$ is continuous on ∂B and has the one-dimensional holomorphic extension property along complex lines passing through zero.

Performing a change of variables in integral for Φ, we obtain

$$
\begin{aligned}
& \Phi(z, w)=\int_{\partial D} f(\zeta) Q(z, w, \zeta) d \mu(\zeta)= \\
& \quad=\int_{\partial B} f(\chi(\eta)) Q(z, w, \chi(\eta)) d \mu(\chi(\eta))=\int_{\partial B} f^{\star}(\eta) Q^{\star}(z, w, \eta) d \mu^{\star}(\eta)
\end{aligned}
$$

Consider the form

$$
\omega^{\star}(\eta)=\omega(\chi(\eta))=\sum_{k=1}^{n}(-1)^{k-1} \bar{\chi}_{k}(\eta) d \bar{\chi}(\eta)[k] \wedge d \chi(\eta)
$$

By Lemma 12, the form $d \chi(b \tau)$ is holomorphic in τ for b fixed, while the form $d \bar{\chi}(b \tau)[k]$ is antiholomorphic in τ for b fixed.
Lemma 14. The forms $\left.d \bar{\chi}(b \tau)\right|_{|\tau|=1}, k=1, \ldots, n$, are forms with holomorphic coefficients with respect to τ.

Theorem 3. Let D be a bounded strictly convex circular domain with twice smooth boundary and the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along complex lines passing through $a \in D$. Then

$$
\left.\frac{\partial^{\gamma} \Phi(z, w)}{\partial w^{\gamma}}\right|_{\substack{z=a \\ w=\bar{a}}}=0
$$

for $\|\gamma\|>0$, where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\|\gamma\|=\gamma_{1}+\ldots+\gamma_{n}$.
The proof of this Theorem is essentially as in the proof of Theorem 3 of [22].
Corollary 2. $\Phi(a, w)=$ const under the conditions of Theorem 3.
the same way as the previous theorem we prove the statement:
Theorem 4. Let D be a bounded strictly convex circular domain with twice smooth boundary and the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along complex lines passing through $a \in D$. Then the derivatives $\left.\frac{\partial^{\delta} \Phi(z, w)}{\partial z^{\delta}}\right|_{\substack{z=a, w=\bar{\alpha}}}$ are polynomials in w of degree at most $\|\delta\|$.

Theorem 5. Let D be a bounded strictly convex circular domain with twice smooth boundary and the function $f(\zeta) \in \mathcal{C}(\partial D)$, and $a, c \in D$. Assume that $\Phi(z, w)$ satisfies the conditions $\Phi(a, w)=\mathrm{const}, \Phi(c, w)=\mathrm{const}$ and $\frac{\partial^{\alpha} \Phi(a, w)}{\partial z^{\alpha}}, \frac{\partial^{\alpha} \Phi(c, w)}{\partial z^{\alpha}}$ are polynomials in w of degree at most $\|\alpha\|$. Then, for every fixed z on the complex line

$$
l_{a, c}=\{(z, w): z=a t+c(1-t), w=\bar{a} t+\bar{c}(1-t), t \in \mathbb{C}\}
$$

we have $\Phi(z, w)=$ const with respect to w; i.e., $\frac{\partial^{\gamma} \Phi(z, w)}{\partial w^{\gamma}}=0$ for $\|\gamma\|>0$.
The proof of this Theorem is essentially the same as the proof of Theorem 5 of [22].
Corollary 3. Under the conditions of Theorem 5, $\left.\frac{\partial^{\gamma} F(z)}{\partial \bar{z}^{\gamma}}\right|_{z=a t+(1-t) c}=0$ for $\|\gamma\|>0$.

5. Proof of the main assertions

Theorem 6. Let $n=2$ and D be a bounded strictly convex circular domain with twice smooth boundary and the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\{a, c, d\}}$ and the points a, $c, d \in D$ do not lie on one complex line in \mathbb{C}^{2}. Then $\frac{\partial^{\gamma} \Phi(z, w)}{\partial w^{\gamma}}=0$ for any $z \in D$ and $\|\gamma\|>0$, and $f(\zeta)$ extends holomorphically into D.

