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Abstract—The taxonomic composition, seasonal dynamics, and emergence intensity of chironomid adults
(the Chironomidae family) emerging from the Oiskoe mountain oligotrophic lake (Western Sayan, Southern
Siberia) have been established. The value of the annual emergence of chironomid adults average 0.42 g wet
weight m™2 in the lake area and approach, the value of potential emergence, which is calculated based on the
estimate of zoobenthos secondary production. For the first time the fatty-acid composition and contents of
essential omega-3 polyunsaturated fatty acids (PUFAs) are compared between the larvae and adult stages of
chironomids. The PUFA content per wet weight unit in adults is more than 7 times higher than that in larvae.
The PUFA flux per lake area unit resulting from the chironomid emergence amounted to 1.752 mg m™ 2y,
which is over 10 times lower than the global estimate for the emergence of amphibiotic insects. Calculations
show that the PUFA flux brought with the chironomid emergence per land unit of the studied mountain ter-
ritory is very low when compared to that for other landscapes, with the exception of the shoreline part of the
territory with a width of 15 m, in which the PUFA flux is comparable to that in productive landscapes.

Keywords: amphibiotic insect emergence, Chironomidae, mountain landscape, polyunsaturated fatty acids,

biogenic fluxes from water to land
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INTRODUCTION

Currently, the transfer of the total organic matter
and nutrients through the water—land boundary is
considered one of the key processes of interaction
between aquatic and terrestrial ecosystems in different
ecological landscapes (Baxter et al., 2005; Richardson
et al., 2010). According to the global assessments and
reviews of the literature, the emergence of amphibiotic
insect imagees is the largest part of the total flux of
organic matter that is produced in freshwater ecosys-
tems and enters terrestrial food webs (Vander Zanden
and Gratton, 2011; Bartels et al., 2012). The biomass
of emerging aquatic insects can account for a signifi-
cant share in the diet of terrestrial consumers that live
in the shoreline zone, such as arthropods, lizards, bats,
and insectivorous birds (Nakano and Murakami,
2001; Sabo and Power, 2002; Reimer et al., 2010.;
Stenroth et al., 2015).

Along with a significant quantitative contribution
to the flux of organic carbon and energy, imagees of
emerging insects are also a source of essential bio-
chemical food components for terrestrial animals
(Gladyshev et al., 2009; 2013). These essential bio-
chemical components are long-chain polyunsaturated

fatty acids of the w3 family. As is known, these sub-
stances, namely, eicosapentaenoic acid (20:5n-3,
EPA) and docosahexaenoic acid (22:6n-3, DHA),
cannot be synthesized de novo, but are necessary for
the functioning of the cardiovascular, nervous, and
immune systems in consumers of different levels of
organization, including humans (Lands, 2009).
Among all organisms, only some algae species are able
to synthesize large amounts of EPA and DHA (dia-
toms, dinophytes, and cryptophytes), so aquatic eco-
systems play a unique role in the Biosphere, being the
main source of EPA and DHA for most animals,
among which there are omnivorous land dwellers,
including humans (Gladysheyv et al., 2009).

As is known, terrestrial insects do not contain or
have very small quantities of long chain w3 EPA and
DHA in biomass (Stanley-Samuelson et al., 1988.;
Fontaneto et al., 2011; Rumpold and Schluter, 2013).
In contrast, almost all studied amphibiotic insects are
characterized by a high content of EPA, which they
accumulate at the larval stage, obtaining it from
microalgae through water trophic chains (Gladyshev
et al., 2009; 2011a; Sushchik et al., 2013).
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We have estimated for the first time the global EPA
and DHA fluxes from aquatic to terrestrial ecosystems
(Gladysheyv et al., 2009) and found that the emergence
of the adult amphibiotic insects from internal water
bodies and estuaries to the land is one of the main
fluxes in the global export of these essential biochem-
ical components to the land that is 240 x 10° kg/year.
However, it is obvious that the generalized global esti-
mates do not make allowance for the significant vari-
ability of different landscapes (biomes) and, accord-
ingly, the specificity of EPA and DHA fluxes to the
land. Therefore, global preliminary calculations
should be supplemented and verified by practical esti-
mates of PUFA fluxes to the land in different biomes
and landscapes.

Most studies that have identified the production of
benthic communities and fluxes of matter brought
with the emergence of amphibiotic insects were con-
ducted at water flows, i.e., rivers and streams (Bartels
et al., 2012; Muehlbauer et al., 2014). In connection
with the morphological features of water flows (water-
level fluctuations and lack of a clear shoreline), the
characteristics of flews that link aquatic and terrestrial
ecosystems are often expressed per unit area of a water
flow rather than per unit area of an adjacent land
(Vander Zanden and Gratton, 2011). However, due to
the much larger area of the water surface, the potential
of lenthic water systems as a source of biomass of
amphibiotic insects arriving per unit of land area can
prove to be much larger in comparison with that of
streams and rivers (Gratton and Vander Zanden,
2009). Moreover, the estimates of the emergence of
amphibiotic insects from lenthic ecosystems are few;
the vast majority of them were made in low-lying
landscapes, namely, in wetlands of temperate and sub-
tropical climate or in tundra (MacKenzie and Kaster,
2004; MacKenzie, 2005; Dreyer et al., 2012). In such
habitats, prevalence is held by temporary reservoirs,
which, according to some estimates, are less produc-
tive than constant ones (Lundstrom et al., 2010).
However, landscapes such as mountain and foothill
areas, where constant lenthic systems (lakes) are prev-
alent, remain almost unstudied.

