ИССЛЕДОВАНИЕ СОВМЕЩЕННЫХ СПОСОБОВ ОБРАБОТКИ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОПРОВОДНИКОВ ИЗ СПЛАВОВ АЛЮМИНИЯ С ПЕРЕХОДНЫМИ И РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ

Заикин И.С., Беспалов В.М., Трифоненков А.Л. Научные руководители – д.т.н., профессор Сидельников С.Б., д.т.н., профессор Довженко Н.Н.

Сибирский федеральный университет

Актуальным направлением исследований в металлургической отрасли на сегодняшний день является исследование возможности создания новых технологий и высокотехнологичного оборудования для производства электропроводов из алюминиевых сплавов, обладающих повышенной прочностью и термостойкостью наряду с удовлетворительной электропроводностью.

Целью данной работы, выполненной в рамках договора Министерства образования и науки России №13.G25.31.0083 является разработка новых составов алюминиевых сплавов, технологии и оборудования для получения деформированных полуфабрикатов с использованием совмещенных методов обработки металлов давлением.

Выполнение поставленной цели в рамках данной работы потребовало последовательное решение следующих задач:

- разработка новых составов алюминиевых сплавов;
- получение литых заготовок;
- выбор способа обработки и проведение экспериментов.
- исследование механических и электрофизических свойств деформированных полуфабрикатов.

Для решения поставленных задач были разработаны экспериментальные алюминиевые сплавы с редкоземельными и переходными металлами. Для получения заготовок были использованы следующие параметры приготовления: температура заливки $800-880^{\circ}$ C, время выдержки 10 мин. Литье осуществляли в первом случае с использованием электромагнитного кристаллизатора (диаметр заготовок 15 мм), а во втором случае металл заливали в изложницу (размеры заготовок 14x14 мм).

В качестве методов обработки были выбраны совмещенная прокатка-прессование (СПП), по возможности с использованием электромагнитного кристаллизатора (ЭМК), и совмещенное литье и прокатка-прессование (СЛИПП). Для проведения исследований была использована универсальная экспериментальная установка совмещенной обработки на базе прокатного стана Дуо 200, позволяющая осуществлять обработку металла двумя способами: СПП и СЛИПП.

Для проведения процесса СПП заготовки нагревали до 550° С и задавали их в закрытый калибр валков, на выходе из которых установлена матрица с калибрующим отверстием 9 мм. Таким образом, в результате получали пруток указанного размера. Процесс СЛИПП производили аналогичным образом, при этом в калибр заливали расплав металла при температуре $750-780^{\circ}$ С.

Исследование механических свойств проводили на испытательной машине Walter + Bai AG LFM400 («Walter + Bai AG») усилием 400 кH. Основными величинами, определяемыми в опытах на растяжение, являлись временное сопротивление разрыву $\sigma_{\rm B}$ и относительное удлинение δ . Полученные данные по свойствам некоторых образцов приведены в табл. 1.

Таблица 1 – Средние результаты механических и электрофизических свойств прутков диаметром 9 мм, полученных различными способами совмещенной обработки

Charle	$\sigma_{\scriptscriptstyle B},$	δ,	Удельное электросопротивление
Способ	МПа	%	Ом·мм²/м

сплав системы Al – P3M					
ЭМК+СПП	142,4	19,8	0,0330		
СЛИПП	212,4	13,3	0,0310		
сплав системы Al – Zr					
	1077				
ЭМК+СПП	135,5	20,4	0,0311		

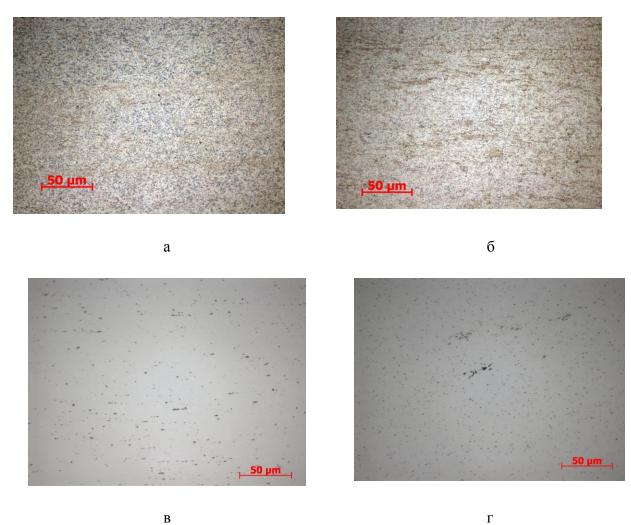


Рисунок 1. Микроструктура пругков из сплавов системы Al-P3M (a, б) и Al-Zr (в, г) полученных методом СПП (а, в) и СЛИПП (б, г)

Результаты металлографических исследований показаны на рис.1 и совместно с данными по механическим свойствам (табл. 1) позволяют сделать выводы о том, что применяемые способы дают возможность получить высокие прочностные и пластические характеристики, необходимые для изготовления электропроводников.