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We consider a non-coercive mixed boundary value problem in a bounded domain D
of complex space Cn for a second order parameter-dependent elliptic differential op-
erator A(z, ∂, λ) with complex-valued essentially bounded measured coefficients and
complex parameter λ. The differential operator is assumed to be of divergent form
in D, the boundary operator B(z, ∂) is of Robin type. The boundary of D is as-
sumed to be a Lipschitz surface. Under reasonable assumptions the pair (A,B) in-
duces a family of non-coercive mixed problems and a holomorphic family of Fredholm
operators L(λ) : H+(D) → H−(D) in suitable Hilbert spaces H+(D) ⊂ H1/2(D),

H−1/2(D) ⊂ H−(D) of Sobolev type (here Hs(D) are the Sobolev-Slobodetskii spaces
over D). If there is a Lipschitz function close enough to the (possibly discontinuous)

argument of the complex-valued multiplier of the parameter λ in A(z, ∂, λ) then we
prove that the operators L(λ) are continuously invertible for all λ with sufficiently

large modulus |λ| on each angle on the complex plane C where the operator A(z, ∂, λ)
is parameter-dependent elliptic. We also describe reasonable conditions for the system
of root functions related to the family L(λ) to be (doubly) complete in the spaces
H+(D), H−(D) and the Lebesgue space L2(D).

Keywords: parameter-depended elliptic operator, non-coercive problem, root
functions, holomorphic family.
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1. Introduction

It is well-known that the Shapiro-Lopatinsky conditions with parameter provide
the coercive estimates for mixed boundary value problems for parameter-dependent
elliptic operators, see, for instance, [1] (cf. also some recent generalizations in [2]).
It is important at least for two reasons: first, because the notion of a parameter-
dependent elliptic operator provides a useful link between the theories of boundary
value problems for parabolic and elliptic operators and second, because it provides
a justification for application of Galerkin type methods and numerical solution of
the problem in the case where one succeeds with finding an information on the com-
pleteness of the system of eigenfunctions related to the problem (see, for example,
[3], [4], [5], [6], [7] for the corresponding base fact in functional analysis and [8],
[9], [10], [11] for the realization for problems over smooth domains. It is worth to
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note that the spectral theory in non-smooth domains usually depends upon hard
analysis near singularities on the boundary (see, for instance, [12], [13]).

On the other hand, the classical approach can be also adapted for investigation
of non-coercive mixed problems over domains with Lipschitz boundaries (see [14]
for the spectral problems and [15] for parameter dependent-elliptic operators). An
essential part of the approach is the analysis in spaces of negative smoothness.
We use this method to prove that under reasonable assumptions the non-coercive
operator pencil L(λ) : H+(D) → H−(D) has almost the same properties as a
coercive one. Actually the present results are generalizations of the ones published
in [15]. In contrast to [15] we do not assume the continuity of the argument of
the complex-valued multiplier of the parameter in the parameter-dependent elliptic
operator under the consideration.

2. Mixed problem for parameter-depended elliptic operator

Let D be a bounded domain with a Lipschitz boundary in the complex space Cn ∼=
R2n with the coordinates zj = xj +

√
−1xn+j , j = 1, . . . , n, x ∈ R2n, i.e., the surface

∂D is locally the graph of a Lipschitz function. As far as is known, the Lipschitz
boundary ∂D possesses a tangent hyperplane almost everywhere.

As usual we denote by ∂ the Cauchy-Riemann operator in Cn, i.e., the column of
n formal complex derivatives

∂j =
∂

∂z̄j
=

1

2

( ∂

∂xj
+
√
−1

∂

∂xn+j

)
, 1 ≤ j ≤ n.

The formal adjoint ∂
∗

of Cauchy-Riemann operator is line of n formal complex

derivatives ∂
∗
j =: − ∂

∂zj
, thus ∂

∗
j = −1

2

(
∂
∂xj
−
√
−1 ∂

∂xn+j

)
.

We consider complex-valued functions defined in the domain D ⊂ Cn and its
closure D. Denote by Lq(D) the Lebesgue space, i.e. the set of all measurable
functions u in D, such that the integral of |u|q over D is finite. We also write
Hs(D), s ∈ N, for the corresponding Sobolev space of functions with all the weak
derivatives up to order s belonging to L2(D). For non-negative non-integer s we
denote by Hs(D) the Sobolev-Slobodetskii space (see, for instance, [10]).

Consider a second order parameter-dependent partial differential operator
A(z, ∂, λ) of a divergence form

A(z, ∂, λ)u = −
n∑

i,j=1

∂
∗
i (ai,j(z)∂j)u+

n∑
j=1

aj(z)∂ju+ a0(z)u+ λ2a
(2)
0 (z)u,

the coefficients ai,j(z), aj(z), a0(z), a
(2)
0 (z) being bounded measurable complex-

valued functions in D. Assuming that ai,j(z) are continuous up to the boundary of
D we can consider the first order Robin type boundary differential operator

B(z, ∂)u = b1(z)∂νu+ b0u,

where ∂ν =
∑n

j=1 aj,i(νj(x)−
√
−1νj+n(x)) ∂

∂z̄j
is the complex conormal derivative

and ν(x) = (ν1(x), . . . ν2n(x)) is the unit normal vector to ∂D at the point z (cf.
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with the usual normal derivative ∂
∂ν =

∑2n
j=1 νj(x) ∂

∂xj
). The coefficients b0(z),

b1(z) are assumed to be bounded measurable functions on ∂D. We also allow the
function b1(z) to vanish on an open connected subset S of ∂D with piecewise smooth
boundary ∂S, and we assume that b0(z) 6= 0 for z ∈ S.

