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Abstract The problem of correlation between rheological properties in macro-

and micro- scales of media with biopolymers of polypeptide (gelatin) and

polysaccharide (starch) nature is investigated. The viscosity of the biopolymer

solutions with concentrations 0.5–5 wt% was estimated by standard rotational

rheometry technique and with fluorescent molecular rotor at 15–50 �C. Opposite

trends were observed for relationship between microviscosity gm and macrovis-

cosity g for two biopolymers: gm\\ g for gelatin and gm[[ g for starch solutions.

The temperature dependence of gm followed the monoexponential decay law in all

samples over the whole temperature range indicating insensitivity of microviscosity

to gel mesh melting under heating. The dissimilarity of macro- and micro-rheo-

logical properties of gelatin and starch-containing media is discussed in terms of

difference in architecture of the gels.

Keywords Biopolymer � Gelatin � Starch � Physical gel � Microviscosity �
Molecular rotor

Introduction

Currently biological polymers gelatin and starch are widely used in biotechnology

in media for enzyme immobilization [1–5] or in responsive polymer systems for

controlled drug delivery [6]. Gelatin and starch gels meet many requirements for

media suitable for immobilization of the biological components (high mechanical

strength, porosity, etc.). At the same time, being natural biopolymers, they are non-
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toxic, biocompatible, biodegradable, and abundant (Fig. 1a, b) [1]. Important

physico-chemical characteristic of gelatin and starch solutions and gels is the

increased viscosity, which affects the rate of diffusion of both the immobilized

(entrapped) components and analyte molecules. Viscosity change can influence the

functional activity of proteins included into the gel, as well as the rate of drug

release [2–6].

But in many cases viscosity quantifying is a problem for the media, containing

polymeric compounds. It is caused by the fact that the resulting viscosity depends

on the spatial scale of measuring technique used. Standard methods of rotational or

capillary viscosimetry mainly characterize the relative motion of the whole

macromolecular chains and media layers [7]. Viscosity defined in such a way is

called macroviscosity (g). At the same time the diffusion rate of small molecules

(probes) in gel-like media often depends on the properties of the solvent included in

the gel matrix and the segmental motion of macromolecules. Such viscosity defined

from diffusion rate of probe molecule in the media with the biopolymer is often

called microviscosity (gm). The functional relationship between these two types of

viscosity has not been established yet as it significantly varies depending on the type

of biopolymer, sample preparation method and viscosity measurement technique.

Typically, only one type of viscosity is estimated, without paying attention to

another. Meanwhile, the comparison of the macro- and microviscosity values (g and

gm) for the biopolymer solution can give important information about the impact of

the gelation process on the mobility of components included into the suspension or

gel.

In standard rotational viscosimetry technique the medium macroviscosity is

determined as proportionality factor between the shear rate and shear stress

(granting the linear dependence between characteristics, i.e. ‘‘Newtonian’’ behavior

of the sample). Gel-like media as a rule feature ‘‘non-Newtonian’’ behavior and

complex viscosity is measured by oscillation mode in this case [8].

Microviscosity measuring techniques are very diverse and values obtained often

depend on the method applied [9]. Recently, the molecular rotors are widely used to

probe viscosity changes in complex biological samples including cytoplasm [10–

16]. Molecular rotors are fluorescent molecules that deactivate the excited state

through rotational movement (Fig. 1c). In that case, the microviscosity is defined

from quantum yield of probe fluorescence (U) using the Forster–Hoffmann

equation:

logU ¼ C þ x log gm; ð1Þ

Fig. 1 Structure of the starch (a) and gelatin (b) monomers and the molecular rotor CCVJ (c). R is the
amino acid side chain
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where C and x are the temperature-dependent and probe-dependent constants,

respectively. This equation was obtained analytically [10, 12] and verified experi-

mentally [17]. Examples of molecular rotors application include the polymerization

reaction control [10], the assessing the rheological characteristics of blood plasma

and plasma expanders [15] and development of the biofluid viscosity sensor [16].

The aim of the current study was to analyze the relationship between macro- and

microviscosity of solutions and gels based on potato starch and gelatin that were

used for immobilization of enzymes from luminous bacteria [2–5]. The increasing

enzyme activity and stability were revealed at certain concentrations of biopolymers

[2–5]. In this context, information on media viscosity is an important element in

understanding the mechanisms underlying observed effects. Samples with biopoly-

mer content 0.5–5 wt% at temperature range 10–50 �C were tested. To evaluate gm

the fluorescent probe 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ) was used

(Fig. 1c). The size of this molecular rotor is comparable to that of the substrates

of bioluminescent enzymes, so its diffusion rate can characterize the microenvi-

ronment viscosity of immobilized enzymatic reactions [4].

Experimental

Materials

The following reagents were used: glycerol (Gerbu), soluble potato starch (Lintner)

of analytical grade (Serva), gelatin with a bloom number of 180 (Fluka), viscosity

probe CCVJ (Sigma), salts for buffer solution K2HPO4 and KH2PO4 (Fluka).

Sample preparation

Biopolymer solutions in phosphate buffer (0.05 M, pH 6.9) were used; the content

of the starch or gelatin varied within 0.5–5 wt%.

Gelatin and starch solutions were prepared in accordance with the procedure

applied for enzyme immobilization: a mixture of buffer and gelatin was heated to

80 �C under continuous stirring to melt the gelatin completely, then cooled to room

temperature without mixing; a mixture of buffer and starch powder was boiled for

3 min, then cooled to room temperature without mixing [5]. Just prepared samples

were poured into the temperature-controlled cell of fluorimeter or rheometer and

thermostated for at least 10 min before measuring spectra or rheological

characteristics.

