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1. Introduction and preliminaries

Let us consider the system of ordinary differential equations (ODEs)

A(t)x′(t) = B(t)x(t) + U(t)u(t), t ∈ I = [0,+∞), (1.1)

where A(t), B(t) are known (n × n)-matrices, U(t) is known (n × l)-matrix, x(t) is unknown
n-dimensional function of state, u(t) is l-dimensional function of control. It is assumed that
detA(t) ≡ 0.

Such systems are called differential-algebraic equations (DAEs). The measure of unresolv-
ability for DAEs with respect to the derivative is an integer r : 0 6 r 6 n, which is called index
[1, 2].

There are a lot of various concepts of controllability in the theory of DAEs. The property
of the full controllability (see., eg, [3, 4]) was first introduced and investigated for the DAEs
with constant coefficients in [5]. The most important concepts of R-controllability and impulse
controllability were first introduced for the DAEs with constant coefficients and regular matrix
pencil [6]. The resulting algebraic criteria are used in the analysis of the problem of minimizing a
quadratic functional on solutions of the linear DAEs. Conditions of R-controllability for the linear
DAEs with infinitely differentiable coefficients were obtained [7]. Conditions of R-controllability
for the DAEs with variable coefficients and arbitrarily high unresolvability index were obtained
[8]. Differential controllability of systems resolved with respect to the derivative (ODEs) was
investigated [3].

In this paper we investigate differential controllability of linear DAEs systems with variable
coefficients. The necessary and sufficient conditions of the differential controllability of such
systems are obtained. The analysis is carried out under assumptions that ensure the existence
of a global structural form that separates "algebraic" and "differential" subsystems. They have
the same solutions as the original system [8–10].
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2. Equivalent structural form
Let us introduce the following matrices for system (1.1)

Dr,z(t) =


C1

1A(t) O . . . O

C1
2A

′(t) + C2
2B(t) C2

2A(t) . . . O
...

...
. . .

...
C1

rA
(r−1)(t) + C2

rB
(r−2)(t) C2

rA
(r−2)(t) + C3

rB
(r−3)(t) . . . Cr

rA(t)

 ,

Dr,y(t) =


C0

0A(t) O C0
1A

′(t) + C1
1B(t)

...
C0

rA
(r)(t) + C1

rB
(r−1)(t)

 Dr,z

 , Dr,x(t) =
(
B̄(t) Dr,y

)
.

They have dimensions nr × nr, n(r + 1)× n(r + 1) and n(r + 1)× n(r + 2), respectively. From

this point on Cj
i =

i!

j!(i− j)!
are binomial coefficients, O is the null matrix of appropriate size,

B̄(t) = colon
(
B(t), B′(t), . . . , B(r)(t)

) †.
Let us suppose that condition rankDr,z(t) = ρ = const ∀t ∈ I holds for some r (0 6 r 6 n)

and there is non-special minor ∀t ∈ I of the order n(r + 1) in the matrix Dr,x(t). This minor
includes ρ columns of the matrix Dr,z and n first columns of the matrix Dr,y. Such minor is
called resolving.

Let us assume that we know exactly which columns of the matrix Dr,x(t) are included into
the resolving minor. We delete n− d columns of the matrix B̄(t) which are not included in this
minor, where d = nr − ρ. After the appropriate column permutation of Dr,x(t) we obtain the
matrix

Λr(t) = Dr,x(t) diag

(
Q−1

(
O
Ed

)
, Q−1, . . . , Q−1

)
‡, (2.1)

where Ed is the identity matrix of order d, Q is (n× n)-permutation matrix§.
Matrix Q−1 is constructed as follows. Let us denote the numbers of columns of B̄(t) by

i1, i2, . . . , id and id+1, id+2, . . . , in as the numbers of columns of B̄(t). They are included and
not included in the resolving minor, respectively. Being left multiplied by matrix B̄(t), matrix
Q−1 puts every (id+k)-th column (k = 1, n− d) into k-th place and every (ij)-th column (j = 1, d)
into the place with number n−d+ j in the matrix B̄(t). Matrix Q−1 is invertible and it consists
of zeros and n ones, wherein ones are the elements with indices (id+k, k) and (ij , n− d+ j).

