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Introduction

This paper presents some results related to the holomorphic extension of functions, defined
on the boundary of a domain D ⊂ Cn, n > 1, into this domain. We consider a functions with
the one-dimensional holomorphic extension property along the complex lines.

The first result related to our subject was obtained M.L.,Agranovsky and R.E.Valsky in [1],
who studied functions with the one-dimensional holomorphic continuation property into a ball.
The proof was based on the properties of the automorphism group of a sphere.

E. L. Stout in [2] used the complex Radon transformation to generalize the Agranovsky and
Valsky theorem for an arbitrary bounded domain with a smooth boundary. An alternative proof
of the Stout theorem was obtained by A.M .Kytmanov in [3] by using the Bochner–Martinelli
integral. The idea of using the integral representations (Bochner–Martinelli, Cauchy–Fantappiè,
logarithmic residue) has been useful in the study of functions with the one-dimensional holomor-
phic continuation property (see review [4]).

The question of finding different families of complex lines sufficient for holomorphic extension
was put in [5]. As shown in [6], a family of complex lines passing through a finite number of
points, generally speaking, is not sufficient. Thus, a simple analog of the Hartogs theorem should
be not expected.

Various other families are given in [7–11]. In [12–16] it is shown that for holomorphic extension
of continuous functions defined on the boundary of ball,there are enough n+ 1 points inside the
bal, not lying on a complex hyperplane. This result was generalized by the authors n-circular
domains.
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1. Main results

Let D be a bounded domain in Cn with a smooth boundary. Consider the complex line of
the form

lz,b = {ζ ∈ Cn : ζ = z + bt, t ∈ C} = {(ζ1, . . . ζn) : ζj = zj + bjt, j = 1, 2, . . . , n, t ∈ C}, (1)

where z ∈ Cn, b ∈ CPn−1.
We will say that a function f ∈ C(∂D) has the one-dimensional holomorphic extension prop-

erty along the complex line lz,b, if ∂D∩lz,b ̸= ∅ and there exists a function Flz,b with the following
properties:

1) Flz,b ∈ C(B ∩ lz,b),
2) Flz,b = f on the set ∂D ∩ lz,b,
3) function Flz,b is holomorphic at the interior (with respect to the topology of lz,b) points of

set D ∩ lz,b.
Let Γ be a set in Cn. Denote by LΓ the set of all complex lines lz,b such that z ∈ Γ, and

b ∈ CPn−1, i.e., the set of all complex lines passing through z ∈ Γ.
We will say that a function f ∈ C(∂D) has the one-dimensional holomorphic extension prop-

erty along the family LΓ, if it has the one-dimensional holomorphic extension property along any
complex line lz,b ∈ LΓ.

We will call the set LΓ sufficient for holomorphic extension, if the function f ∈ C(∂D) has
the one-dimensional holomorphic extension property along all complex lines of the family LΓ,
and then the function f extends holomorphically into D (i.e., f is a CR-function on ∂D).

Theorem A. Let n = 2 and D be a bounded strictly convex circular domain with twice smooth
boundary and a function f(ζ) ∈ C(∂D) have the one-dimensional holomorphic extension property
along the family L{a,c,d}, and the points a, c, d ∈ D do not lie on one complex line in C2, then
the function f(ζ) extends holomorphically into D.

We denote by A the set of points ak ∈ D ⊂ Cn, k = 1, . . . , n + 1, which do not lie on a
complex hyperplane in Cn.

Theorem B. Let D be a bounded strictly convex circular domain with twice smooth boundary
in Cn and the function f(ζ) ∈ C(∂D) have the one-dimensional holomorphic extension property
along the family LA, then the function f(ζ) extends holomorphically into D.

2. Construction of the Szegö kernel

Let H(D) be the space of holomorphic functions in D with the topology of uniform conver-
gence on compact subsets of D, and H(D) be the space of holomorphic functions in a neigh-
borhood of D with the corresponding topology. Consider the measure dµ = g(ζ)dσ, where
g(ζ) ∈ C1(∂D), g(ζ) > 0, and dσ is the Lebesgue measure on ∂D. The space H(D) is the sub-
space in L2(∂D) with the measure dµ on ∂D. By the Maximum Modulus Theorem the mapping
H(D) −→ L2(∂D) is injective. By H2 = H2(∂D) we denote the closure of H(D) in L2.