Proof. Let \tilde{z} be an arbitrary point on $l_{a, c}$. Then by Theorem 5, we have

$$
\begin{equation*}
\frac{\partial^{\gamma} \Phi(\tilde{z}, w)}{\partial w^{\gamma}}=0 \tag{10}
\end{equation*}
$$

for $\|\gamma\|>0$. Joining \tilde{z} with d by the line $l_{\tilde{z}, d}$ and again applying Theorem 5 with $\tilde{\tilde{z}} \in l_{\tilde{z}, d}$, we conclude that $\frac{\partial^{\gamma} \Phi(\tilde{\tilde{z}}, w)}{\partial w^{\gamma}}=0$ for $\|\gamma\|>0$. Therefore, (10) is fulfilled for all \tilde{z} in some open set.

Inserting $w=\bar{z}$ in (10), we have $\frac{\partial^{\gamma} F(z)}{\partial \bar{z}^{\gamma}}=0$ in some open set in D. The real analiticity of $F(z)$ implies that $\frac{\partial F(z)}{\partial \bar{z}_{j}}=0$ for any $z \in D$ and $j=1, \ldots, n$. Since by Theorem 2 we have $\left.F(\zeta)\right|_{\partial D}=f(\zeta)$, the function $f(\zeta)$ extends holomorphically into D.

Denote by \mathfrak{A} the set of noncomplanar points $a_{k} \in D \subset \mathbb{C}^{n}, k=1, \ldots, n+1$.
Theorem 7. Let D be a bounded strictly convex circular domain with twice smooth boundary in \mathbb{C}^{n} and the function $f \in \mathcal{C}(\partial D)$ have the one-dimensional holomorphic extension property along the family $\mathfrak{L}_{\mathfrak{A}}$. Then $\frac{\partial^{\gamma} \Phi(z, w)}{\partial w^{\gamma}}=0$ for any $z \in D$ and $\|\gamma\|>0$, and $f(\zeta)$ extends holomorphically into D.

Proof. Proceed by induction on n. The induction base is Theorem $6(n=2)$. Suppose that the theorem holds for all $k<n$. Consider the complex plane Γ passing through a_{1}, \ldots, a_{n}, the dimension of Γ is by hypothesis equal to $n-1$ and $a_{n+1} \notin \Gamma$. The intersection $\Gamma \cap D$ is a strictly convex domain in \mathbb{C}^{n-1}.

The function $\left.f\right|_{\Gamma \cap \partial D}$ is continuous and has the property of holomorphic extension along the family $\mathfrak{L}_{\mathfrak{A}_{1}}$, where $\mathfrak{A}_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$. By the induction assomption, $\frac{\partial^{\gamma} \Phi\left(z^{\prime}, w\right)}{\partial w^{\gamma}}=0$ for $\|\gamma\|>0$ for all $z^{\prime} \in \Gamma \cap D$.

Joining $z^{\prime} \in \Gamma$ with a_{n+1}, we find by Theorem 6 that $\frac{\partial^{\gamma} \Phi(z, w)}{\partial w^{\gamma}}=0$ for $\|\gamma\|>0$ for some open set in $D \times D$. In much the way as Theorem 6, this implies that $F(z)$ is holomorphic in D, and so $f(\zeta)$ extends holomorphically into D.

Theorems 6 and 7 obviously imply Theorems A and B.

