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Traditional research methods adopts normal distributions as a pattern of the stock market behavior. 
This paper utilized POT model of extreme value theory, and GPD distribution which can give more 
accurate description on tail distribution of financial returns/losses. EVT and POT techniques are 
applied to a series of daily losses of the RTS index (RTSI) over a 15-year period (1995-2009), RTSI 
is total index of 50 largest Russian stocks. The focus is on the use of proposed methods to asses tail 
related risk providing a modeling tool for modern risk management. 
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Introduction

The study of extreme events has attracted the special attention in connection with the global 
crisis of 2008–2009. The Russian stock market has been dramatic volatile over 15-year period 
(from 38 points on 05.10.1998 to around 2487 points on 19.05.2008 and back to about 498 points 
on 23.01.2009). In irregular financial market, it is necessary to set up models and systems to 
evaluate and control risks. In this paper we focus on the extreme behavior of financial series, 
unraveling the volatilities in the financial markets has always been an decipherable mystery. One 
of the purposes of this chapter is to test the validity of a popular risk management instrument: 
Value-at-Risk estimator in Russian equity market, which is a widely adopted technique in the 
developed countries for quantifying market risk. We have to deal with extreme events when a risk 
takes values from the tails of its probability distribution. In the field of market risk management 
it is a great concern the day by day determination of the Value-at-Risk (VaR) [1]. VaR is a high 
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quantile of the distribution of losses (for example the 95th percentile): VaRp=F-1(p), where F is the 
loss cumulative distribution function and p the selected probability level. Traditional procedure 
calculating VaR based on normal distribution has limitations. VaR model reflects that it is to asses 
the possible maximum loss under regular market environments. Risk managers have become more 
concerned with events occurring under extreme market conditions [2,3]. This paper argues that 
extreme value theory (EVT) and POT (Peaks Over Threshold) model provide tools for estimating 
measures of tail risk under irregular volatility in market. We consider a fully parametric model, 
based on the GPD (Generalized Pareto Distribution), which can be easily estimated by maximum 
likelihood method [4,5]. 

I. Theoretical framework of the extreme value approach 

Extreme value theory is a powerful and fairly robust framework to study the tail behavior of a 
distribution. There have been a number of extreme value studies in the finance literature in recent 
years: quantile estimation using the extreme value theory [6]; the estimation of the tails of loss severity 
distributions and the estimation of the quantile risk measures for financial time series using extreme 
value theory [7,8]; overview the extreme value theory as a risk management tool [9]; potentials and 
limitations of the extreme value theory [10,11]; an extensive overview of the extreme value theory 
for risk managers [12]; the estimation of tail-related risk measures for heteroskedastic financial time 
series [13]; comprehensive source of the extreme value theory to the finance and insurance literature 
[14,15].

POT model and Generalized Pareto distribution

We use of Extreme Value Theory to model the tail returns and then show how our EVT estimates 
are incorporated into the risk measures. Two main approaches are proposed in the literature [16]: the 
Block Maxima (BM) and the Peaks-over-Threshold models (POT). The group of models for threshold 
exceedances are more modern and powerful than the BM models [16], we focus on this approach and 
its application to the losses on the RTSI stock index. We apply the parametric POT method based on 
the Generalized Pareto distribution (GPD) to describe tail behaviour. Begin by assuming that market 
losses represent the realizations x of a random variable X over an enough high threshold u. More 
particularly, if X has the cumulative distribution function F(x), we are interested in the cumulative 
distribution function Fu(x) of exceedances of X over a high threshold u, i.e. the conditional excess 
distribution function is defined as:
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GPD subsumes three other distributions under its parameterization [2]. So, when tail index ξ=0, 

we obtain a Type 1 (exponentially declining) distribution. If ξ<0, we have a Type 2 (power 
declining). For ξ>0, we obtain a Type 3 (constant declining) distribution. Given these three types of 
distribution, one of our tasks in this paper will be to uncover which type best describes the extremes 
of stock returns on the emerging Russian market. 
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Hill plot is a good instrument to find the optimal threshold [18]. Over a specific range of 

exceedances, the Hill plot may be under the stationary series, and the turning point is a good choice 
of optimal threshold. We use the following intuitive ideas: 
(1) The sequence of the turning point is less than ~n/10 [19]. 
(2) The Hill estimator in the turning point has a relative large deviation from the fitted stationary 
straight line. 
(3) The turning point is the last sequence of point that satisfies the two conditions stated above. 
 