Denote by Hs(D,S) the subspace of Hs(D), s > 1/2, consisting of those functions
whose restriction to the boundary vanishes on S. This is a Hilbert space under
the induced norm. It is well-known that smooth functions on D vanishing in a
neighborhood of S are dense in H1(D,S); then the space H1(D, ∂D) is usually
denoted H1

0 (D). Since on S the boundary operator reduces to b0(z) and b0(z) 6= 0
for z ∈ S, the functions of H1(D) satisfying B(z, ∂)u = 0 on ∂D belong to H1(D,S).

We consider the following family of boundary value problems. Given data f in D
and u0 in ∂D, find a distribution u in D, which satisfies{

A(z, ∂, λ)u = f in D,

B(z, ∂)u = u0 on ∂D.
(1)

To study the problem we have to put some restrictions on the operators A(z, ∂, λ)
and B(z, ∂). We suppose that, for each z ∈ Cn, the matrix

(ai,j(z))i=1,...,n
j=1,...,n

is Hermitian and there is a constant m > 0 such that

n∑
i,j=1

ai,j(z)wiwj ≥ m |w|2 , (2)

for all (z, w) ∈ D × (Cn \ {0}).
Split now both a0 and b0 into two parts

a0 = a0,0 + δa0,

b0 = b0,0 + δb0,

where a0,0 is a non-negative bounded function in D and b0,0 is a bounded function
on ∂D satisfying b0,0/b1 ≥ 0. Then, under negligible restrictions, the following
Hermitian form

(u, v)+ =

n∑
i,j=1

(ai,j∂ju, ∂iv)L2(D) + (a0,0u, v)L2(D) + (b0,0b
−1
1 u, v)L2(∂D\S) (3)

defines a scalar product on H1(D,S) (see [14]). Denote by H+(D) the completion
of H1(D,S) with respect to the norm ‖ · ‖+ induced by the scalar product (·, ·)+.
Estimate (2) implies that

‖u‖+ ≥
√
m ‖∂u‖L2(D) (4)

3
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for all u ∈ H1(D,S); however it does not provide the coercive estimate

‖u‖+ ≥ c ‖∇u‖L2(D)

for all u ∈ H1(D,S) with a constant c independent on u.
However the following embedding theorem holds for the space H+(D).

Theorem 2.1 Let there be a constant c1 > 0, such that

b0,0
b1
≥ c1 on ∂D \ S. (5)

with any ε > 0. If, in addition, ∂D ∈ C2 then the space H+(D) is continuously
embedded into H1/2(D).

Proof. According to [14, Theorem 2.5], for the space H̃+(D), defined as the com-
pletion of H1(D,S) with respect to the norm ‖·‖+̃ coherent with the scalar product

(·, ·)+̃ = (∂u, ∂v)L2(D) + (a0,0u, v)L2(D) + (b0,0b
−1
1 u, v)L2(∂D\S),

the statement of the theorem holds true. Using (4) we see that the norm ‖ · ‖+ is
not weaker than ‖ · ‖+̃, and the statements follows. �

We note, that the space H+(D) can not be continuously embedded into H1(D)
in our case. Indeed, as ai,j ∈ L∞(D) we see that there is a positive constant c such
that

n∑
i,j=1

(ai,j∂ju, ∂iu)L2(D) ≤ c ‖∂u‖2L2(D)

for all u ∈ H1(D,S). This means that the norms ‖ ·‖+ and ‖ ·‖+̃ are equivalent. Ac-

cording to [14, Remark 5.1] H̃+(D) can not be continuously embedded into H1(D).
Thus Hermitian form (3) is non-coercive.

Let now H−(D) be the dual space for the space H+(D) with respect to the
pairing < ·, · > induced by the scalar product (·, ·)L2(D), see [10] and elsewhere.

More precisely, let H−(D) be the completion of H+(D) with respect to the negative
norm

‖u‖− = sup
v∈H+(D)
v 6=0

|(v, u)L2(D)|
‖v‖+

.

Then an integration by parts leads to a weak formulation of problem (1): given
f ∈ H−(D), find u ∈ H+(D), such that

(u, v)++
(( n∑

j=1

aj
∂

∂z̄j
+δa0+λ2a

(2)
0

)
u, v
)
L2(D)

+
(
b−1
1 δb0u, v

)
L2(∂D\S)

=< f, v > (6)

for all v ∈ H+(D). Note, that (6) induces a holomorphic (with respect to the λ)
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family L(λ) : H+(D)→ H−(D), λ ∈ C, of bounded linear operators, if∣∣∣(b−1
1 δb0u, v

)
L2(∂D\S)

∣∣∣ ≤ c ‖u‖+‖v‖+ (7)

with a positive constant c > 0 for all u, v ∈ H+(D).
The bounded linear operator L0 : H+(D)→ H−(D) defined in the same way via

the sesquilinear form (·, ·)+,

(u, v)+ = 〈L0u, v〉 (8)

for all u, v ∈ H+(D), corresponds to the case λ = 0, aj ≡ 0 for all j = 1, . . . , n,
a0 = a0,0 and b0 = b0,0. Clearly (see for instance [14, Lemma 2.6]), the operator
L0 : H+(D)→ H−(D) is continuously invertible and ‖L0‖ = ‖L−1

0 ‖ = 1.
Consider the sesquilinear form on H−(D) given by

(u, v)− :=
〈
L−1

0 u, v
〉

(9)

for all u, v ∈ H−(D). This form defines the scalar product on H−(D), which is
coherent with the norm ‖ · ‖− (see, for instance [14]).

Lemma 2.2 Let the hypothesis of Theorem 2.1 be fulfilled and (7) hold true with
some constant c < 1. Then {L(λ)}λ∈C is a holomorphic family of Fredholm operators
of zero index.

Proof. Under conditions of the lemma, Rellich Theorem and Theorem 2.1 imply
that H+(D) is compactly embedded into L2(D). Therefore (see for instance [14,
Lemma 2.2]), L2(D) is compactly embedded into H−(D).