References

[1] M.L.Agranovsky, R.E.Valsky, Maximality of invariant algebras of functions, Sib. Mat. J,. 12(1971), no. 1, 3-12 (in Russian).
[2] E.L.Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J., 44(1977), no. 1, 105-108.
[3] L.A.Aizenberg, A.P.Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Tranclantions of Mathematical Monographs, Vol. 58, American Mathematical Society, Providence, RI, 1983.
[4] A.M.Kytmanov, S.G.Myslivets, Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions, J. Math. Sci., 120(2004), no. 6, 1842-1867.
[5] J.Globevnik, E.L.Stout, Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J, 64(3), 571-615 (1991).
[6] A.M.Kytmanov, S.G.Myslivets, On the families of complex lines, sufficient for holomorphic continuations, Math. Notes, $\mathbf{8 3 (2 0 0 8) , ~ n o . ~ 4 , ~ 5 4 5 - 5 5 1 . ~}$
[7] A.M.Kytmanov, S.G.Myslivets and V.I.Kuzovatov, Families of complex lines of the minimal dimension, sufficient for holomorphic continuation of functions, Sib. Math. J., 52(2011), no. 2, 256-266.
[8] M.Agranovsky, Propagation of boundary $C R$-foliations and Morera type theorems for manifolds with attached analytic discs, Advan. in Math., 211(2007), no. 1, 284-326 .
[9] M.Agranovsky, Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \mathbb{C}^{n}, J. d'Anal. Math., 13(2011), no. 1, 293-304.
[10] L.Baracco, Holomorphic extension from the sphere to the ball, J. Math. Anal. Appl., 388(2012), no. 2, 760-762.
[11] J.Globevnik, Small families of complex lines for testing holomorphic extendibility, Am. J. Math., 134(2012), no. 6, 1473-1490.
[12] L.Baracco, Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball, Am. J. Math., 135(2013), no. 2, 493-497.
[13] J.Globevnik, Meromorphic extensions from small families of circles and holomorphic extensions from spheres, Trans. Am. Math. Soc., 364(2012), no. 11, 5857-5880.
[14] A.M.Kytmanov, S.G.Myslivets, Holomorphic extension of functions along finite families of complex linea in a ball, J. Sib. Fed. Univ. Math. and Phys., 5(2012), no. 4, 547-557.
[15] A.M.Kytmanov, S.G.Myslivets, An analog of the Hartogs theorem in a ball of \mathbb{C}^{n}, Math. Nahr., 288(2015), no. 2-3, 224-234 .
[16] A.M.Kytmanov, S.G.Myslivets, Multidimensional Integral Representations, Springer Inter. Publ. Switzerland, 2015.
[17] L.Bungart, Boundary kernel functions for domains on complex manifolds, Pac. J. Math., 14(1964), no. 4, 1151-1164.
[18] L.Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, New York, 1989.
[19] E.M.Stein, G.Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton Univ. Press, Princeton, 1975.
[20] A.M.Kytmanov, The Bochner-Martinelli Integral and Its Applications, Birkhäuser. Basel, Boston, Berlin, Science, 1995.
[21] B.V.Shabat, Introduction to Complex Analysis, Part 1: Functions of One Complex Variable, Amer. Math. Soc, Providence, 1992.
[22] A.M.Kytmanov, S.G.Myslivets, Holomorphic extension of functions along finite families of complex linea in a n-circular domain, Sib. Math. J., $\mathbf{5 7}(2016)$, no. 4, 618-631.

Многомерные граничные аналоги теоремы Гартогса в круговых областях

Александр М. Кытманов
 Симона Г. Мысливец

Институт математики и фундаментальной информатики
Сибирский федеральный университет Свободный, 79, Красноярск, 660041 Россия

В статъе представленъ некоторъе резулътати, связанные с голоморфнъм продолжением функиий, определенных на границе области $D \subset \mathbb{C}^{n}, n>1$, в эту область. Речь идет о функииях $с$ одномерным свойством голоморфного продолэжения вдоль комплексных прямых.

Ключевые слова: функиии с одномернъм свойством голоморфного продолэжения, круговые области.

[^0]: *AKytmanov@sfu-kras.ru
 \dagger asmyslivets@sfu-kras.ru
 (c) Siberian Federal University. All rights reserved