According to the studies of many mountain ecosys-
tems, especially rivers and streams, the basis of the
production of benthic communities is made up larvae
of insects belonging te-theDiptera—orderofthe-Chi-
reonomidaefamily-(Maiolini et al., 2006; Scheibler et
al., 2014). Similarly to the communities of mountain
streams, the benthos of some mountain lakes is also
represented mainly by the chironomid fauna. There-
fore, in Oiskoe Lake, which is a large alpine reservoir
located in a mountain valley of the Western Sayan
Mountains (Southern Siberia, Russia), the contribu-
tion of chironomids to the macrozoobenthos produc-
tion reaches 68% (Zuev et al., 2012).

Thus, the purpose of this study was to determine
the export of total organic matter and essential EPA
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and DHA to the land via the emergence of amphibi-
otic insects, namely chironomids of the Chironomi-
dae family, from the Oiskoe Mountain Lake (the
Western Sayan Mountain Range). The following spe-
cific objectives were formulated: (a) Determining the
seasonal dynamics of the daily emergence of chirono-
mid adults and estimating the total annual emergence
of this group from a lake area unit; (b) defining the
boundaries of the adjacent land area that corresponds
to the potential range of the expansion of chironomid
adults and estimating the export of the chironomid
biomass per unit of land area; and (c) making a com-
parative analysis of the content of EPA and DHA in
chironomid larvae and adults and determining the
export of EPA and DHA from a water area unit to a
land area unit in the studied region.

MATERIALS AND METHODS

The Studied Area

The studies were carried out in Oiskoe Lake
(52°50"28 N, 93°14’46” E), which is located in the
Western Sayan Mountain Range at an altitude of 1416
m above sea level. The characteristics of the reservoir
and surrounding area were described in detail i#n-the
weortks (Ivanova et al., 2014; Anishchenko et al., 2015).
In short, the climate and vegetation of the studied area
correspond to the mountain taiga belt. The lake isin a
mountain valley and has its own catchment area
(Fig. 1). The open water period at the lake lasts from
late May to the first or second decade of October. The
maximum depth of the lake is 21 m, the average depth
is 8 m, and the water surface area is 522121 sq. m. The
lake is oligotrophic and characterized by low amounts
of biomass and phytoplankton production. However,
the main contribution to the gross primary production
is made by higher aquatic plants that grow in the vast
littoral part of the lake (Ivanova et al., 2014).

In accordance with different greund types within
the water area of the lake, we marked out three habitats
(Fig. 1). In the northern shallow part and in the cen-
tral deep part, the bottom is covered with thick silt
deposits (station 1). In the places where flow
into the lake, its bottom is covered with coarse sand
sediments (station 2). In the southern and central part
of the lake, are represented by silted boulders,
fine gravel, and pebble (station 3). Zones with differ-
ent ground types were mapped with reference to the
coordinates via GPS. The area occupied by each of the
three habitats was then calculated based on Google
Earth satellite imagery (https://www.google.ru/maps)
using the ImagelJ 1.46 software.

Sampling
The emergence of chironomid adults was estimated

using semi—mersed conical mesh traps (Rosenberg
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Fig. 1. Region of werkg and scheme of Oiskoe Lake with trap-iastalatien stations. The dotted line marks the boundary of the

valley territory as the zone to which chironomid adults expand.

etal, 1980; Demina et al., 2009) equipped with a mod-
ified removable accumulating collector for adults that
emerged. The traps were fixed with weights on the bot-
tom and equipped with elastic snells and a plastic
float, which allowed them to maintain a vertical orien-
tation under wind and waves. The area of an underwa-
ter trap cone was 0.28 m? and its height was 0.5 m.

In total, six traps were installed in the littoral zone
(at depths of up to 1 m) of the three stations (Fig. 1).
The counts of emerging chironomid adults were made
using traps in 2012—2014 from the middle of June to
the last 10 days of August in six stages that lasted 6—
14 days each: June 15—20, 2012; August 16—29, 2012;
June 1621, 2013; July 2128, 2013; July 4—15, 2014;
and August 2—13 2014. The total time of trap installa-
tion was 58 days. Winged adults were taken from traps
every 2 days. When samples were taken, a removable
collector was replaced by a new one; chironomid
adults were taken out at laboratory conditions, which
made it possible to avoid losses during manipulations.
The average number of adults that Hew-outfrom traps
installed in a given station was estimated.