Lemma 1. Let us assume that
1) A(t), B(t), U(t), u(t) ∈ Cr(I);
2) rankDr,z(t) = ρ = const ∀t ∈ I;
3) there is the resolving minor in matrix Dr,x(t).
Then there exists linear differential operator

R = R0(t) +R1(t)
d

dt
+ . . .+Rr(t)

(
d

dt

)r

(2.2)

†colon (x1, x2, . . . , xn) =


x1

x2

...
xn


‡The notation diag(A1, A2, . . . , As) denotes quasi-diagonal matrix with the blocks listed in parenthesis on the

main diagonal. Other elements are zero.
§See [11] about row and column permutation matrix.
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with continuous coefficients Rj(t) (j = 0, r) that converts system (1.1) into the form

x′
1(t) = J1(t)x1(t) +H(t)u(t), (2.3)

x2(t) = J2(t)x1(t) + G(t)u(t), (2.4)

where colon (x1(t), x2(t)) = Qx(t), u(t) = colon(u(t), u′(t), . . . , u(r)(t)),(
G(t)
H(t)

)
=

(
G0(t) G1(t) . . . Gr(t)
H0(t) H1(t) . . . Hr(t)

)
= (R0(t) R1(t) . . . Rr(t))Pr[U(t)],

Pr[U(t)] =


C0

0U(t) O . . . O
C0

1U
′(t) C1

1U(t) . . . O
...

...
. . .

...
C0

rU
(r)(t) C1

rU
(r−1)(t) . . . Cr

rU(t)

 ,

(
J2(t) Ed

J1(t) O

)
= (R0(t) R1(t) . . . Rr(t)) B̄(t)Q−1.

(2.5)

Matrices Rj(t) are uniquely determined by the resolving minor as

(R0(t) R1(t) . . . Rr(t)) = (En O . . . O) Λ⊤
r (t)

(
Λr(t)Λ

⊤
r (t)

)−1
. (2.6)

Definition 1. With a given control function u(t) n-dimensional vector function x(t) ∈ C1(I) is
the solution of (1.1) if it identically satisfies this system on I.

Theorem 1. Let us assume that
1) A(t), B(t), U(t), u(t) ∈ C2r+1(I);
2) rankDr,z(t) = ρ = const ∀t ∈ I;
3) there is the resolving minor in matrix Dr,x(t);
4) rankDr+1,y(t) = rankDr,y(t) + n ∀t ∈ I.
Then every solution of (1.1) is the solution of (2.3), (2.4) and vice versa.

Definition 2. System (2.3), (2.4) is called the equivalent form of DAE (1.1).

Let us define the initial conditions

x(t0) = x0, (2.7)

where t0 ∈ I, x0 ∈ Rn is a given vector.
Theorem 1 provides a criterion for the existence and uniqueness of solution to problem (1.1),

(2.7).

Corollary 1. Let us suppose that all the assumptions of Theorem 1 are satisfied. Then problem
(1.1), (2.7) is solvable if and only if

x2,0 = J2(t0)x1,0 + G(t0)u(t0), (2.8)

where
(

x1,0

x2,0

)
= Qx0. Moreover, if a solution to problem (1.1), (2.7) exists then it is unique.

Definition 3. Initial condition (2.7) which satisfies (2.8) is called consistent with system (1.1)
in the point t0.

There are proofs of all results of this section [10].
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3. Differential controllability
Definition 4. System (1.1) is called completely controllable on interval T = [t0, t1] ⊂ I if for
any x0, x1 ∈ Rn there exists control function u(t) such that the appropriate solution x(t) of DAE
(1.1) satisfies conditions x(t0) = x0, x(t1) = x1.

Definition 5. System (1.1) is called differentially controllable on the interval T if it is com-
pletely controllable on any set [τ0, τ1] ⊂ T .