It follows that operator δL(λ) = (δcL + λ2C) : H+(D) → H−(D), induced

by the summand
(
δa0 +

∑n
j=1aj

∂
∂z̄j

+ λ2a
(2)
0

)
, is compact. Indeed, the operator(

δa0 +
∑n

j=1aj
∂
∂z̄j

+ λ2a
(2)
0

)
continuously maps the space H+(D) into L2(D), be-

cause a0, aj , a
(2)
0 ∈ L∞(D) for all j = 1, . . . , n, and λ is a constant. Since L2(D) is

compactly embedded into H−(D), the operator δL(λ) is compact.
Further, denote by δbL : H+(D) → H−(D) the operator, induced by the term

b−1
1 δb0. Under the hypothesis of the Lemma it follows, that ‖δbL‖ < 1. Since

operator L0 is continuously invertible and ‖L0‖ = 1, the operator L0 + δbL
is continuously invertible. So we conclude that for each λ ∈ C the operator
L(λ) = L0 + δbL+ δcL+ λ2C is Fredholm. Thus we obtain the holomorphic family
{L(λ)}λ∈C of Fredholm operators of zero index. �

Consider now the operator A(z, ∂, λ). We suppose that A(z, ∂, λ) is a parameter-
depended elliptic operator in an angle K = {α ≤ ϕλ ≤ β} on a complex plane C,
i.e.

n∑
i,j=1

ai,j(z)ξiξj + λ2a
(2)
0 (z) 6= 0 (10)

for all (z, ξ, λ) ∈ D × [(Rn ×K) \ {(0, 0)}], where ϕλ = arg(λ) and α, β some con-
stant, 0 ≤ α ≤ β < 2π. It is clear that K is a ray if α = β.

5
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Lemma 2.3 Let the matrix (ai,j(z))i=1,··· ,n
j=1,··· ,n

be Hermitian and (2) be fulfilled. Then

A(z, ∂, λ) is a parameter-depended elliptic operator in the angle K if and only if

|a(2)
0 (z)| > 0 for all z ∈ D; (11)

cos(ϕ0(z) + 2ϕλ) > −1 for all z ∈ D and α ≤ ϕλ ≤ β; (12)

where ϕ0(z) = arg(a
(2)
0 (z)).

Proof. Let (10) holds true, if we take ξ = 0 then a
(2)
0 (z) 6= 0 for all z ∈ D, in

particular (11) is fulfilled. If λ 6= 0, as a
(2)
0 (z) 6= 0 for all z ∈ D and (2) is fulfilled,

then

|λ|2|a(2)
0 (z)|

(
cos(ϕ0(z) + 2ϕλ) +

√
−1 sin(ϕ0(z) + 2ϕλ)

)
+

n∑
i,j=1

ai,j(z)ξiξj = 0 (13)

if and only if the following two conditions hold:{
sin(ϕ0(z) + 2ϕλ) = 0,

cos(ϕ0(z) + 2ϕλ) ≤ 0,
(14)

which are fulfilled if and only if cos(ϕ0(z)+2ϕλ) = −1 for all z ∈ D and α ≤ ϕλ ≤ β.
Therefore ( 10) implies (12), too.

On the other hand, let (10) be not true for a triple (z0, ξ0, λ0) ∈ D ×
[(Cn ×K) \ {(0, 0)}]. Then λ0 6= 0 because of (2). If ξ0 = 0 then (13) implies

|a(2)
0 (z0)| = 0. Finally, if ξ0 6= 0, it follows from (2), (13) and (14) that

|a(2)
0 (z)| > 0 and cos(ϕ0(z) + 2ϕλ) = −1, (15)

i.e. or (11) does not hold or (12) is not fulfilled at the point z0 ∈ D. �

If |a(2)
0 (z)| ∈ C(D) then in our case (11) is equivalent to the following

|a(2)
0 (z)| ≥ θ0 > 0 for all z ∈ D; (16)

similarly, if ϕ0(z) ∈ C(D) then in our case (12) is equivalent to the following

cos(ϕ0(z) + 2ϕλ) ≥ θ1 > −1 for all z ∈ D, ϕλ ∈ K (17)

where the constants θ0, θ1 do not depend on z. It is easy to see that operator C is
invertible, if

a
(2)
0 (z) 6= 0 for almost all z ∈ D. (18)

Lemma 2.4 Under the hypothesis of Lemma 2.2, if there is λ0 ∈ C such that L(λ0)
is continuously invertible, then the holomorphic family of bounded linear operators

6
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L(λ) : H+(D)→ H−(D) are continuously invertible for all λ ∈ C except a countable
sequence {λν} of isolated points on the complex plane.

Proof. Under the hypothesis of Lemma 2.2, the holomorphic (polynomial) family

{L(λ) = L(0) + λ2C}

consists of Fredholm operators of zero index. Clearly

L(λ) = L(λ0) + (λ2 − λ2
0)C.

As L(λ0) is continuously invertible we conclude that the operator L(λ0) is contin-
uously invertible if and only if the operator

T (λ) = I + (λ2 − λ2
0)L−1(λ0)C

has this property. Since the operator C is compact and the operator-valued function

h(λ) = (λ2 − λ2
0)L−1(λ0)C

is holomorphic in C, vanishing at the point λ0, it follows from ([4, Ch. I, Theorem
5.1]), that T (λ) is continuously invertible for all λ ∈ C except a countable sequence
{λν} of isolated singular points on the complex plane. �

The next theorem is an analogue of [15, Theorem 3] with discontinuous argument

of function a
(2)
0 (z).