Consider a restriction mapping r : H(D) −→ H(D). The mapping r extends by continuity
from H2 in H(D).

Lemma 1 (Lemma 4.1. [17]). The restriction mapping r : H(D) −→ H(D) is continuous, if
H(D) is considered in the topology induced by the space L2.

Therefore, the mapping r extends by continuity to the map i : H2 −→ H(D). In this case,
we say that for functions f ∈ H2 there is a holomorphic continuation f̃ = i(f) in D. Further on,
this continuation will be denoted by the same symbol f .
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In [17] as the measure considered by the Lebesgue measure dσ on the boundary of the domain,
in our case, for the measure dµ = g(ζ)dσ the proof is similar.

Since the space H2 is a Hilbert separable space, then there exists an orthonormal basis

{φk}∞k=1 (2)

in the metric L2. Therefore, any function f ∈ H2 extens in a Fourier series:

f(ζ) =

∞∑
k=1

ckφk(ζ) (3)

with respect to the basis (2), which converges in the topology of L2, where ck = (f, φk) =∫
∂D

f(u)φ̄k(u) dµ(u). Then

f(ζ) =
∞∑
k=1

(∫
∂D

f(u)φ̄k(u) dµ(u)φk(ζ)

)
=

∫
∂D

f(u)
∞∑
k=1

φ̄k(u)φk(ζ) dµ(u).

Denote K(ζ, ū) =
∞∑
k=1

φk(ζ)φ̄k(u) and K(ζ, ū) ∈ H(D) on ζ ∈ D for a fixed u ∈ D.

Lemma 2. We can choose an orthonormal basis {φk}∞k=1 in H2 which consists of functions φk

in H(D).

Proof. Since the space H(D) is separable, then there exists a countable everywhere dense set.
It will be the same in H2, since H2 is the closure of H(D). Using the process of Gram-Schmidt
orthogonalization for the functions from this set, we get orthonormal basis in H2 consisting of
functions φk ∈ H(D). 2

Lemma 3. If D is a bounded strictly convex domain with a smooth boundary, then we can choose
a polynomials basis {φk}∞k=1.

Proof. Since the domain D is strictly convex, the set D is polynomially convex and compact.
On such sets functions, holomorphic in its neighborhood, are uniformly approximated by the
polynomials [18]. Consequently, the polynomials are dense in the class of functions from H(D)
and therefore from H2. Applying the Gram-Schmidt orthogonalization to this set we get an
orthonormal basis in H2 consisting of polynomials. 2

Let us call the function g(ζ) invariant under rotations, if g(ζ1, . . . , ζn) = g(eiφζ1, . . . , e
iφζn)

for all φ ∈ [0, 2π).

Lemma 4. If D is a bounded strictly convex circular domain with a smooth boundary and
a function g(ζ) is invariant under rotations, we can choose a basis {φk}∞k=1 of homogeneous
polynomials.

Proof. Indeed, in this case, the measure dµ is also invariant under rotations, so the homogeneous
polynomials of different degrees of homogeneity are orthogonal in H2. 2

Further on, we assume that the basis is chosen in accordance with Theorem 5.1 [17]. According
to this theorem the continuation of the kernel K(ζ, ū) has the property:

i(f)(z) =

∫
∂D

f(ζ)K(z, ζ̄) dµ(ζ), z ∈ D,
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where K(z, ζ̄) =
∞∑
k=1

i(φk)(z)i(φ̄k)(ζ) and the series converges uniformly on compact subsets of

D ×D. This kernel we call the Szegö kernel. Then

f(z) =

∫
∂D

f(ζ)K(z, ζ̄) dµ(ζ), (4)

where f(z) is identified with f̃(z) = i(f)(z) and f ∈ H2.
We define the Poisson kernel

P (z, ζ) =
K(z, ζ̄) ·K(ζ, z̄)

K(z, z̄)
=
K(z, ζ̄) ·K(z, ζ̄)

K(z, z̄)
=

|K(z, ζ̄)|2

K(z, z̄)
,

and K(z, z̄) =
∞∑
k=1

φk(z)φ̄k(z) =
∞∑
k=1

|φk(z)|2 > 0.

Lemma 5. The kernel K(z, z̄) > 0 for any z ∈ D.