3.1. Non-stationary systems
In this section we prove necessary and sufficient conditions for the differential controllability

of DAE (1.1).

Theorem 2. Let us suppose that all the assumptions of Theorem 1 are satisfied. System (1.1)
is differentially controllable on T if and only if the following conditions are satisfied:
1) rankG(t) = d ∀t ∈ T ;
2) ∀h ∈ Rn−d : h ̸= 0, h⊤X−1(t)H(t) ̸≡ 0 for almost all t, i.e. for all points t ∈ T except some
sets with zero measure¶. Herein X(t) is (n−d)×(n−d) fundamental matrix of the homogeneous
system x′

1(t) = J1(t)x1(t).

Proof. Necessity. Let system (1.1) be differentially controllable on T . This means that it is
completely controllable on any set [τ0, τ1] ⊂ T . It follows from Theorem 1 that system (2.3), (2.4)
has the same property. Then, any solution of (2.3), (2.4) should satisfy the following relations

x2(τ0)− J2(τ0)x1(τ0) = G(τ0)u(τ0), (3.1)

x2(τ1)− J2(τ1)x1(τ1) = G(τ1)u(τ1), (3.2)

X−1(τ1)x1(τ1)− x1(τ0) =

∫ τ1

τ0

X−1(t)H(t)u(t)dt. (3.3)

If relations (3.1), (3.2) are fulfilled for all left-hand sides then we have completeness of the
ranks of matrices G(τ0) and G(τ1), respectively. Since points τ0, τ1 (τ1 > τ0) are arbitrarily
selected, it implies completeness of the rank of the matrix G(t) ∀t ∈ T , and leads to condition 1)
of the Theorem.

Let us assume that condition 2) is not satisfied, i.e. there exists a nonzero vector h ∈ Rn−d

such that h⊤X−1(t)H(t) = 0 on some interval [τ∗0 , τ∗1 ] ⊂ T. At the same time it follows from

equation (3.3) that matrix
∫ τ1

τ0

X−1(t)H(t)u(t)dt ̸= 0 ∀t ∈ [τ0, τ1] for arbitrary τ0, τ1 ∈ T (τ1 >

τ0) including τ0 = τ∗0 , τ1 = τ∗1 . We have a contradiction. In this way,

h⊤X−1(t)H(t) ̸≡ 0 (3.4)

for almost all t.
Sufficiency. Let us suppose that conditions 1), 2) of the Theorem are satisfied. One needs

to show that in this case there exists a vector-function of control u(t) ∈ C2r+1(T ) such that
equalities (3.1)–(3.3) holds for all left-hand sides.

Let us assume that control function u(t) is a polynomial

u(t) =

r∑
j=0

(
αj(t− τ0)

r+1+j + βj(t− τ1)
r+1+j + γj(t− τ0)

r+1(t− τ1)
r+1(t− c)s+j

)
, (3.5)

¶A set located on interval [a, b] is called a set of zero measure if for every ε > 0 it can be covered by a finite
or countable system of intervals. The sum of the lengths of intervals does not exceed ε.
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where αj , βj , γj ∈ Rn−d are unknown coefficients, c ̸∈ T is constant, and s > 2r + 1 is some
integer.

Then

u(t) = Λr+1(t− τ0) colon(α0, . . . , αr) + Λr+1(t− τ1) colon(β0, . . . , βr)+

+Φ(t− τ0, t− τ1)Λs(t− c) colon(γ0, . . . , γr),
(3.6)

where

Λk(t) =



k!

k!
tkEl

(k + 1)!

(k + 1)!
tk+1El . . .

(k + r)!

(k + r)!
tk+rEl

k!

(k − 1)!
tk−1El

(k + 1)!

k!
tkEl . . .

(k + r)!

(k + r − 1)!
tk+r−1El

...
...

. . .
...

k!

(k − r)!
tk−rEl

(k + 1)!

(k + 1− r)!
tk+1−rEl . . .