The collected specimens were sorted by morpho-
logically similar groups that took account of the size,
sex, and visually distinguishable taxonomic character-
istics and were counted and weighed. In total, eight
morphological groups were marked out. Weighting
was performed by a HP-200 analytical balance (A&D,
Japan) with a discreteness of mass determination of up
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to 0.1 mg. The average values of wet weight of an indi-
vidual were estimated for each morphological group
and then were used to calculate the contribution to the
total biomass of individual taxa. Then the samples
were preserved in 80% ethanol to establish the species
identity.

Over 2012, a part of adult specimens of the domi-
nant species caught with the mesh traps was selected
for biochemical analyzes. In the same growing season,
samples of benthic chironomid larvae were taken at
stations 2 and 3 using a Petersen dredger. Larvae taken
from se# samples were placed in flltered lake water for
a day; for the release of the intestine. Before weighing,
excess moisture was removed from the surface of lar-
vae bodies with filter paper. The samples for determin-
ing the fatty acid (FA) content and moisture were
formed from several individuals of larvae or adults
from morphologically similar groups, the weighed
mass of which was within 10—80 mg wet weight, and
then they were weighed with an accuracy of 0.1 mg.
The samples for determining the FA content were
placed in a chloroform-methanol mixture, and then
they and the samples for measurement of moisture
were stored at —20°C until further processing at the
laboratory.

The species identity of sasg chironomid species
was identified in a laboratory based on preparations of
male genitalia (Opredelitel” nasekomykh Evropeiskoi
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Fig. 2. Dynamics of positive temperature sum in the region
of studies in summer 2012—2014 (the calculations were
made based on the air temperature data obtained at the
Olenya Rechka Meteorological Station, Roshydromet,
http://rp5.1u).

chasti SSSR, 1969; Opredelitel’ nasekomykh Dal’nego
Vostoka Rossii, 1999).

Calculation of Daily and Annual Emergence per Unit
of Water and Land Area

The calculations were made with consideration for
the following factors. It is known that the intensity of
the emergence of amphibiotic insects may largely vary
during a growing season; in addition, the start and
duration of emergence peaks may significantly vary in
adults-depending on weather conditions in individual
growing seasons (Lundstrom et al., 2010). In moun-
tain ecosystems, as well as in ecosystems of temperate
and cold climate, the key factor that determines the
start of the mass emergence of amphibiotic insects is a
seasonal rise in water temperature (Fureder et al.,
2005). It is known that water temperature in mountain
lakes in the open water period is significantly cor-
related with air temperature (Livingstone and Lotter,
1998). Due to the lack of long- reliable measure-
ments of water temperatures in the lake, we used data
on air temperature as a proxy ef the water temperature
dynamics. In order to determine the seasonal dynam-
ics of the emergence of chironomids with consider-
ation for measurements for different growing seasons,
we used the model where the sum of positive air tem-
peratures from the beginning of a season was used as
an indicator of the time of the growing season. The
calculations were made using the data on air tempera-
tures obtained from the Olenya Rechka Meteorologi-
cal Station (Roshydromet, http://rp5.ru), which is
located in the studied area (4 km seuth-to the south
from the Oiskoe Lake, 52°50" N, 93°15” E) at the same
altitude (1400 m above sea level) (Fig. 2). Positive val-
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ues were summed up in the series of average daily val-
ues of air temperature in 2012, 2013, and 2014. There-
fore, a corresponding value of the positive temperature
sum was obtained for each date of the counts of the
i chi e

According to the observations in 2012—2014, the
emergence of chironomids took place at the interval of
the positive temperature sum of 309—1328°C. In
2012—2014, this interval lasted 81—87 days in the stud-
ied area (on average, 83 days), and then there was not
an increase in the positive temperature sum. Thus, the
duration of the emergence of chironomids in the
growing season was taken to be 83 days. The daily val-
ues of the emergence (mg - m? -day~') were estimated
for each date of the counts based on the biomass of
chironomids caught with traps. The values of the
emergence for different dates and different years were
ranked by the indicators of temperature separately for
each station. This yielded the graphs of the emergence
intensity dynamics in chironomids during the growing
season depending on a positive temperature sum for a
given day. The values of the emergence were calculated
as the averages of nearby values for the dates corre-
sponding to the indicators of temperature sums when
counts were not made.

The specific emergence (mg wet weight - m—iwater
area) for the growing season (a year) was estimated for
each station and for all dominant species as a sum of all
values of the daily emergence for the model period
(83 days). The average specific emergence from the
lake water area for a year was estimated taking account
for the share of different habitats in the total area of the

pond.

The total annual biomass flux from the water area
resulting from the emergence of chironomids was cal-
culated as a product of the value of the specific emer-
gence from the water area and the lake area. The land
area, for which the biomass flux was calculated, was
estimated in the ImageJ 1.46 graphical editor using the
Google Earth satellite imagery (https://wWww.goo-
gle.ru/maps) and OpenStreetMap relief maps
(https://www.openstreetmap.org). It is known that
the average distance of the expansion of chironomid
adults from the places of emergence is 13.3 m for 50%
of individuals in a population; however, there are data
on the maximum distance, which is 17 km (Muehl-
bauer et al., 2014). The shoreline band with a width of
15 m was taken by—us into account as the minimum
land area for which the biomass flux from the lake
water area was calculated. The maximum land area
was determined based on the assumption that the
mountain ridges (the watershed weight > 1600 above
sea level) that border the lake valley are a natural
boundary for the expansion of adults from the places
of emergence. The boundaries of the valley were taken
into account as the watershed line that goes through
the upper relief points around the lake (Fig. 1). The
areas covered by the emergence from the streams and
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Oi River were deduced from the land area. The bio-
mass flux to the land was calculated as the ratio of the
annual biomass flux from the entire water lake area to
the covered land area.