Theorem 2.5 Let the hypothesis of Lemma 2.4 be fulfilled and (17), (18) hold true.
If either θ1 ≥ 0 and ‖δbL‖ < 1 or θ1 < 0 and there exist a function ϕ0,0(z) ∈ C0,1(D)
such that

‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D) < 1− |θ1| (19)

and ‖δbL‖ <
√

1− (|θ1|/(1− ‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D)))2 then

1) there is λ0 ∈ K such that the operators L(λ) : H+(D) → H−(D) are contin-
uously invertible for all λ ∈ K with |λ| ≥ |λ0|;

2) the operators L(λ) are continuously invertible for all λ ∈ C except a discrete
countable set {λν} without limit points in C.

Proof. Let d = 1− ‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D) and

η =

{
1, θ1 ∈ [0, 1],√

1− (|θ1|/d)2 θ1 ∈ (−1, 0).

Under the hypothesis of the theorem we have |θ1|/d ∈ (0, 1) if θ1 ∈ (−1, 0). Then
following lemma holds true.

7
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Lemma 2.6 Under the hypothesis of Theorem 2.5, there is k0 ∈ N such that for all
λ ∈ K with |λ| ≥ k0 we have

‖(L0 + δbL+ λ2C)u‖− ≥ (η − ‖δbL‖)‖u‖+

for all u ∈ H+(D) and λ ∈ K, and there are positive constants p1 = p1(K), q1 =
q1(K) such that

‖(L0 + δbL+ λ2C)u‖− ≥ p1‖u‖+ + q1|λ|2‖Cu‖− (20)

for all u ∈ H+(D) and λ ∈ K.

Proof. Given any u ∈ H+(D), an easy computation with the use of formulas (8)
and (9) shows that

λ2〈Cu, u〉 = |λ|2
∫
D
|a(2)

0 (z)||u(z)|2e
√
−1(ϕ0(z)+2ϕλ) dx, (21)

‖(L0 + λ2C)u‖2− = 〈u+ λ2L−1
0 Cu, (L0 + λ2C)u〉2 = (22)

〈u, L0u〉+ 〈λ2L−1
0 Cu, λ2Cu〉+ λ

2〈u,Cu〉+ λ2〈L−1
0 Cu,L0u〉 =

‖u‖2+ + |λ|4‖Cu‖2− + λ
2〈u,Cu〉+ λ2(L−1

0 Cu, u)+ =

‖u‖2+ + |λ|4‖Cu‖2− + λ
2〈u,Cu〉+ λ2〈Cu, u〉 =

‖u‖2+ + |λ|4‖Cu‖2− + 2<
(
λ2〈Cu, u〉

)
.

For all λ ∈ K we have

<
(
λ2〈Cu, u〉

)
= |λ|2

∫
D
|a(2)

0 (z)||u(z)|2 cos (ϕ0(z) + 2ϕλ) dx. (23)

If θ1 ∈ [0, 1] then η = 1 and for all u ∈ H+(D) we have:

‖(L0 + λ2C)u‖2− ≥ ‖u‖2+ + |λ|4‖Cu‖2−

‖(L0 + δbL+ λ2C)u‖− ≥ ‖(L0 + λ2C)u‖− − ‖δbLu‖− ≥

√
‖u‖2+ + |λ|4‖Cu‖2− − ‖δbLu‖−.

8
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Clearly, for α ∈ [0, π/2] and non-negative numbers a, b we have

√
a+ b ≥

√
a cos (α) +

√
b sin (α). (24)

As ‖δbL‖ < η = 1, there is α0 ∈ (0, π/2) such that

‖δbL‖ < cos (α0)

In particular, this means that for all u ∈ H+(D) and all λ ∈ K we have

‖(L0 + δbL+ λ2C)u‖− ≥ ‖u‖+ − ‖δbLu‖− ≥ (1− ‖δbL‖)‖u‖+,

‖(L0 + δbL+ λ2C)u‖− ≥ cos (α0)‖u‖+ + sin (α0)|λ|2‖Cu‖− − ‖δbLu‖− ≥

(cos (α0)− ‖δbL‖)‖u‖+ + sin (α0)|λ|2‖Cu‖−,

i.e. the desired inequalities are true if θ1 ∈ [0, 1].
If θ1 ∈ (−1, 0) then, by (23) and (17),

<
(
λ2〈Cu, u〉

)
≥ −|θ1||λ|2

∫
D
|a(2)

0 (z)||u(z)|2 dx. (25)

Let us prove that for any θ ∈ (|θ1|/d, 1] and γ ∈ [0, 1] with θ
√

1− γ > |θ1|/d there
is k0 ∈ N such that

‖(L0 + λ2C)u‖2 ≥
(
1− θ2

)
‖u‖2+ + γ|λ|4‖Cu‖2− (26)

for all u ∈ H+(D) and all λ ∈ K with |λ| ≥ k0.
Indeed, we argue by contradiction. Let there are θ ∈ (|θ1|/d, 1] and γ ∈ [0, 1) with

θ
√

1− γ > |θ1|/d such that for each k ∈ N there are uk ∈ H+(D) with ‖uk‖+ = 1,
and a number λk ∈ K with |λk| ≥ k such that

‖(L0 + λ2
kC)uk‖2 < 1− θ2 + γ|λk|4‖Cuk‖2−.

It follows from (22) and (23) that

θ2 + |λk|4‖Cuk‖2−(1− γ) + 2|λk|2
∫
D

cos (ϕ0 + 2ϕλk)|a
(2)
0 (z)||uk(z)|2 dx < 0,

i.e. (
θ −

√
(1− γ)|λk|2‖Cuk‖−

)2
+ (27)

2

(
θ
√

(1− γ) +

∫
D cos (ϕ0 + 2ϕλk)|a

(2)
0 (z)||uk(z)|2 dx

‖Cuk‖−

)
|λk|2‖Cuk‖− < 0,

9
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for all k ∈ N.
On the other hand, for all u ∈ H+(D) with ‖u‖+ = 1 we have

‖Cu‖− = ‖e2
√
−1ϕλkCu‖− ≥

∣∣∣(e√−1(ϕ0+2ϕλk )|a(2)
0 |u, u)L2(D)

∣∣∣ .
In particular, we have∣∣∣∣∣

∫
D cos (ϕ0 + ϕλk)|a

(2)
0 (z)||uk(z)|2 dx

‖Cuk‖−

∣∣∣∣∣ ≤ 1 for all k ∈ N.