(k + r)!

k!
tkEl


,

k = r + 1, . . . , s;
Φ(t, τ) =

=



C0
0

((r + 1)!)2(tτ)r+1

((r + 1)!)2
El O . . . O

C
0
1

(
1∑

i=0

C
i
1

((r + 1)!)2tr+iτr+1−i

(r + i)!(r + 1 − i)!

)
El C

1
1

((r + 1)!)2(tτ)r+1

((r + 1)!)2
El . . . O

...
...

. . .
...

C
0
r

(
r∑

i=0

C
i
r

((r + 1)!)2t1+iτr+1−i

(1 + i)!(r + 1 − i)!

)
El C

1
r

(
r−1∑
i=0

C
i
r−1

((r + 1)!)2t2+iτr+1−i

(2 + i)!(r + 1 − i)!

)
El . . . C

r
r

((r + 1)!)2(tτ)r+1

((r + 1)!)2
El


.

Let us introduce the following designations

g1 = x2(τ0)− J2(τ0)x1(τ0), g2 = x2(τ1)− J2(τ1)x1(τ1), g3 = X−1(τ1)x1(τ1)− x1(τ0);

α = colon(α0, . . . , αr), β = colon(β0, . . . , βr), γ = colon(γ0, . . . , γr).

Substituting (3.6) into (3.1) and (3.2), we obtain the system of equations with respect to
coefficients α and β:

G(τ0)Λr+1(τ0 − τ1)β = g1, (3.7)

G(τ1)Λr+1(τ1 − τ0)α = g2. (3.8)

It is obvious that for τ0 ̸= τ1 matrix Λk(t) is invertible for all t ∈ [τ0, τ1]. Therefore, taking
into account condition 1) of the Theorem, we can uniquely determine coefficients α and β:

β = Λ−1
r+1(τ0 − τ1)G(τ0)⊤

(
G(τ0)G(τ0)⊤

)−1
g1, (3.9)

α = Λ−1
r+1(τ1 − τ0)G(τ1)⊤

(
G(τ1)G(τ1)⊤

)−1
g2. (3.10)

Substituting (3.6), (3.9) and (3.10) into equation (3.3) we obtain the system of equations
with respect to γ:

g3 −
∫ τ1

τ0

X−1(t)H(t)
(
Λr+1(t− τ0)α+ Λr+1(t− τ1)β

)
dt =

=

∫ τ1

τ0

X−1(t)H(t)Φ(t− τ0, t− τ1)Λs(t− c)dt γ.
(3.11)
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Matrix Φ(t− τ0, t− τ1) is invertible on (τ0, τ1) and Φ(t− τ0, t− τ1) = O in points t = τ0 and
t = τ1. Then, by virtue of condition 2) of the Theorem for any nonzero vector h ∈ Rn−d the
relation

h⊤X−1(t)H(t)Φ(t− τ0, t− τ1) ̸≡ 0.

is fulfilled. As discussed above, matrix Λs(t− c) is invertible for all t ̸= c. In this case, it is easy
to see that for sufficiently large s the relation

h⊤
∫ τ1

τ0

X−1(t)H(t)Φ(t− τ0, t− τ1)Λs(t− c)dt = h⊤N ̸= 0 ∀t ∈ [τ0, τ1],

is fulfilled for all nonzero h ∈ Rn−d. This means that matrix N has full row rank.
Thus, the solvability of the equation

γ = N⊤ (NN⊤)−1
g̃3

follows from (3.11), where

g̃3 = g3 −
∫ τ1

τ0

X−1(t)H(t)
(
Λr+1(t− τ0)α+ Λr+1(t− τ1)β

)
dt.