The annual PUFA flux from a water area unit
(mg - miwater area) was calculated as a product of the
average specific emergence from a water area unit and
the average summary content of EPA and DHA,in the
biomass of adults (mg - g wet weight). In order to cal-
culate the PUFA flux per land area unit, the annual
biomass flux to the land was multiplied by the average
PUFA content in the biomass of adults.

Biochemical Analyses of Samples

Moisture of the biomass of larvae and adults was
determined at the laboratory by drying the samples up
to a constant weight at 75°C.

Analysis of fatty acids was described in detail in the
works (Sushchik et al., 2013; Gladyshev et al., 2014).
Lipids were extracted with chloroform and methanol
in a ratio of 2 : 1, and then FAs of total lipids were
methylated in a waterbath at 85°C. Methyl esters were
analyzed by gas chromatography with a mass spectro-
metric detector (Model 6890/5975C, Agilent Tech-
nologies, United States) equipped with a HP-FFAP
capillary column at the ionization energy of the detec-
tor of 70 eV and scanning in the range of 45—
450 atomic units. The peaks of fatty acid methyl esters
were identified based on the mass spectra obtained.
The quantitative content of fatty acids in the biomass
was determined based on the peak value of the internal
standard (nonadecanoic acid (Sigma-Aldrich, United
States)), the fixed amount of which was added to the
samples before the extraction of lipids.

Statistical Analysis

The nonparametric Mann—Whitney U-test was
used to determine the rehiability of differences between
the average values of the FA content in the chironomid
biomass; the differences were considered reliable at p
< 0.05. The calculations were made using the Statis-
tica-9 standard software package (StatSoft, United
States).

RESULTS

The valley of the Oiskoe Lake is azene-with an areca
of 13258880 m? isolated by mountain ridges in the
center of which the lake is located (Fig. 1). The area
occupied by the lake and the territory covered by the
emergence of chironomids from the streams was
deduced from the area of this zone. Thus, the maxi-
mum land area, to which chironomid adults can
expand from the Oiskoe Lake, was 12172860 m?. The
minimum land area used in the estimates of the bio-
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mass and PUFA fluxes brought with the chironomid
emergence was 40671 m?.

The greater part of the lake bottom (92%) was
occupied by silted with an area of 482110 m?
(Fig. 1). The areas with pebbly and sandy grounds
were 27684 and 12327 m?, respectively.

Over the entire period of studies, representatives of
13 genera and 18 chironomid species were found in the
traps. Table 1 presents the emergence intensity for
adults of 11 species, which are quantitatively signifi-
cant in the total emergence. The dominant chirono-
mid species which emerged at the stations with silty
and sandy were Dicrotendipes nervosus (up to
40% of the total biomass) and Paratanytarsus sideroph-
ila (up to 24%). In the pebbly areas, the maximum val-
ues of the emergence were noted for Tanytarsus
pseudolestagei (21%) (Table 1).

The seasonal dynamics of the emergence of chiron-
omid adults on silty and sandy-seds were similar, with
the most pronounced peak at the beginning of the
growing season, 31.9 mg m—2?day~! and 45.3 mg m2
day~! for stations 1 and 2, respectively. (Fig. 3). This
peak was mainly due to the emergence of two domi-
nant species, D. nervosus and P. siderophila. The sec-
ond peak of the emergence corresponded to the inter-
val of the positive temperature sum of 700—800°C and
was observed during July; the main contribution was
made by the species Orthocladius thienemanni and
T. pseudolestagei (Fig. 3). The third peak that occurred
at the end of the growing season was determined by the
emergence of the species P. siderophila and Protanypus
pseudomorio. In the pebbly greunds (station 3), only
one peak of the emergence (40.3 mg m~2 day~!) was
observed in the studied period of 2012—2043, in the
middle of the growing season at the interval of the pos-
itive temperature sum of 600—900°C (Fig. 3).

The minimum observed value of the specific
annual emergence of chironomids corresponded to
the pebbly greund of the shoreline zone (Table 1). The
silty of the littoral and deepwater areas were
characterized by the average value of the annual emer-
gence. The maximum annual emergence of chirono-
mids corresponded to the sandy grewnds and was
2.3 times greater than the biomass flux from the peb-
bly ground (Table 1). The average annual emergence
for the water area, which was calculated taking
account ef-the quantitative contribution of different
ground types to the total lake area, was 415.05 mg wet
weight m~2.