Now, if the sequence {|λk|2‖Cuk‖−} is unbounded then extracting a subsequence
{|λkj |2‖Cukj‖−} tending to +∞, dividing (27) by |λkj |4‖Cukj‖2− and passing to the
limit with respect to kj → +∞ we obtain 1 ≤ 0, a contradiction.

Let the sequence {|λk|2‖Cuk‖−} be bounded. As L0 is bounded it maps the
bounded sequence {uk} to the bounded sequence {L0uk}. Now the weak compact-
ness principle for Hilbert spaces yields that there is a subsequence {ukj} weakly
convergent to an element u0 in the space H+(D). Then {Cukj} converges to Cu0

in H−(D) because C : H+(D) → H−(D) is compact and {ukj} converges to u0

in L2(D) because the embedding ι : H+(D) → L2(D) is compact, too. Since the
sequence {λ2

kj
Cukj} is bounded in H−(D) and |λk| → +∞ we conclude that {Cukj}

converges to zero in H−(D). This means that Cu0 = 0 and then u0 = 0 because
the operator C is injective.

According to compactness principle, we may consider the subsequences

{
|λkj |2‖Cukj‖−

}
and

−
∫
D cos (ϕ0 + 2ϕλkj )|a

(2)
0 (z)||ukj (z)|2 dx

‖Cukj‖−


as convergent to the limits α ≥ 0 and β ∈ [−1, 1] respectively. Now it follows from
(27) that

(θ − α)2 + 2α (θ − β) ≤ 0. (28)

If α = 0 then we have a contradiction because θ > 0. If α > 0 and β ≤ 0 then
θ − β > 0 and we again have a contradiction.

Let α > 0 and β > 0. Since ue
√
−1ϕ0,0 ∈ H+(D) we see that

‖Cu‖− ≥

∣∣∣(e√−1(ϕ0−ϕ0,0)|a(2)
0 |u, u)L2(D)

∣∣∣
‖ue
√
−1ϕ0,0‖+

=

∣∣∣((1− (1− e
√
−1(ϕ0−ϕ0,0)))|a(2)

0 |u, u)L2(D)

∣∣∣
‖ue
√
−1ϕ0,0‖+

≥

(1− ‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D))(|a

(2)
0 |u, u)L2(D)

‖ue
√
−1ϕ0,0‖+

.

10
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Hence if ‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D) < 1 then

lim sup
kj→∞

(|a(2)
0 |ukj , ukj )L2(D)

‖Cukj‖−
≤

lim supkj→∞ ‖ukje
√
−1ϕ0,0‖+

1− ‖1− e
√
−1(ϕ0−ϕ0,0)‖L∞(D)

.

On the other hand, as |e
√
−1ϕ0,0(x)| = 1 we conclude that

‖ue
√
−1ϕ0,0‖2+ = ‖u‖2+ +

n∑
j,k=1

(
(∂je

√
−1ϕ0,0)u, (∂ke

√
−1ϕ0,0)u

)
L2(D)

+ (29)

2<

 n∑
j,k=1

(
(∂je

√
−1ϕ0,0)u, e

√
−1ϕ0,0∂ku

)
L2(D)


for all u ∈ H+(D).

Then, as ukj → 0 in L2(D) and ‖ukj‖+ = 1, it follows from (29) that

lim sup
kj→∞

‖ukje
√
−1ϕ0,0‖+ = 1 for all j ∈ N.

Therefore, if β > 0 then, by (25),

β = lim
kj→∞

−
∫
D cos (ϕ0 + 2ϕλkj )|a

(2)
0 (z)||ukj (z)|2 dx

‖Cukj‖−
≤

lim sup
kj→∞

|θ1|
∫
D |a

(2)
0 (z)||ukj (z)|2 dx
‖Cukj‖−

≤ |θ1|
d
.

This means that θ − β > 0 if θ > |θ1|/d and we again have a contradiction with
(28). Thus, (26) is fulfilled.

Finally, as ‖δbL‖2 < 1− (|θ1|/d)2 we see that there are γ0 ∈ [0, 1− (|θ1|/d)2) and
α1 ∈ (0, π/2) such that

‖δbL‖ < cos (α1)
(

1− |θ1|2

(1− γ0)d2

)1/2
.

Therefore, using (24), (26) we see that

‖(L0 + δbL+ λ2C)u‖− ≥

√(
1− |θ1|2

(1− γ0)d2

)
‖u‖2+ + γ0|λ|4‖Cu‖2− − ‖δbLu‖− ≥

cos (α1)
(

1− |θ1|2

(1− γ0)d2

)1/2
‖u‖+ + sin (α1)

√
γ0|λ|2‖Cu‖− − ‖δbLu‖− ≥

11
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(
cos (α1)

(
1− |θ1|2

(1− γ0)d2

)1/2
− ‖δbL‖

)
‖u‖+ + sin (α1)

√
γ0|λ|2‖Cu‖−.

for all u ∈ H+(D) and all λ ∈ K. �

Further, using by Lemma 2.6 and arguments, analogous [14, Theorem 3.8, p.3322]
or [15, Theorem 3, p.7] we obtain the statement of the theorem.

�

Note that inequality (19) actually means that the function a
(2)
0 (z) can have the

discontinuous argument ϕ0(z).

3. Spectral properties of the problem

Suppose λ0 ∈ C and F (λ) is a holomorphic function in a punctured neighbourhood
of λ0 which takes on its values in the space L(H1, H2) of bounded linear operators,
acting from H1 in H2. The point λ0 is called a characteristic point of F (λ) if there
exists a holomorphic function u(λ) in a neighborhood of λ0 with values in H1,
such that u(λ0) 6= 0 but F (λ)u(λ) extends to a holomorphic function near λ0 and
vanishes at this point. We call u(λ) a root function of F (λ) at λ0.