Consequently, we have found control function (3.5) such that equalities (3.1)–(3.3) hold for
all left-hand sides. It means complete controllability of (2.3), (2.4) on [τ0, τ1]. Since the values of
τ0, τ1 ⊂ T are arbitrary, so one can conclude that system (2.3), (2.4) is completely controllable
on any set [τ0, τ1] ⊂ T . Therefore, it is differentially controllable on T by Definition 5. 2

Differential controllability condition can be formulated in terms of the controllability matrix

S(t) = (S0(t) S1(t) . . . Sn−d−1(t)) , (3.12)

where S0(t) = H(t), Si(t) = J1(t)Si−1(t)− S′
i−1(t), i = 1, n− d− 1.

Theorem 3. Let us assume that
1) A(t), B(t) ∈ C2r+n−d−1(T ), U(t), u(t) ∈ C2r+n−d(T );
2) Assumptions 2) - 4) of Theorem 1 are satisfied.
System (1.1) is differentially controllable on T if and only if the following conditions are satisfied:
i) rankG(t) = d ∀t ∈ T ;
ii) rankS(t) = n − d for almost all t, i.e. for all points t ∈ T except some sets with measure
zero.

Proof. Sufficiency. Let us assume the opposite. Suppose that conditions i) and ii) are satisfied
but system (1.1) is not differentially controllable on T . According to Theorem 2, it means that
h⊤X−1(t)H(t) = 0 on some interval [τ0, τ1] ⊂ T . Denote F (t) = X−1(t)H(t). Taking into
account that

(
X−1(t)

)′
= J1(t)X

−1(t) and sequentially differentiating matrix F (t) n − d − 1
times, we obtain

F (t)(j) = (−1)jX−1(t)Sj(t),

where Sj are matrices from (3.12) and F (t)(j) = 0 ∀t ∈ [τ0, τ1], j = 0, n− d− 1.
Then h⊤S(t) = 0 ∀t ∈ [τ0, τ1] for any nonzero h ∈ Rn−d so rankS(t) < n− d. We have the

contradiction.
Necessity. Let system (1.1) be differentially controllable on T . According to Theorem 2:
a) condition i) of the Theorem is satisfied;
b) for any nonzero h ∈ Rn−d relation (3.4) is fulfilled for almost all t ∈ T .
Let us assume that in this case the rank of matrix S(t) < n− d on some interval [τ0, τ1] ⊂ T .

Then, for any nonzero vector p ∈ Rn−d we have p⊤S(t) = 0 ∀t ∈ [τ0, τ1] or

p⊤S0(t) = 0, p⊤S1(t) = 0, . . . , p⊤Sn−d−1(t) = 0. (3.13)

Taken into account that S0(t) = H(t), it follows from (3.13) that p⊤H(t) = 0. Assuming that
p⊤ = h⊤X−1(t), we obtain the contradiction with (3.4). 2
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3.2. Stationary systems
In this case the original system has matrices with constant coefficients. Differential control-

lability conditions have a simple structure. Let us consider a stationary system of DAEs

Ax′(t) = Bx(t) + Uu(t), t ∈ I, (3.14)

where A,B and U are constant matrices with sizes n×n, n×n and n× l, respectively, detA = 0.
It is easy to see that the concepts of complete and differential controllability coincide for

stationary systems. So, in this case, we deal with just controllability.
It is known [11] that in the case of a regular matrix pencil λA − B there exist invertible

(n× n)-matrices P and S such that

PAS =

(
O N

En−σ O

)
, PBS =

(
O Eσ

G O

)
, (3.15)

where N is upper triangular matrix with ρ square zero blocks on the diagonal so that Nρ = O,
G is some square matrix of size n− σ.

It follows directly from [12] that the presence of the resolving minor in matrix Dr,x is a
necessary and sufficient condition of existence of operator (2.2) in the case of constant coefficients.
We show that there is such minor for r = ρ.

By left multiplying matrix Dρ,x by the matrix diag{P, . . . , P} and right multiplying by matrix
diag{S, . . . , S} and taking into account (3.15), we obtain

O Eσ O N
G O En−σ O

O Eσ O N
G O En−σ O

. . .
O N

En−σ O

O Eσ O N
G O En−σ O


. (3.16)

Obviously, that the rank of the matrix to the right of the double line in (3.16) is equal
to the rank of matrix Dρ,z. Using the block transform of matrices, it is easy to show that
rankDρ,z = nρ − σ, since Nρ = O. There is the resolving minor in matrix (3.16). It includes
all columns of the blocks that contain the identity matrixes and d = σ. Thus, in the case of a
regular matrix pencil λA−B there is the resolving minor in matrix Dr,x with r = ρ.