The levels (the percentage of the total FA content)
of quantitatively significant FAs in the lipids of the
biomass of chironomid larvae and adults from the Ois-
koe Lake are presented in Table 2. The dominant acids
in the biomass of larvae were 16:0, 18:2n-6 and 18:1n-
9 and those in the biomass of adults were 20:5n-3,
16:0, and 18:2n-6. The average levels of the acids 12:0,
i15:0, ail5:0, 16:1n-9, 16:1n-6, i17:0, 17:0, and 20:0
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Table 1. Annual emergence (mg wet weight - mzlwater area) ig the dominant ehirenemid species of the Chironomidae fam-
ily from Oiskoe Lake (the Western Sayan, Southern Siberia, 2012—2014) for different-ground types and average value for

the water area (% standard error).

. Average emergence
Species Station (ground,type) for tlige Watergarea
1 (silt) 2 (sand) | 3 (pebble) n=3

Polypedilum scalaenum (Staeger, 1803) 0.00 34.47 2.24 12.23 £ 11.13
Dicrotendipes nervosus (Schrank, 1839) 165.47 218.16 50.04 144.56 £ 49.65
Tanytarsus pseudolestagei (Shilova, 1976) 22.88 23.67 58.18 34.91 + 11.64
Micropsectra praecox (Wiedemann in Meigen, 1818) 38.33 55.13 32.18 41.88 £ 6.86
Paratanytarsus siderophila (Zvereva, 1950) 99.21 113.05 2.65 71.63 £ 34.72
Chironomus nigrifrons Linevitsh et Erbaeva, 1971 3.49 19.15 0.00 7.55+£5.89
Protanypus pseudomorio Makarchenko, 1982 23.94 30.11 0.00 18.02 £ 9.18
Corynoneura celeripes Winnertz, 1852 0.00 17.08 0.00 5.69 £5.69
Cricotopus festivellus (Kieffer, 1906) 3.49 18.25 35.99 19.24 + 9.40
Orthocladius thienemanni Kieffer, 1906 17.53 2.67 44.22 2148 £ 12.16
Acricotopus lucens (Zetterstedt, 1850) 8.11 8.56 12.96 9.88 £ 1.55
Others 35.96 80.29 26.47 47.57 £ 16.59
Total 418.41 620.58 264.93 434.64 + 102.99

were fekiably lower in larvae; in turn, adults were char-
acterized by reliably higher values of polyunsaturated
fatty acids (PUFAs), namely 18:3n-3 and 20:5n-3
(Table 2).The average moisture content in larvae and
adults was 75.8 and 64.5% et weight, respectively.
The total FA content per unit of the wet and dry bie-
mass of chironomid adults was 2—3 times larger than
that in the biomass of larvae. The quantitative content
of essential EPA (per unit of wet or dry weight) was
also significantly higher in adults (Table 2). The quan-
titative and percentage content of DHA in both larvae
and adults was negligible.With the total content of
EPA and DHA in the biomass of chironomid adults
(4.22 mg g wet weight) and the average emergence for
the water area (415.05 mg wet weight m—2 year~') being
taken into account, the PUFA flux per water area unit
was 1.752 mg m~? year .The calculations of the
annual biomass fluxes and the total amount of EPA +
DHA that resulted from the emergence of chironomid
adults per land area unit are shown in Table 3. The
maximum and minimum values of the fluxes were
determined by the possible distance of the expansion
of chironomid adults from the place of emergence
(correspondingly, by the land area taken into account
in the calculations) and differed for the studied region
almost 250 times.

DISCUSSION

The available literature gives data on the quantita-
tive daily or annual emergence of amphibiotic insects
in dry-weight units per water-area unit. With consid-
eration for the average length of the growing season of

CONTEMPORARY PROBLEMS OF ECOLOGY Vol. 9

83 days and moisture of the adults biemass of 64.5%,
the average emergence intensity g the chironomids
from the-Oiskoe Lake was 1.8 = 0.45, 2.9 £ 0.67, and
1.2 £ 0.61 mg dry weight m—2 day ™! for the silty, sandy,
and pebbly greunds, respectively. These values were
close to the daily values of the chironomid emergence,
which were observed at the streams of the Rhine River,
on average, 0.23 mg dry weight - m >day ! (Krell
et al., 2015). However, the daily emergence of chiron-
omids from the water area of the studied mountain
lake was 2.5 and 9 times smaller than that from the
streams of the Appalachian Mountain Range (Davis et
al., 2011) and mountain river in the northeast of Italy,
(Paetzold and Tockner, 2005).