Proof. Let k(z, z̄) = 0 for some z ∈ D. Then φk(z) = 0 for all k = 1, 2, . . ., so

φk(z) =

∫
∂D

φk(ζ)K(z, ζ̄) dµ(ζ) = 0. (5)

Since any function f ∈ H2 decomposes into the Fourier series (3), f(ζ) =
∞∑
k=1

ckφk(ζ). Applying

the mapping i, we get that f(z) =
∞∑
k=1

cki(φk)(z) = 0 in virtue of (5), i.e. f(z) = 0 in D for all

functions f ∈ H2, which is impossible. 2

Lemma 6. A function f ∈ H(D) admits the integral representation

f(z) =

∫
∂D

f(ζ)P (z, ζ) dµ(ζ), (6)

for z ∈ D.

Proof. By definition of the kernel P (z, ζ) and from the integral representation (4) we have∫
∂D

f(ζ)P (z, ζ) dµ(ζ) =

∫
∂D

f(ζ)
K(z, ζ̄) ·K(ζ, z̄)

K(z, z̄)
dµ(ζ) =

=
1

K(z, z̄)

∫
∂D

(
f(ζ)K(ζ, z̄)

)
K(z, ζ̄) dµ(ζ) =

f(z)K(z, z̄)

K(z, z̄)
= f(z).

2

Corollary 1. If the space H(D) is dense in the space H(D) ∩ C(∂D) = A(D), then a function
f ∈ A(D) admits the integral representation (6).

Suppose that the domain D satisfies the condition
(A): for any point ζ ∈ ∂D and any neighborhood U(ζ) the Szegö kernel K(z, ζ̄) is uniformly

bounded by z ∈ D and z /∈ U(ζ).
Further, we assume that the domain D satisfies the condition (A).
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Theorem 1. Let D be a strictly convex domain in Cn and the kernel K(z, ζ̄) satisfies the Hölder

condition with exponent
1

2
< α 6 1 for ζ ∈ ∂D and a fixed z ∈ D. Then the domain D and the

kernel K(z, ζ̄) satisfy the condition (A).

Proof. Let
D = {z ∈ Cn : ρ(z) < 0}, (7)

where ρ ∈ C2(D) and grad ρ
∣∣
∂D

̸= 0. For the proof we use Corollary 26.13 [3] for the Leray
integral representations for holomorphic functions f ∈ A(D) in strictly convex domains:

f(z) =
(n− 1)!

(2πi)n

∫
∂D

f(ζ)
∑∞

k=1 δk dζ̄[k] ∧ dζ[
ρ′ζ1(ζ1 − z1) + . . .+ ρ′ζn(ζn − zn)

]n ,
where

δk =

∣∣∣∣∣∣∣∣
ρ′ζ1 . . . ρ′ζn
ρ′′
ζ1ζ̄1

. . . ρ′′
ζnζ̄1

[k]
ρ′′
ζ1ζ̄n

. . . ρ′′
ζnζ̄n

∣∣∣∣∣∣∣∣ , k = 1, . . . , n,

dζ = dζ1 ∧ . . . ∧ dζn, dζ̄[k] = dζ̄1 ∧ . . . ∧ dζ̄k−1 ∧ dζ̄k+1 ∧ . . . ∧ dζ̄n.
The denominator of the kernel ρ′ζ1(ζ1 − z1) + . . . + ρ′ζn(ζn − zn) ̸= 0 for ζ ∈ ∂D, z ∈ D and

ζ ̸= z. Indeed, the equality ρ′ζ1(ζ1 − z1)+ . . .+ ρ′ζn(ζn − zn) = 0 defines a complex tangent plane
to ∂D at the point ζ. If the domain D is strictly convex, then the tangent plane intersects the
boundary of D only at a point ζ.

For the domain D the Szegö kernel K(z, ζ̄) is the (generalized) Cauchy-Fantappiè (Leray)
kernel by Corollary 26.13 [3], so the same domain satisfy the condition (A).