It is also easy to see that the relation

rank (diag{P, . . . , P}Dr+1,y diag{S, . . . , S}) = rank (diag{P, . . . , P}Dr,y diag{S, . . . , S}) + n

is satisfied with r = ρ.
Thus, in the case of a regular matrix pencil λA − B all the assumptions of Theorem 1 are

fulfilled for DAE (3.14) with r = ρ. The equivalent form in this case is given by

x′
1(t) = J1x1(t) +Hu(t), (3.17)

x2(t) = J2x1(t) + Gu(t), t ∈ I,

where
colon (x1(t), x2(t)) = Qx(t), x1(t) ∈ R

n−d, x2(t) ∈ R
d;(

G
H

)
=

(
G0 . . . Gr

H0 . . . Hr

)
= (R0U . . . RrU) ,

(
J2 Ed

J1 O

)
= R0BQ−1.

Taking into account Theorems 2 and 3, we come to the following statements.
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Theorem 4. Let a matrix pencil λA − B be regular (i.e. det(λA − B) ̸≡ 0). System (3.14) is
controllable if and only if the following conditions are satisfied:
1) rankG = d;
2) ∀h ∈ Rn−d : h ̸= 0, h⊤X−1(t)H ̸≡ 0.

Theorem 5. Let a matrix pencil λA − B be regular (i.e. det(λA − B) ̸≡ 0). System (3.14) is
controllable if and only if the following conditions are satisfied:
1) rankG = d;
2) rankQ = n− d.

Here Q = (H J1H . . . Jn−d−1
1 H) is the controllability matrix of system (3.17).

Conditions of Theorems 4 and 5 can be formulated in terms of input data for system (3.14),
using the following substitutions

J1 =
(
O En−d

)
R0BQ−1

(
En−d

O

)
, H = (R0,2U . . . Rr,2U) ,

(
Ri,1

Ri,2

)
= Ri, i = 0, r.

Coefficients Ri (i = 0, r) are determined in terms of coefficients of DAE (3.14) and their
derivatives defined in (2.1), (2.6).

4. Example
Let us consider the linear system of DAE(

1 + cos t 1− cos t 1
− sin t cos t 1− sin t − sin t

0 0 0

)
x′(t) +

( − cos t− sin t 1 + sin t+ cos2 t 0
1 + sin2 t − cos t 0

cos t 1 1

)
x(t)+

+

(
0 0
1 0
0 1

)
u(t) = 0,

(4.1)

where t ∈ I = [0,+∞), x(t) : I → R3 is unknown function.
We investigate system (4.1) on differential controllability on I. To do this, we verify all the

assumptions of Theorem 3.
Condition 1) is obviously satisfied. To verify condition 2) we construct the matrices