Obviously, the total annual emergence of amphibi-
otic insects is not only dependent on the intensity of
daily emergence, but is also determined by the dura-
tion of the growing season. Therefore, several seasonal
peaks of the emergence of amphibiotic insects may be
observed in the areas with warmer climates (Rundio
and Lindley, 2012). Atthe Oiskoe Lake, there was only
one pronounced seasonal peak of emergence for most
chironomid species (Fig. 3), which could be due to the
relatively short growing season. The annual chirono-
mid emergence from the studied mountain lake,
which averaged 0.15 g dry weight m—2, was compared
with the values obtained for water ecosystems of cold
and temperate climates. The annual emergence from
the-Oiskoe Lake is comparable with the chironomid
emergence from wetlands of Sweden and salty
marshes in the northeastern United States (0.3 and
0.2 g m~? year !, respectively; the calculations were
made taking account of the dry weight of ene individ-
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ual, which is ~ 150 ug) (Stagliano et al., 1998; MacK-
enzie, 2005; Lundstrom et al., 2010), as well as from a
floodplain lake of the Volga River Basin (0.21 g m™?
year ') (Demina et al., 2013). However, the average
value for the mountain lake that we obtained was close
only to the minimum value of the chironomid emer-
gence (0.17—3.7 g m 2 year ') from the-Myvatn eutro-
phic lake, which is located in the geothermal area of
Iceland and features favorable conditions for the
intensive growth and development of benthic chiron-
omids (Dreyer et al., 2015). In addition, the values of
the annual chironomid emergence, which were deter-
mined for many other water systems of temperate and
cold climates, were 1—2 orders of magnitude higher
than the value of the emergence obtained in our work
(Paasivirta et al, 1988-; Leeper and Taylor, 1998; Sta-
gliano et al., 1998; Rolauffs et al., 2001). Thus, the
mountain oligotrophic lake was notable for one of the
lowest values of the annual emergence of amphibiotic
insects compared to other studied ponds and water-
courses.

It is known that the emergence of amphibiotic
insects is about 24% of the annual secondary produc-
tion of benthic larvae (Huryn and Wallace, 2000). The
annual benthos secondary production at the Oiskoe
Lake averaged 3.12 g wet weight m™2 (Zuev et al.,
2012), and the chironomid production accounted for
about 70% of the total benthos production
(S.P. Shulepina, a personal repesrt). Therefore, the
potential annual emergence of chironomids from Ois-
koe Lake can be estimated at 0.52 g wet weight m™2.
This estimate is in good agreement with the value of
the average emergence for the water area, which was
measured using traps (Table 1).

It is known that the flux of the biomass of emerging
insects per land area unit wiH reach, its maximum value
in the territory immediately adjacent to the emergence
site, where no less than,a half of individuals of the chi-
ronomid population stay (Muehlbauer et al., 2014).
However, the literature contains information on the
range of chironomid expansion that reaches 17 km
from the emergence site (Muehlbauer et al., 2014).
Since the distance of watersheds from the water area of
Oiskoe Lake does not surpass 2.5 km, the entire terri-
tory of the valley is potentially reachable for chirono-
mid adults during their expansion, The largest and
least possible values of the fluxes of organic matter and
PUFAs to the land differed by more than two orders of
magnitude (Table 3) and indicated the key role of the
shoreline zone as a source of secondary preduetsfor
terrestrial consumers of the studied mountain land-
scape.

The fatty acid composition of the collected larvae
of chironomids, among which D. nervosus and
T. pseudolestagei were the dominant species (Zuev et
al., 2012), was characterized by the noticeable contri-
bution of acids that are bacterial markers (i15:0, ail5:0,
i17:0, al7:0, and 17:1n-8), the total amount of which

CONTEMPORARY PROBLEMS OF ECOLOGY  Vol. 9
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Fig. 3. Dailg emergence of chironomid adults (mg wet
weight - m™“ day™ ') at the stations of the Oiskoe Lake
depending on the observed positive temperature sum,
2012—2014.

was 5%. Therefore, detritus and particles of suspended
organic matter made up a significant part of the feed-
ing range-nthe chironomids which lived in the lake,
where seilg were mainly represented by silts. The bio-
mass of chironomid larvae from Oiskoe Lake were
noted to have the highest content of linoleic acid
(18:2n-6) compared to other chironomids of freshwa-
ter and brackish habitats (Bell et al., 1994; Descroix
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FLUXES OF BIOMASS AND ESSENTIAL POLYUNSATURATED FATTY ACIDS 453

Table 2. Fatty acid composition (mean =+ standard error, % of the total amount of fatty acids (FAs), sg/g wet or dry weight,
n is the number of samples) in the Chironomidae larvae and adults collected in June—August 2012 at Oiskoe Lake (the
Western Sayan, Southern Siberia). The reliability, of the-distinetion, between mean vales was determined by the Mann—
Whitney U-test. The reliably-vale of p are bolded.