2

Consider the restriction of the form

L(z, ζ, ζ̄) =

∑∞
k=1 δk dζ̄[k] ∧ dζ[

ρ′ζ1(ζ1 − z1) + . . .+ ρ′ζn(ζn − zn)
]n

to ∂D, then it would be

L(z, ζ, ζ̄) =

=
ψ(ζ, ζ̄) dσ(ζ)[

ρ′ζ1(ζ1 − z1) + . . .+ ρ′ζn(ζn − zn)
]n =

ψ(ζ, ζ̄) dµ(ζ)

g(ζ)
[
ρ′ζ1(ζ1 − z1) + . . .+ ρ′ζn(ζn − zn)

]n =

=
ψ1(ζ, ζ̄) dµ(ζ)[

ρ′ζ1(ζ1 − z1) + . . .+ ρ′ζn(ζn − zn)
]n = L̃(z, ζ, ζ̄) dµ(ζ).

The proof of Theorem 1 shows that

K(z, ζ̄) = L̃(z, ζ, ζ̄) (8)

for ζ ∈ ∂D.

Lemma 7. The function K(z, ζ) is unbounded as z → ζ and ζ ∈ ∂D, z ∈ D.

Proof. Consider the point z0 ∈ D, then the domain D is a strongly star-shaped with respect
to z0, i.e. for any point ζ0 ∈ ∂D the segment [z0, ζ0] ∈ D. Let this segment have the form
{z ∈ D : z = ζ0 + t(z0 − ζ0), 0 6 t 6 1}. Then

ρ′ζ1(ζ
0
1 − z1) + . . .+ ρ′ζn(ζ

0
n − zn) = t

(
ρ′ζ1(ζ

0
1 − z01) + . . .+ ρ′ζn(ζ

0
n − z0n)

)
.

If z → ζ0, then t→ 0 and
(
ρ′ζ1(ζ

0
1 − z01)+ . . .+ ρ′ζn(ζ

0
n− z0n)

)
→ 0. Then K(z, ζ) → ∞ for z → ζ,

ζ ∈ ∂D. 2
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3. Poisson kernel and its properties
For a function f ∈ C(∂D) we define the Poisson integral:

P [f ](z) = F (z) =

∫
∂D

f(ζ)P (z, ζ) dµ(ζ).

In strictly convex domain that satisfy the condition (A), from Equality (8) and the form of the
kernel P (z, ζ), it follows that this kernel is a continuous function for z ∈ D and then the function
F (z) is continuous in D.

Theorem 2. Let D be a bounded strictly convex domain in Cn satisfying the condition (A), and
f ∈ C(∂D), then the function F (z) continuously extend onto D and F (z)

∣∣
∂D

= f(z).

Proof. Theorem 1 and Lemma 7 show that the kernel P
(
ζ, t(z0 − z)

)
tends uniformly to zero

outside any neighborhood of the point ζ for ζ, z ∈ ∂D, z0 ∈ D, ζ ̸= z and t → 1. Moreover
P (z, ζ) > 0 and P [1](ζ) = 1. Consequently, the Poisson kernel P (z, ζ) is an approximative
unit [19, Theorem 1.9]. 2

Consider the differential form

ω = c
n∑

k=1

(−1)k−1ζ̄k dζ̄[k] ∧ dζ,

where c =
(n− 1)!

(2πi)n
. Find the restriction of this form to ∂D for the domain D of the form (7).

Then by Lemma 3.5 [20], we get

dζ̄[k] ∧ dζ = (−1)k−12n−1in
∂ρ

∂ζ̄k
· dσ

| grad ρ|
.

Therefore, the restriction of ω to ∂D is equal to

dµ = ω
∣∣
∂D

=
(n− 1)!

2πn

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
· dσ

| grad ρ|
.

We denote

g(ζ) =
(n− 1)!

2πn

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
· 1

| grad ρ|
.

Lemma 8. If D is a strictly convex circular domain, then g(ζ) is a real-valued function that
does not vanish on ∂D.

Proof. For circular domain ρ(ζ1, . . . , ζn) = ρ(ζ1e
iθ, . . . , ζne

iθ), 0 6 θ 6 2π, differentiating this
equality with respect θ, we get

0 =
n∑

k=1

iζke
iθ ∂ρ

∂ζk
−

n∑
k=1

iζ̄ke
−iθ ∂ρ

∂ζ̄k
.

Then we get
n∑

k=1

ζk
∂ρ

∂ζk
=

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
for θ = 0. The function g(ζ) means being real that

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
=

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
=

n∑
k=1

ζk
∂ρ

∂ζk
.
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The function g(ζ) ̸= 0 on ∂D, since the complex tangent plane does not pass through zero at
the point ζ. Therefore, the function g(ζ) preserves sign on ∂D. 2

Therefore, we can assume that g(ζ) > 0 on ∂D. Therefore, dµ = gdσ is a measure and for it
all previous constructions are true.