D1,x =


−P1 − P2 1 + P2 + P 2

1

1 + P 2
2 −P1

P1 1
P2 − P1 P1 − sin(2t)
sin(2t) P2

−P2 0

0 1 + P1 1 − P1 1 0 0
0 −P1P2 1 − P2 −P2 0 0
1 0 0 0 0 0

0 −P1 − 2P2 2P2 + P 2
1 + 1 0 1 + P1 1 − P1

0 3P 2
2 −2P1 −P1 −P1P2 1 − P2

0 P1 1 1 0 0

0
0
0
1

−P2

0

 ,

D2,y=



1 + P1 1 − P1 1 | 0 0 0 | 0 0 0
−P1P2 1 − P2 −P2 | 0 0 0 | 0 0 0

0 0 0 | 0 0 0 | 0 0 0
−P1 − 2P2 2P2 + P 2

1 + 1 0 | 1 + P1 1 − P1 1 | 0 0 0
3P 2

2 −2P1 −P1 | −P1P2 1 − P2 −P2 | 0 0 0
P1 1 1 | 0 0 0 | 0 0 0

2P2 − 3P1 3P1 − 2 sin(2t) 0 | −P1 − 2P2 2P2 + P 2
1 + 1 0 | 1 + P1 1 − P1 1

4 sin(2t) 3P2 P2 | 3P 2
2 −2P1 −P1 | −P1P2 1 − P2 −P2

−2P2 0 0 | P1 1 1 | 0 0 0

,

where P1 = cos t and P2 = sin t.
It is easy to see that rankD1,z = ρ = 2 ∀t ∈ I. The columns that are included into the

resolving minor are framed in matrix D1,x. It includes ρ = 2 columns of matrix D1,z, n = 3

– 327 –



Pavel S. Petrenko Differential Controllability of Linear Systems of Differential-algebraic Equations

first columns of matrix D1,y and the third column of matrix D1,x. It is easy to verify that
rankD2,y = rankD1,y + n = 8.

Thus, the conditions are fulfilled wherein system (4.1) has an equivalent form. Let us find
the coefficients of operator (2.2)

R =

 1 cos t 0
0 1 0
0 0 1

+

 0 0 cos t sin t− 1
0 0 sin t
0 0 0

 d

dt
, (4.2)

that converts DAE (4.1) into the system

x′
1(t) +

(
0 1 + sin t
1 − cos t

)
x1(t) +

(
cos t 0
1 0

)
u(t) +

(
0 cos t sin t− 1
0 sin t

)
u′(t) = 0, (4.3)

x2(t) +
(
cos t 1

)
x1(t) +

(
0 1

)
u(t) = 0. (4.4)

Finally we obtain

H(t) =

(
cos t 0 0 cos t sin t− 1
1 0 0 sin t

)
, G(t) =

(
0 1 0 0

)
.

Then rankG(t) = d = 1, i.e. condition i) of Theorem 3 is satisfied.
We construct the controllability matrix of system (4.3)

S(t) = (S0(t) S1(t)) ,

where S0(t) = H(t), S1(t) = J1(t)H(t)−H′(t).
Then

S(t) =
(

1 + 2 sin t 0 0 sin t+ 3 sin2 t− 1
0 0 0 −1− cos t

)
.

We have rankS(t) = 1 when 1 + 2 sin t = 0 and −1− cos t = 0, i.e. in the points t = −π/6 +
2πn, t = 7π/6 + 2πn, t = π+ 2πn, n ∈ N. Thus, DAE (4.1) is not differentially controllable on
any interval T ⊂ I, containing the points t = −π/6+2πn, t = 7π/6+2πn, t = π+2πn, n ∈ N.

Alternatively, S(0) =
(

1 0 0 −1
0 0 0 −2

)
so rankS(0) = 2 = n− d ∀t ∈ I. According to Lemma

4 [10], system (4.1) is completely controllable on any interval T ⊂ I that contain point t = 0 and
also points t = −π/6 + 2πn, t = 7π/6 + 2πn, t = π + 2πn, n ∈ N.
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Дифференциальная управляемость линейных систем
дифференциально-алгебраических уравнений

Павел С. Петренко
Институт динамики систем и теории управления имени В. М.Матросова СО РАН

Лермонтова, 134, Иркутск, 664033
Россия

Рассматривается линейная система обыкновенных дифференциальных уравнений с переменными
коэффициентами, не разрешенная относительно производной искомой вектор-функции и тожде-
ственно вырожденная в области определения. Допускается произвольно высокий индекс неразре-
шенности системы. Исследуется дифференциальная управляемость такой системы в предполо-
жениях, обеспечивающих существование эквивалентной в смысле решений структурной формы
с разделенными "дифференциальной" и "алгебраической" подсистемами.

Ключевые слова: дифференциально-алгебраические уравнения, дифференциальная управляемость,
полная управляемость.
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