FAs larvae adults
v p

% n=4 n==6
12:0 32108 0.6 £ 0.1 1.0 0.0252
14:0 3.3+£0.7 22+0.8 5.0 0.1658
14:1n-5 0.2+0.1 0.7+0.5 10.0 0.7491
i15:0 1.9+0.2 0.4£0.1 0.0 0.0142
ails:0 1.1 £0.3 0.2+0.1 0.0 0.0142
15:0 09+0.2 0.6 £ 0.1 5.0 0.1658
16:0 18.8 £ 1.4 16.2 0.6 5.0 0.1658
16:1n-9 1.0+ 0.1 0.4£0.1 0.0 0.0142
16:1n-7 8.610.5 122+t 14 4.0 0.1098
16:1n-6 1.3x0.1 0.5+0.1 0.0 0.0142
i17:0 0.4£0.0 0.1+£0.0 0.0 0.0142
ail7:0 0.3x0.1 0.2+0.0 8.0 0.4555
16:2n-4 0.5+0.1 0.7%0.3 10.0 0.7491
17:0 1.8 £ 0.1 1.0+ 0.2 0.0 0.0142
17:1n-8 1.3+0.1 0.7+0.2 3.0 0.0700
18:0 831 1.0 5510.6 3.0 0.0700
18:1n-9 10.2 £ 0.8 9.2+ 1.1 7.0 0.3374
18:1n-7 39+0.3 59t 1.3 10.0 0.7491
18:2n-6 139+ 1.4 124+ 1.6 9.0 0.5940
18:3n-6 0.5x0.1 0.5 +0.0 10.0 0.7491
18:3n-3 29£0.5 5.0%0.7 2.0 0.0428
18:4n-3 0.6+ 0.0 09+04 9.0 0.5940
20:0 1.4+0.2 0.9+0.1 2.0 0.0428
20:1n-9 0.3+0.1 0.2+0.1 8.0 0.4555
20:4n-6 2.810.2 3.4+0.7 4.0 0.1098
20:5n-3 7.8+ 0.1 172 £ 0.8 0.0 0.0142
22:0 0.7£0.1 0.4+0.0 3.0 0.0700
22:6n-3 0.1+0.1 0.1+£0.0 9.0 0.5940

mg - g wet weight n=4 n=4
20:5n-3 0.58 £ 04 4.21 £0.99 0.0 0.0304
22:6n-3 0.01 £6:6 0.01 £ 0.00 4.5 0.3865
Total amount of FAs 740 £ 15 23.10 = 4.39 0.0 0.0304

mg - g dry weight n=4 n=4
20:5n-3 2.41 £0.50 11.87 = 2.80 0.0 0.0304
22:6n-3 0.03+£0.30 0.03 £ 0.01 4.5 0.3865
Total amount of FAs 30.59 £ 6.16 65.07 = 12.37 1.0 0.0606
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Table 3. Fluxes of biomass and the

BORISOVA et al.

of EPA + DHA via the emergence of chironomid adults from Oiskoe Lake

to the land area of the Western Sayan (Southern Siberia, 2012—2014)

Parameters

Maximum expansion area* |Maximum expansion area**

Biomass flux from the entire lake water area, g year™!

EPA + DHA flux from the entire lake water area, g year™!

Land area taken into account in the estimates, m?

Biomass flux, g wet weight m2 land area year™!

EPA + DHA flux, mg m 2 land area year !

216705
914.495
40671.22 12172860.26
5.328 0.018
22.282 0.076

* The estimate was made based on the average distance of expansion of chironomids that is 15 m from the lake shoreline.
** The estimate was made based on the largest possible distance of expansion of chironomids that is determined by the size of the moun-

tain valley.

et al., 2010.; Makhutova et al, 2011; Sauvanet et al.,
2013.; Zinchenko et al., 2014). This PUFA is abso-
lutely essential for most animals, including insects of
the Diptera order (Stanley-Samuelson et al., 1988)
and could be consumed by the larvae of the-Oiskoe
Lake with detritus formed by the decomposition of
higher aquatic vegetation, or by the consumption of
living tissues of higher plants. In the Oiskoe mountain
lake, which features an extended littoral, higher
aquatic plants are major contributors to the gross pri-
mary production (Ivanova et al., 2014). Linoleic acid
is synthesized and accumulated in many species of
higher aquatic plants [Rozentsvet et al., 2002] and is
used as a biomarker of this group of producers in some
research ite, the nutrition of watef consumers (Wang
et al., 2014). Periphyton green algae could be another
possible source of linoleic acid in the diet of chirono-
mid larvae, but their biomass was relatively low (Iva-
nova et al.).

Since the content of DHA in chironomids was very
low (Table 2), a further comparative analysis of the
content of essential PUFAs was performed only for-the
EPA. The content of essential EPA in chironomid lar-
vae of the-Oiskoe Lake was 6—8 times lower than that
in Cricotopus salinophilus and Prodiamesa olivacea
(Makhutova et al., 2011; Zinchenko et al., 2014), but
close to the values in the species of the Chironomus
genus from different habitats (Goedkoop et al., 2000.;
Makhutova et al., 2011; Zinchenko et al., 2014).