Denote by T (λ) the unbounded linear operator H+(D) → H−(D) with domain
DT (λ) = H+(D) which maps an element u ∈ DT (λ) to L(λ)u. For each λ the operator
T (λ) is clearly closed under assumptions of Lemma 2.2, because of inequality

‖u‖+ ≤ (‖L(λ)u‖− + ‖u‖−).

It is densely defined as H1(D,S) ⊂ H+(D) is dense in H−(D). As well known the
null space of T (λ) is finite dimensional in H+(D) and its range is closed in H−(D).

In order to define root elements of the family T (λ), we assume that there is at
least one point γ0 where L(γ0) is continuously invertible. Then, according to our
assumption,

T (λ) = T (γ0)(I + (λ2 − γ2
0)L−1(γ0)C) on DT (λ) = H+(D). (30)

As the operator L−1(γ0) is continuously invertible, the family

{F0(λ) = (I + (λ2 − γ2
0)L−1(γ0)C)}

consists of Fredholm bounded operators in the space H+(D).
Since the operator T (γ0) is injective, it is natural to call the characteristic values

and the root vectors of the family {F0(λ) : H+(D)→ H+(D)} of bounded operators
by the characteristic values and the root vectors of the family of the closed operators
{T (λ) : H−(D)→ H−(D)}, respectively (see [15]).

Clearly, if λ 6= γ0 then F0(λ)u(λ) = 0 if and only if(
L−1(γ0)C − I

γ2
0 − λ2

)
u(λ) = 0.

Therefore the set of the root vectors of the family {F0(λ)} coincides with the set
of the root vectors of the compact operator L−1(γ0)C.

12
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To formulate the completeness results regarding to parameter-dependent elliptic
operators, we note that, under (18), the Hermitian form

h0(u, v) = (|a(2)
0 |u, v)L2(D)

defines a scalar product on L2(D) such that the corresponding norm is equivalent
to the original norm of this space.

Theorem 3.1 Let (5) hold and δb0 = 0, δa0 = 0 and ak = 0 for all 1 ≤ k ≤ n. If
(18) is fulfilled and ϕ0(z) = ϕ0,0 for all z ∈ D with a constant ϕ0,0 ∈ [0, 2π) then

1) the operators T (λ) are continuously invertible for all λ ∈ C except a countable
number of the characteristic values {λν} where each λν belongs to one of the rays
{arg(λ) = (ϕ0,0 ± π)/2} and limν→∞ |λν | = +∞;

3) the root vectors {bν} of the family {T (λ)} are complete in the spaces H+(D),
L2(D) and H−(D);

4) the system {bν} is orthogonal bases in H+(D) and in the space L2(D) with

the scalar product h0(·, ·); moreover the system {
√
|a(2)

0 |bν} is orthogonal basis in

L2(D) and the system {|a(2)
0 |bν} is an orthogonal basis in H−(D).

Proof. Denote by C̃ : H+(D) → H−(D) the operator that is induced by the term

|a(2)
0 (x)|. The proof of the theorem is based on the following expectable lemma.

Lemma 3.2 Let the hypothesis of Lemma 2.2 and (18) hold true. Then the operator
L−1

0 C̃ : H+(D)→ H+(D) is compact, self-adjoint and its order is finite:

ord (L−1
0 C̃) = n.

Proof. Under the hypothesis of Lemma 2.2 the space H+(D) is continuously em-
bedded to H1/2−ε(D) with any ε > 0. Then, according to Rellich Theorem, the
embedding ι : H+(D) → L2(D) is compact. Denote by ι′ : L2(D) → H−(D) the
adjoint to ι with respect to the pairing < ·, · >.

Note that the function |a(2)
0 | ∈ L∞(D) induces a bounded self-adjoint operator

C0 : L2(D)→ L2(D). Then

L−1
0 C̃ = L−1

0 ι′C0ι

and hence the operator L−1
0 C̃ is compact. Moreover,

(L−1
0 C̃u, v)+ =< ι′C0ιu, v >= (C0ιu, ιv)L2(D) =

∫
D
|a(2)

0 (z)|u(z)v(z) dx, (31)

(u, L−1
0 C̃v)+ = (L−1

0 C0v, u)+ = (C0ιv, ιu)L2(D) =

∫
D
|a(2)

0 (z)|u(z)v(z) dx,

for all u, v ∈ H+(D), i.e. the operator L−1
0 C̃ is self-adjoint.

As the operator ι is injective, we see that

(L−1
0 ι′C0ι− µI)u = 0

13
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if and only if

(ιL−1
0 ι′C0 − µI)ιu = 0.

Therefore

(L−1
0 ι′C0ι− µI)mu = 0

with some m ∈ N if and only if

(ιL−1
0 ι′C0 − µI)mιu = 0.

Thus, the set of eigen-values of the operator L−1
0 C̃ coincides with the set of eigen-

values of the operator ιL−1
0 ι′C0. Besides the multiplicities of the eigen-values coin-

cide, too.
According to [14, Corollary 3.5], the operator ιL−1

0 ι′ : L2(D)→ L2(D) is compact
self-adjoint and its order is finite:

ord (ιL−1
0 ι′) = n.

As C0 : L2(D) → L2(D) is bounded, the operators ιL−1
0 ι′ and ιL−1

0 ι′C0 have the
same orders (see [4, Ch. 2, § 2], [3] or elsewhere). By the discussion above, the orders
of the operators ιL−1

0 ι′C0 and L−1
0 C̃ coincide. �

Let us continue the proof of the theorem. As δb0 = 0, δa0 = 0, ak = 0 for all
1 ≤ k ≤ n and the operator L0 is continuously invertible, we may take γ0 = 0. Then
(30) yields

T (λ) = λ2e
√
−1ϕ0,0L0(L−1

0 C̃ − λ−2e
√
−1(π−ϕ0,0)I) on DT (λ) = H+(D).

According to Lemma 3.2, operator L−1
0 C̃ is compact self-adjoint and

ord (L−1
0 C̃) = n.