Lemma 9. Let D be a strictly convex (p1, . . . , pn)-circular domain, i.e.

ρ(ζ1, . . . , ζn) = ρ(ζ1e
ip1θ, . . . , ζne

ipnθ), 0 6 θ 6 2π,

where p1, . . . , pn are positive rational numbers. Then the function

∞∑
k=1

ζ̄kpk
∂ρ

∂ζ̄k

is real-valued and not zero.

Proof repeats the proof of the previous Lemma 8. 2

The function ρ can be chosen so that | grad ρ|
∣∣
∂D

= 1, then

dµ = c1

n∑
k=1

ζ̄k
∂ρ

∂ζ̄k
dσ,

where c1 =
(n− 1)!

2πn
.

Consider the family of complex lines lz0,b of the form (1) passing through the point z0 ∈ D,
where b ∈ CPn−1. Calculate the form ω in the variables b and t, we get

dζ = dζ1 ∧ . . . ∧ dζn = d(z01 + b1t) ∧ . . . ∧ d(z0n + bnt) =

= d(b1t) ∧ . . . ∧ d(bnt) = tn−1dt ∧ (b1db[1]− b2db[2] + . . .+ (−1)n−1bndb[n] =

= tn−1dt ∧
n∑

k=1

(−1)k−1bk db[k] = tn−1dt ∧ ν(b),

where ν(b) =
n∑

k=1

(−1)k−1bk db[k]. Here we use the fact that b ∈ CPn−1.

Now we calculate

n∑
k=1

(−1)k−1ζk dζ[k] =

=
n∑

k=1

(z0k + bkt)d(z
0
1 + b1t) ∧ . . . ∧ d(z0k−1 + bk−1t) ∧ d(z0k+1 + bk+1t) ∧ . . . ∧ d(zon + bnt) =

=

n∑
k=1

(−1)k−1z0k dζ[k] +

n∑
k=1

(−1)k−1bkt dζ[k] =

=
n∑

k=1

(−1)k−1z0kt
n−2 dt ∧ χ(b) +

n∑
k=1

(−1)k−1z0kt
n−1 db[k] +

n∑
k=1

bkt
n db[k],
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where χ(b) is a differential form of degree (n− 2). From here we get that

ω
∣∣
∂D

= c
n∑

k=1

(−1)k−1ζ̄k dζ̄[k] ∧ dζ
∣∣
∂D

=

= c
n∑

k=1

(−1)k−1z̄0k t̄
n−1tn−1 db̄[k] ∧ dt ∧ ν(b) + c

n∑
k=1

(−1)k−1b̄k t̄
ntn−1 db̄[k] ∧ dt ∧ ν(b) =

= (−1)nc dt ∧
( n∑

k=1

(−1)k−1z̄0k|t|2n−2 db̄[k] ∧ ν(b) + t̄|t|2n−2ν(b̄) ∧ ν(b)
)

=

= (−1)n−1c|t|2n−2 dt ∧
( n∑

k=1

(−1)k−1z̄0k db̄[k] + t̄ν(b̄)

)
∧ ν(b).

Thus, we have Lemma:

Lemma 10. The form ω
∣∣
∂D

in the variables b and t has the form

ω
∣∣
∂D

= (−1)n−1c|t|2n−2 dt ∧
( n∑

k=1

(−1)k−1z̄0k db̄[k] + t̄ν(b̄)

)
∧ ν(b).

Consider the modified Poisson kernel

Q(z, w, ζ) =
K(z, ζ̄) ·K(ζ, w)

K(z, w)
.

For w = z̄ we obtain Q(z, z̄, ζ) = P (z, ζ) and K(z, z̄) > 0. Therefore, there exists a neighborhood
U of the diagonal w = z̄ in Dz ×Dw in which K(z, w) ̸= 0.