II. Empirical results  
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returns) of the Russian RTSI Index over a period of fifteen years (1995-2009). The Russian Trading 
System Index (RTSI) comprises of 50 of the largest stocks capturing 85% of the total market 
capitalization of the Russian Trading System exchange. The data used in this paper are obtained 
from RTS web site [21]. The empiric study uses the series of log daily losses of the RTSI Index, 
containing 3 447 trading days (closing prices). Fig.1 shows the plot of daily dynamics of RTSI 
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Fig. 1: RTSI Index – sample period 01.09.1995 – 30.06.2009 (closing values) 
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Hill plot is a good instrument to find the optimal threshold [18]. Over a specific range of 
exceedances, the Hill plot may be under the stationary series, and the turning point is a good choice of 
optimal threshold. We use the following intuitive ideas:

(1) The sequence of the turning point is less than ~n/10 [19].
(2) The Hill estimator in the turning point has a relative large deviation from the fitted stationary 

straight line.
(3) The turning point is the last sequence of point that satisfies the two conditions stated above.

Empirical results 

We consider a extreme value approach, working on the series of daily log losses (negative returns) 
of the Russian RTSI Index over a period of fifteen years (1995-2009). The Russian Trading System 
Index (RTSI) comprises of 50 of the largest stocks capturing 85% of the total market capitalization of 
the Russian Trading System exchange. The data used in this paper are obtained from RTS web site [21]. 
The empiric study uses the series of log daily losses of the RTSI Index, containing 3 447 trading days 
(closing prices). Fig.1 shows the plot of daily dynamics of RTSI index values, and log daily losses.

Table 1 shows the summary statistics for the series of log daily changes. This table shows that 
kurtosis value is 9.7024 and skewness value is 0.3752. Relative value of Normal distribution is 3 and 
0, respectively. So we can see empirical distribution of log daily losses and normal distribution is not 
compatible. 
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In addition to this, Jarqua-Bera statistic shows that law of log daily losses is obviously different 
from normal distribution. The JB test statistics is defined as [10]:
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Jarqua-Bera test depends on skewness and kurtosis statistics. If the JB test statistic equals zero, it 
means that the distribution has zero skewness and kurtosis is about equal 3, and so it can be 
concluded that the normality assumption holds. Skewness values far from zero and kurtosis values 
far from 3 lead to an increase in JB values. The test returns the logical value h = 1 if it rejects the 
null hypothesis at the p<0.05 significance level, and h =0 if it cannot. We have for data of Table 1: 
JB value=6532.8, p~0, h=1. It means that we can reject the hypothesis that the distribution of daily 
losses is normal. 
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In Fig.2 we represent the Hill graph, which plots the Hill estimator of ξ, versus the k upper order 

statistics (and threshold u, respectively). We select the last area to k~0.1*3447~350, where the Hill 
estimator is more stable.  
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In Fig.2 we represent the Hill graph, which plots the Hill estimator of ξ, versus the k upper order 
statistics (and threshold u, respectively). We select the last area to k~0.1*3447~350, where the Hill 
estimator is more stable. 

The mean excess function (7) allows to establish the behavior of the distribution tails [23]: we 
choose threshold u looking at the linear shape (with positive slope) of the graph (Fig.3). Considering 
Hill plot and the mean excess function, we choose u=0.0334 (the number of observation exceeding 
threshold u is equal k=294). 

The results of ML estimation of the GPD parameters (on chosen threshold u=0.0334) are ξ=0.1492 
and β = 0.0206:

Maximum Likelihood (ML) estimates of ξ,β:
out = 
 par_ests: [0.1492 0.0206]
 funval: -803.6979
 par_ses: [0.0688 0.0018]
 threshold: 0.0334
 data: [1x294 double]
 p_less_thresh: 0.9675

QQ-plot graph makes us able to evaluate the goodness of fit of the empirical series to a parametric 
GPD model (Fig.4) [24]. Notice that a concave departure from the straight line in the QQ-plot (Fig.4a) 
is an indication of heavy tailed distribution, whereas a convex departure is an indication of a thin tail.