By the Hilbert-Schmidt Theorem, there is an orthonormal basis {bν} in H+(D),
consisting of the eigen-vectors of the operator L−1

0 C̃. Moreover, using (31) we see
that

h0(bν , bk) = (

√
|a(2)

0 |bν ,
√
|a(2)

0 |bk)L2(D) = (L−1
0 C̃bν , bk)+ = µνδν,k

where δν,k is the Kronecker symbol. Hence, as µν > 0, we see that {bν} is orthogonal

with respect to h0(·, ·) and {
√
|a(2)

0 |bν} is orthogonal in L2(D). It is complete in

L2(D) because H+(D) is dense in L2(D). Moreover, by the construction, the space
H+(D) is dense in H−(D) and hence the system {bν} is complete H−(D). Finally,

(|a(2)
0 |bν , |a

(2)
0 |bk)− = (L−1

0 C̃bν , L
−1
0 C̃bk)+ = µνµkδν,k,

14
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i.e. {|a(2)
0 |bν} is orthogonal in H−(D). It is complete because

L−1
0 u =

∑
ν

(L−1
0 u, bν)+bν

for each u ∈ H−(D) by the discussion above and then

u =
∑
ν

(L−1
0 u, bν)+L0bν =

∑
ν

(L−1
0 u, bν)+

µν
C̃bν ,

hence the system {|a(2)
0 |bν} is an orthogonal basis in H−(D).

As µν = λ−2
ν e
√
−1(π−ϕ0,0) > 0, we conclude that the characteristic values λν =

±µ−1/2
ν e

√
−1(ϕ0,0−π)/2 of the family T (λ) lie on one of the rays {arg(λ) = (ϕ0,0 ±

π)/2}, respectively, and limν→∞ |λν | = +∞.
�

Now we can use the Keldysh’ Theorem about perturbation of compact self-adjoint
operators (see [5]).

Corollary 3.3 Let the hypothesis of Lemma 2.2 hold true and δb0 = 0. If (18)
is fulfilled and ϕ0(z) = ϕ0,0 for all z ∈ D with a constant ϕ0,0 ∈ [0, 2π) then

1) the operators T (λ) are continuously invertible for all λ ∈ C except a countable
number of the characteristic values {λν};

2) limν→∞ |λν | = +∞ and for any ε > 0 all the characteristic values λν (except
for a finite number) belong to the corners

{| arg(λ)− (ϕ0,0 ± π)/2| < ε};

3) the system of its root vectors is complete in the spaces H+(D), H−(D) and
L2(D).

Proof. First all we note that under the hypothesis of the theorem there is γ0 such
that L(γ0) is continuously invertible. Indeed, we can take γ0 such that {arg(γ0) =
−ϕ0,0/2}, then in this case θ1 = 1 and Theorem 2.5 implies that for sufficient large
|γ0| the operator L(γ0) is continuously invertible. In particular, the operators L(λ)
and T (λ) are continuously invertible for all λ ∈ C except a countable number of the
characteristic values {λν};

On the other hand, as ϕ0(z) = ϕ0,0 for all z ∈ D with a constant ϕ0,0 ∈ [0, 2π)
then (30) yields

T (λ) = (γ2
0 − λ2)e

√
−1ϕ0,0L(γ0)(L−1(γ0)C̃ − (γ2

0 − λ2)−1e−
√
−1ϕ0,0I) on H+(D).

where, as before, the operator C̃ : H+(D)→ H−(D) is induced by the term |a(2)
0 (x)|.

Thus, according to (30), the proof of the statements 2) and 3) of the theorem can
be reduced to the investigation of the properties of the compact operator L−1(γ0)C̃.

Under the hypothesis of the theorem the operator δL0 = (L(γ0)−L0) is compact
and then the operator L−1

0 δL0L
−1(γ0) is compact, too.

On the other hand, easily we obtain

L−1(γ0)− L−1
0 = −L−1(γ0)δL0L

−1
0

15
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Hence the operator

L−1(γ0)C̃ = L−1
0 C̃ − L−1(γ0)δL0L

−1
0 C̃

can be considered as a weak perturbation of the self-adjoint operator L−1
0 C̃.

According to Lemma 3.2 the order of the operator L−1
0 C̃ is finite. As the operator

L−1
0 C̃ is injective, the statement of the theorem follows from Keldysh’ Theorem (see

[5]). �

Using by Theorem about completeness of root functions for operators of highest
orders (see [4, Theorem 6.1, Chapter V, Section 6], or elsewhere), we can to perturb
operator L−1

0 C̃ by ”small” perturbation. More precisely, we allow to argument ϕ0(z)

of function a
(2)
0 (z) to take its values from some bounded closed angle. Namely, the

following theorem holds true.

Theorem 3.4 Under the hypothesis of Theorem 2.5, let

Φ = sup
z,w∈D

(ϕ0(z)− ϕ0(w)) <
π

n
, (32)

then
1) the root vectors {bν} of the family {T (λ)} are complete in the spaces H+(D),

L2(D) and H−(D);
2) all characteristic values {λν} (except for a finite number) belong to the corners{∣∣∣∣arg(λ)± π

2
+

Φ1 + Φ2

4

∣∣∣∣ < π

4n
+ ε

}
for any ε > 0, where Φ1 = inf

z∈D
ϕ0(z), Φ2 = sup

z∈D
ϕ0(z), and moreover lim

ν→∞
|λν | =

+∞.