Consider the function
Φ(z, w) =

∫
∂D

f(ζ)Q(z, w, ζ) dµ(ζ),

which is defined for (z, w) ∈ U . It is holomorphic in (z, w) ∈ U , and for w = z̄ we have
Φ(z, w) = F (z) and

∂δ+γΦ(z, w)

∂zδ∂wγ

∣∣∣∣
w=z̄

=
∂δ+γF (z)

∂zδ∂z̄γ
, (9)

where

∂δ+γΦ(z, w)

∂zδ∂wγ
=
∂δ1+...+δn+γ1+...+γnΦ(z, w)

∂zδ11 · · · ∂zδnn ∂wγ1

1 · · · ∂wγn
n

,

∂δ+γF (z)

∂zδ∂z̄γ
=

∂δ1+...+δn+γ1+...+γnF (z)

∂zδ11 · · · ∂zδnn ∂z̄γ1

1 · · · ∂z̄γn
n

,

and δ = (δ1, . . . , δn), γ = (γ1, . . . , γn).

4. Additional construction
Consider a mapping ζ = χ(η) : B −→ D, where B is the unit ball in Cn centered at zero

taking zero to a a ∈ D. The mapping χ is be constructed as follows: Consider the complex lines
λb = {η ∈ Cn : η = bτ, b ∈ CPn−1, τ ∈ C} and la,b = {ζ ∈ Cn : ζ = a+ bt, b ∈ CPn−1, t ∈ C}.
The intersection Da,b = D ∩ la,b is a strictly convex domain in C; therefore, there exists a
conformal mapping t = χb(τ) of the unit disk B ∩ λb into Da,b taking τ = 0 to t = 0. By the
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Carathéodory Theorem [21], this mapping extends to a homeomorphism of the closed domains.
Then to a point η = bτ ∈ B ∩ λb there is assigned the point χ(η) = a+ bχb(τ) ∈ Da,b.

Lemmas 11-14 are formulated and proved in the same way as in the paper [22].

Lemma 11. Let D be a bounded strictly convex circular domain with twice smooth boundary in
Cn. Then χ(η) is well defined and is a C1-diffeomorphism from B onto D.

Henceforth, we assume that D is a bounded strictly convex circular domain with twice smooth
boundary.

Lemma 12. The derivatives of χ(η) are holomorphic functions in τ for b fixed and where η = bτ .

Lemma 13. Let the function f ∈ C(∂D) have the one-dimensional holomorphic extension prop-
erty along complex lines passing through a ∈ D. Then the function f⋆(η) = f(χ(η)) is continuous
on ∂B and has the one-dimensional holomorphic extension property along complex lines passing
through zero.

Performing a change of variables in integral for Φ, we obtain

Φ(z, w) =

∫
∂D

f(ζ)Q(z, w, ζ) dµ(ζ) =

=

∫
∂B

f(χ(η))Q(z, w, χ(η)) dµ(χ(η)) =

∫
∂B

f⋆(η)Q⋆(z, w, η) dµ⋆(η).

Consider the form

ω⋆(η) = ω(χ(η)) =

n∑
k=1

(−1)k−1χ̄k(η) dχ̄(η)[k] ∧ dχ(η).

By Lemma 12, the form dχ(bτ) is holomorphic in τ for b fixed, while the form dχ̄(bτ)[k] is
antiholomorphic in τ for b fixed.

Lemma 14. The forms dχ̄(bτ)
∣∣
|τ |=1

, k = 1, . . . , n, are forms with holomorphic coefficients with
respect to τ .

Theorem 3. Let D be a bounded strictly convex circular domain with twice smooth boundary and
the function f ∈ C(∂D) have the one-dimensional holomorphic extension property along complex
lines passing through a ∈ D. Then

∂γΦ(z, w)

∂wγ

∣∣∣
z=a
w=ā

= 0

for ∥γ∥ > 0, where γ = (γ1, . . . , γn) and ∥γ∥ = γ1 + . . .+ γn.

The proof of this Theorem is essentially as in the proof of Theorem 3 of [22].

Corollary 2. Φ(a,w) = const under the conditions of Theorem 3.

the same way as the previous theorem we prove the statement:

Theorem 4. Let D be a bounded strictly convex circular domain with twice smooth boundary and
the function f ∈ C(∂D) have the one-dimensional holomorphic extension property along complex

lines passing through a ∈ D. Then the derivatives
∂δΦ(z, w)

∂zδ

∣∣∣
z=a,
w=ā

are polynomials in w of degree

at most ∥δ∥.
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Theorem 5. Let D be a bounded strictly convex circular domain with twice smooth boundary
and the function f(ζ) ∈ C(∂D), and a, c ∈ D. Assume that Φ(z, w) satisfies the conditions

Φ(a,w) = const, Φ(c, w) = const and
∂αΦ(a,w)

∂zα
,
∂αΦ(c, w)

∂zα
are polynomials in w of degree at

most ∥α∥. Then, for every fixed z on the complex line

la,c = {(z, w) : z = at+ c(1− t), w = āt+ c̄(1− t), t ∈ C}

we have Φ(z, w) = const with respect to w; i.e.,
∂γΦ(z, w)

∂wγ
= 0 for ∥γ∥ > 0.