The information on the fatty acid composition in
adults of the Chironomidae family is absent in the lit-
erature known to us, and the quantitative data on the
content of EPA and DHA are limited to single mea-
surements (Gladyshev et al., 2009). At the same time,
it is obvious that, during metamorphosis, the chirono-
mids of the-Oiskoe Lake experienced cardinal changes
in the fatty acid composition that consisted of a signif-
icant increase in the levels of PUFAs, 18:3n-3, 20:5n-
3, and 20:4n-6, at the expense of a decrease in the lev-
els of saturated fatty acid levels, as well as acids-mark-
ers of bacteria, which were accompanied by the
increase in the total content of FAs per biomass unit.
It should be noted that, during the metamorphosis of

CONTEMPORARY PROBLEMS OF ECOLOGY  Vol. 9

the taxonomically close group of the Culicidae family,
the relative accumulation of essential EPA and DHA
was not observed in adults, although the fatty acid
composition significantly changed (Gladyshev et al.,

2011b; Sushchik et al., 2013). The total quan&t—&%we
content of EPA + DHA in larvae and adults of several
water-bug species of the Heteroptera order was also
the same (Sushchik et al., 2014). It is possible that chi-
ronomids are a unique group of amphibiotic insects
that are capable of significantly increasing the share of
EPA + DHA in their biomass during metamorphosis.

The total content of EPA + DHA per mass unit at
the adult stage was only measured in a small number of
taxa of aquatic and-amphibietie insects. The average
content of EPA in chironomid adults was almost twice
as high as in adults of blood-sucking mosquitoes and
dragonflies, but was close to that in adults of
(the Heteroptera order) (Gladyshev et al.,
Sushchik et al., 2013.; Sushchik et al., 2014).

According to the estimate made earlier, the average
Biosphere’s EPA + DHA flux from water to land via
the emergence of amphibiotic insects is ~40 mg m—2
water area year™! (Gladyshev et al., 2009). The EPA +
DHA flux per unit water area of the mountain lake via
the emergence of the dominant insect group, which we
measured, was 20 times lower than the average value
for the Biosphere. However, in the cited work, the esti-
mates of the average global flux were made using the
data on the total emergence of all taxa without refer-
ence to specific landscapes, and, since the content of
EPA and DHA in the biomass of adults was not known
at that time, the estimates were made using average
data obtained for adults of different taxa. Since the
quantitative content of EPA and DHA in chironomid
adults was much higher than in larvae, the latter factor
could not be a cause of such a significant distinetionof
the EPA and DHA flux in the specific system from the
average global estimate. It is most likely that the very
small value of the EPA and DHA flux from water to
land, which was obtained in this study, is caused by the
low productivity of the investigated mountain lake as
well as by the short growing season in the studied
mountain landscape.

2011a;

No. 4 2016


Гладышев
Cross-Out

Гладышев
Inserted Text
sum

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Inserted Text
of

Гладышев
Cross-Out

Гладышев
Inserted Text
aquatic

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Inserted Text

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Cross-Out

Гладышев
Inserted Text
corixids

Гладышев
Cross-Out

Гладышев
Inserted Text
larvae

Гладышев
Cross-Out

Гладышев
Inserted Text
difference 


FLUXES OF BIOMASS AND ESSENTIAL POLYUNSATURATED FATTY ACIDS

Currently there are only two researches in the avail-
able literature which directly measured the EPA and
DHA fluxes from water to land via the emergence of
certain taxa of amphibiotic insects in specific land-
scapes, namely, blood-sucking mosquitoes (the Culi-
cidae family) in steppe and dragonflies (the Odonata
order) in forest steppe (Gladyshev et al., 2011a, b). The
annual EPA and DHA flux from the unit water area via
the emergence of blood-sucking mosquitoes was more
than twice as high as the EPA and DHA flux via te the
emergence of chironomids. In turn, the EPA and
DHA flux via the emergence of dragonflies was deter-
mined per unit land area and came to 6.9 mg m—2 year™!
(Gladyshev et al., 2011a). The value was more than
90 times higher than the EPA and DHA flux to land
via the emergence of chironomids from the mountain
lake, which was calculated with consideration for the
entire area of the mountain valley; however, it was
comparable with the EPA and DHA flux obtained for
the shoreline band of the lake (Table 3).

CONCLUSIONS

Thus, the biomass flux via the emergence of chi-
ronomid adults from the unit area of the mountain oli-
gotrophic lake proved to be among the lowest mea-
surements made in specific landscapes for certain taxa
of amphibiotic insects. At the same time, the mea-
sured value of the emergence corresponds to the zoo-
benthos productivity of this lake. The comparison of
the fatty acid composition and content of EPA and
DHA at different stages of development of chirono-
mids, which was performed for the first time, revealed
the unique capability of this amphibiotic group to
accumulate significant amounts of essential EPA and
DHA at the adult stage. However, despite the high
content of EPA and DHA in emerging adults, the EPA
and DHA flux from unit water area was several times
lower than the average global estimates due to the low
productivity of the lake.

The EPA and DHA flux per unit area of the moun-
tain lake, which was calculated taking into consider-
ation the maximum range-of-expansion—in chirono-
mids, was extremely small. It is possible that terrestrial
omnivorous consumers of this landscape experience a
shortage of EPA and DHA in food if they get food at a
distance from the shoreline of the lake. However, in
the shoreline part of the land area, the EPA and DHA
flux per unit land area reached values comparable with
more productive landscapes, which can stimulate ter-
restrial consumers to feeding in the shoreline band to
enlarge the reserves of essential biochemical compo-
nents.
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