After we get estimates ξ,β, use them in (5), get the formula for of tail evaluation:
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b) QQ-plot: empirical vs GPD distribution ( ξ=0.1492, β=0.0206, u=0.0334) 

Fig. 4. QQ-plot versus GPD distribution and exponential distribution 
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Employ the result in (6), get the VaR formula on GPD model: 
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0.1492 294pVaR p −= + − −  

In Table 2 we report 95%, 99%, 99.5%, 99,9% Value-at-Risk estimates of three different VaR 
estimation methods. The performance of the different VaR estimation methods can be evaluated by 
comparing the estimates with the actual losses observed, in particular by computing (and testing) 
the number of VaR violations. VaR approaches based on the assumption of normal distribution are 
definitely to underestimate high percentiles, while estimates based on historical simulation face 
with the problem of out of sample performance. The extreme value approach on GPD model seems 
appropriate and easy to implement.  
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Fig. 2. Hill estimator versus k upper order statistics (probability level p=0.95)
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Fig. 3. Mean excess function 
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QQ-plot (Fig.4a) is an indication of heavy tailed distribution, whereas a convex departure is an 
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b) QQ-plot: empirical vs GPD distribution ( ξ=0.1492, β=0.0206, u=0.0334) 

Fig. 4. QQ-plot versus GPD distribution and exponential distribution 
 

After we get estimates ξ,β, use them in (5), get the formula for of tail evaluation: 
1

0.1492
( ) 0.0334

( ) 1 (1 0.1492 * )
0.0206

( ) 294,  n=3447, k(u)/n=8.53%

k u x
p F x

n
k u

−−
= = − +

=

 

 
Employ the result in (6), get the VaR formula on GPD model: 
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In Table 2 we report 95%, 99%, 99.5%, 99,9% Value-at-Risk estimates of three different VaR 
estimation methods. The performance of the different VaR estimation methods can be evaluated by 
comparing the estimates with the actual losses observed, in particular by computing (and testing) 
the number of VaR violations. VaR approaches based on the assumption of normal distribution are 
definitely to underestimate high percentiles, while estimates based on historical simulation face 
with the problem of out of sample performance. The extreme value approach on GPD model seems 
appropriate and easy to implement.  
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Table 2. VaR estimation for daily RTSI losses:one day horizon

VaR approach p=0.950 p=0.975 p=0.990 p=0.995 p=0.999
Normal model 0.0394 0.0451 0.0520 0.0565 0.0663
Historical
simulation

0.0452 0.0607 0.0849 0.1083 0.1771

GPD model 0.0499 0.0611 0.0856 0.1062 0.1620

definitely to underestimate high percentiles, while estimates based on historical simulation face 
with the problem of out of sample performance. The extreme value approach on GPD model seems 
appropriate and easy to implement. 
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Conclusions

Since last century, volatility of international financial system is getting severe. A stable financial 
system is so desirable. Therefore, risk management has aroused growing attention. As a measurement 
of market risk, VaR has been widely used in risk management. However, derivation between VaR 
estimation of normal hypothesis and abnormal distribution of practical benefit rate of financial 
always cause the bigger error in estimation. Aiming at this problem, through GPD model which fits 
tail distribution of financial products more accurately, this paper recalculates VaR by POT method. 
Compared with traditional method of risk study, this paper has made some progress in research 
approach and philosophy and more applicable in practice, which has been demonstrated by example of 
the Russian market analysis.

We use software systems: EVIM [25,26], MATLAB [27] and LOGOS-EVT, developed by authors 
of this paper.
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Применение метода превышений порога  
и теории экстремальных значений  
для моделирования рисков  
на российском фондовом рынке

В.О. Андреева, С.Е. Тиняковб,  
О.П. Овчинниковаа, Г.П. Парахинв

а Орловская региональная  
академия государственной службы
Россия 302028, Орел, ул. Победы, 5а

б Железногорский филиал СФУ
Россия, Железногорск, ул. Кирова, 12а

в ТелекомСтройСервис
Россия 302528, Орловская обл.,  

п. Зареченский, ул. Царев Брод, 61

При моделировании поведения фондового рынка обычно используется нормальное 
распределение Гаусса. Однако, метод превышений порога (РОТ) теории экстремальных 
значений (EVT), обобщенное распределение Парето (GPD) позволяют более точно  описывать 
финансовые доходности (потери) от операций с ценными бумагами, особенно на  хвостах 
вероятностных распределений. В данной работе описывается применение предложенных 
методов к моделированию и анализу потерь на основе индекса РТС, представляющего собой 
усредненную цену акций 50 крупнейших российских компаний, за 15-летний период (1995 - 2009 
г.). Особое внимание уделено использованию предложенных методов для оценки экстремального 
рыночного риска на хвостах распределений, что позволяет получить современный инструмент 
моделирования для системы управления рисками.

Ключевые слова: теория экстремальных значений, обобщенное распределение Парето, метод 
превышений порогового значения, вероятностное распределение на хвосте, стоимость под 
риском.