The proof of this Theorem is essentially the same as the proof of Theorem 5 of [22].

Corollary 3. Under the conditions of Theorem 5,
∂γF (z)

∂z̄γ

∣∣∣
z=at+(1−t)c

= 0 for ∥γ∥ > 0.

5. Proof of the main assertions

Theorem 6. Let n = 2 and D be a bounded strictly convex circular domain with twice smooth
boundary and the function f ∈ C(∂D) have the one-dimensional holomorphic extension property
along the family L{a,c,d} and the points a, c, d ∈ D do not lie on one complex line in C2. Then
∂γΦ(z, w)

∂wγ
= 0 for any z ∈ D and ∥γ∥ > 0, and f(ζ) extends holomorphically into D.

Proof. Let z̃ be an arbitrary point on la,c. Then by Theorem 5, we have

∂γΦ(z̃, w)

∂wγ
= 0 (10)

for∥γ∥ > 0. Joining z̃ with d by the line lz̃,d and again applying Theorem 5 with ˜̃z ∈ lz̃,d, we

conclude that
∂γΦ(˜̃z, w)

∂wγ
= 0 for ∥γ∥ > 0. Therefore, (10) is fulfilled for all z̃ in some open set.

Inserting w = z̄ in (10), we have
∂γF (z)

∂z̄γ
= 0 in some open set in D. The real analiticity

of F (z) implies that
∂F (z)

∂z̄j
= 0 for any z ∈ D and j = 1, . . . , n. Since by Theorem 2 we have

F (ζ)
∣∣
∂D

= f(ζ), the function f(ζ) extends holomorphically into D. 2

Denote by A the set of noncomplanar points ak ∈ D ⊂ Cn, k = 1, . . . , n+ 1.

Theorem 7. Let D be a bounded strictly convex circular domain with twice smooth boundary
in Cn and the function f ∈ C(∂D) have the one-dimensional holomorphic extension property

along the family LA. Then
∂γΦ(z, w)

∂wγ
= 0 for any z ∈ D and ∥γ∥ > 0, and f(ζ) extends

holomorphically into D.

Proof. Proceed by induction on n. The induction base is Theorem 6 (n = 2). Suppose that
the theorem holds for all k < n. Consider the complex plane Γ passing through a1, . . . , an, the
dimension of Γ is by hypothesis equal to n− 1 and an+1 /∈ Γ. The intersection Γ∩D is a strictly
convex domain in Cn−1.

The function f
∣∣
Γ∩∂D

is continuous and has the property of holomorphic extension along the

family LA1 , where A1 = {a1, . . . , an}. By the induction assomption,
∂γΦ(z′, w)

∂wγ
= 0 for ∥γ∥ > 0

for all z′ ∈ Γ ∩D.
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Joining z′ ∈ Γ with an+1, we find by Theorem 6 that
∂γΦ(z, w)

∂wγ
= 0 for∥γ∥ > 0 for some

open set in D ×D. In much the way as Theorem 6, this implies that F (z) is holomorphic in D,
and so f(ζ) extends holomorphically into D. 2

Theorems 6 and 7 obviously imply Theorems A and B.
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Многомерные граничные аналоги теоремы Гартогса
в круговых областях

Александр М.Кытманов
Симона Г.Мысливец

Институт математики и фундаментальной информатики
Сибирский федеральный университет

Свободный, 79, Красноярск, 660041
Россия

В статье представлены некоторые результаты, связанные с голоморфным продолжением функ-
ций, определенных на границе области D ⊂ Cn, n > 1, в эту область. Речь идет о функциях с
одномерным свойством голоморфного продолжения вдоль комплексных прямых.

Ключевые слова: функции с одномерным свойством голоморфного продолжения, круговые обла-
сти.
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