Proof. According to conditions of the theorem, there exist a constant 0 < τ < π
2

such that

Φ = Φ2 − Φ1 =
π

n
− 2τ.

Then the operator L(λ) is continuously invertible for sufficiently large |λ| in a sector

−(π + Φ1 − aτ)

2
≤ ϕλ ≤

π − Φ2 − aτ
2

, (33)

with arbitrary constant 0 < a < 1. Indeed, due to (32) the interval (33) is not empty
and in this case we have

ϕ0 + 2ϕλ ≤ Φ2 + 2ϕλ ≤ Φ2 + π − Φ2 − aτ < π,

ϕ0 + 2ϕλ ≥ Φ1 + 2ϕλ ≥ Φ1 − π − Φ1 + aτ > −π.

Then under (18), according to Theorem 2.5, there exist a point γ0 on any ray
−(π + Φ1 − aτ)/2 ≤ arg(γ0) ≤ (π − Φ2 − aτ)/2 such that the operator L(γ0) is
continuously invertible.

16
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As under (18) the operator C : H+(D)→ H−(D) is injective, then we have(
I − (γ2

0 − λ2)L−1(γ0)C
)
u = 0

if and only if (
L(γ0)C−1 − (γ2

0 − λ2)
)
Cu = 0.

Therefore u is a root function of the bounded operator L−1(γ0)C if and only if Cu
is a root function of the closed operator L(γ0)C−1. It means that the investigation
of spectral properties of the family of the operators T (λ) can be reduced to the
investigation of the properties one of the operators L−1(γ0)C and L(γ0)C−1.

Note that the multiplication on the function e
√
−1ϕ0(z) induces a bounded operator

δC : L2(D)→ L2(D). By similar arguments as in Lemma 3.2 we see that the order
of the operator L−1

0 C = L−1
0 ι′C0δCι equals to n and then the order of the operator

CL−1(γ0) : H− → H− is finite and equals to n too. Indeed, the operator CL−1(γ0)
can be presented in the following form

CL−1(γ0) = L0(L−1
0 C)L−1(γ0),

and hence CL−1(γ0) can be obtained from L−1
0 C via the multiplication with the

bounded operators L0 and L−1(γ0), therefore the order of CL−1(γ0) and L−1
0 C

coincide (see, for instance, [4]).
Now we see from (20) that for any λ satisfying

−(π + Φ1 − aτ) ≤ 2ϕλ ≤ π − Φ2 − aτ

we have

‖(L(γ0)− (γ2
0 − λ2)C)u‖− ≥ cK |λ|2‖Cu‖−,

with a constant cK > 0. Without loss of generality we can take γ0 = 0, because the
operator γ2

0C is compact. Then the hypothesis of Theorem 2.5 are fulfilled for the
operator

L̃(λ̃) = L0 + δbL+ δ̃cL+ λ̃2C

too, where λ̃ = λ2 − γ2
0 and δ̃cL = δcL + γ2

0C. Set µ = −λ2. Then for any arg(µ)
such that

aτ − Φ1 ≤ arg(µ) ≤ 2π − Φ2 − aτ (34)

the ray {φ = arg(µ)} is a ray of minimal growth of the resolvent of the closed
operator L(0)C−1:

‖(L(0)C−1 − µ)−1w‖− ≤
cK
|µ|
‖w‖−.

According to (34) the angle between any two neighboring rays is less then π
n . Finally

17
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we see that

(L(0)C−1 − µ)−1 = (I − µL−1(0)C)−1CL−1(0).

Then there exist a point µ0 such that the resolvent of the operator L(0)C−1 is
compact and its order equals to n. Then the statement of the theorem follows
immediately from [3, Chapter XI, Section 9, Corollary 31, p. 277] (see also [8]).

�

4. An example

Let D be a ball in Cn of radius R with the center at the origin, D = B(0, R).

Under the hypothesis of Lemma 2.4, consider the following function a
(2)
0 (z) with

the discontinuous argument ϕ0(z),

a
(2)
0 (z) =

{
|z|, for all 0 ≤ |z| < R

2 ,

|z|e
√
−1(π

n
−2τ), for all R

2 ≤ |z| < R,
(35)

where τ is a some constant, 0 < τ < π
2n . For this function, condition (18) holds true

and moreover Φ1 = 0, Φ2 = π
n − 2τ . Then

Φ = sup
z,w∈D

(ϕ0(z)− ϕ0(w)) =
π

n
− 2τ <

π

n
.

As we have seen in the Theorem 3.4, for any λ such that −(π+ Φ1− aτ)/2 ≤ ϕλ ≤
(π − Φ2 − aτ)/2 with some 0 < a < 1 we have

θ1 = min
z∈D

cos (ϕ0 − 2ϕλ) = − cos (aτ) > −1.

Consider now the inequality (19) of Theorem 2.5. For our function a
(2)
0 (z) we have

I2(ϕ0,0) = ‖1− e
√
−1(ϕ0−ϕ0,0)‖2L∞(D) = ess sup

z∈D
(2− 2 cos(ϕ0 − ϕ0,0))

= ess sup
z∈D

(2− 2 cos(
π

n
− 2τ − ϕ0,0)).

It is clear that

min
ϕ0,0∈C0,1(D)

I2(ϕ0,0) = 2− 2 cos(
π

2n
− τ).

Then (19) takes the following form:

2− 2 cos(
π

2n
− τ) < (1− cos(aτ))2,

and it follows that there exist a τ0, close to zero, such that condition (19) is not
fulfilled. Hence we can not say anything about the rays of minimal growth. Note, that
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if the argument ϕ0(z) of a
(2)
0 (z) is a continuous function, then under the hypothesis

of Lemma 2.4, if (18) and some additional restriction on operator δbL are fulfilled,
[15, Theorem 5] guarantees that the system of root vectors of the family L(λ) is
complete in the spaces H+(D), H−(D) and L2(D).
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