The aliquot of the CCVJ stock solution in phosphate buffer was added into the

studied samples to obtain final concentration 3 lM. Calibration of the fluorescent

probe by finding the coefficients C and x (1) was carried out using the buffer-

glycerol mixtures with glycerol content of 20, 40, 60 and 80 wt% [18]. Fluorescence

measurements were made just after thorough mixing of buffer with glycerol and

CCVJ.
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Spectroscopy

Fluorescence emission spectra of CCVJ were measured with Fluorolog-3 spec-

trofluorometer (Horiba Jobin–Yvon, France). Excitation wavelength used was

420 nm and spectral bandwidth was 2.8 nm. The system temperature was controlled

by a refrigerated circulating bath WCR-P8 (Daihan Scientific, Korea). Fluorescence

spectra were corrected for the emission sensitivity characteristics of the instrument

and inner filter effect [19].

The absorption spectra were measured with a Cary 5000 spectrophotometer

(Agilent Technologies, Australia) with integrated Pelletier temperature controller.

Spectral slitwidth was 2 nm.

Rheology

The rheological properties of the polymer solutions were measured using modular

rheometer PHYSICA MCR501 (AntonPaar, Switzerland), with a measuring system

CC27/T200/AL based on concentric cylinders (cell diameter 28.92 mm, gap

1.13 mm, sample volume 19.35 mL) and Pelletier heating system. Tests were

performed in dynamic mode, running first strain sweeps between 10 and 1000 s-1 to

evaluate the linear viscoelastic response of the sample at 20 �C. For all starch

samples and 0.5, 1 and 2 % gelatin samples the share rate 50 s-1 was chosen for

viscosity measurement at 15–50 �C. For the gelatin gels (3 and 5 wt%) storage and

loss moduli G0 and G00 were measured in dynamic mode (frequency—10 Hz,

amplitude—0.5 %) as function of temperature in the range of 15–50 �C. The gel

melting point, also called critical temperature, was defined as the temperature where

G0 = G00 [20].

Temperature dependence

Viscosity–temperature relation was evaluated using Doolittle equation:

g ¼ A � e
Ea
RT ; ð2Þ

where g is the viscosity of the polymer solution (Pa s), A is a pre-exponential factor

(Pa s), R is the gas constant (8.314 J K-1 mol-1), T is the thermodynamic tem-

perature (K) and Ea is the activation energy of viscous flow (J mol-1).

Results and discussion

Macroviscosity of the media with biopolymers

Prior to rheological measurements of concentration- and temperature-dependence of

sample viscosity the conditions were defined at which the investigated media

behave as Newtonian fluids. The share viscosity of all samples was measured at

20 �C as proportionality factor between shear stress and the shear rates within the
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range 1–1000 s-1. For all starch solutions and for gelatin samples with 0.5–2 wt%

of the biopolymer it was found that the viscosity remains constant within shear rates

25–125 s-1 (Fig. 2a). For further macroviscosity measurements the shear rate

50 s-1 was selected for these samples. Such ‘‘Newtonian’’ region was observed

even for more concentrated potato starch samples (15 %), but at much lower share

rates [21].

Contrasting results were obtained for 3 and 5 wt% gelatin solutions: starting from

significantly higher values (compare ordinate scales in Fig. 2a, b) their apparent

viscosity declines by a power law with increasing shear rate (Fig. 2b). Such a

deviation from ‘‘Newtonian’’ behavior is known as pseudoplasticity and is typical

for the polymers that tend to form the network with temporary junction [8].

Oscillating measuring mode is used in such cases, so for the samples containing 3

and 5 wt% gelatin complex viscosity values g* were obtained in dynamic

oscillatory mode at a frequency of 10 s-1 and amplitude 0.5 %.

The resulting temperature dependences of samples macroviscosity are shown in

Figs. 3 and 4. It is clear that for the most gelatin samples it follows the exponential

low only at heating above 35 �C, whereas for starch solutions whole temperature

range can be described by this function. In the range of 25–35 �C the

macroviscosity of the most concentrated gelatin samples dramatically decreases

(Fig. 4) that can reflect the melting the gel mesh under heating. A loss tangent value

(equal to G00/G0) indicates that before 30 �C the deformation is essentially

recoverable and the gelatin gel behaves more like a solid, whereas at higher

temperatures large G00/G0 reflects that sample becomes less stiff, behaving more like

a liquid [22]. The temperature dependences (Fig. 4) allowed defining the gel
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melting temperature of the samples with 3 and 5 wt% gelatin: 28.5 and 30 �C,

respectively, which is in good agreement with published data [20].

Using linear ranges (in a semi-logarithmic scale) the apparent activation energies

of viscous flow were estimated according to Eq. (2), as summarized in Table 1. It

can be seen that for starch samples activation energy increases gradually, but in a

small amount.
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The fourfold difference in polymer concentration (from 0.5 to 2 wt%) leads to an

energy increment of 1 kJ mol-1 for starch, whereas for gelatin the increment is

4.86 kJ mol-1. The reported activation energy of pure water is about 15 kJ/mol

[23], which is close to the value obtained in current work for the buffer (Table 1).

The temperature dependence of the viscosity of the buffer-glycerol mixtures

measured by steady share stress technique under the same conditions as the

samples with biopolymer is also characterized by E�
a that well corresponds to the

value, expected from data published earlier [18].

Generally, apparent activation energy of viscous flow is believed to rise with the

increasing concentration of polymer [24]. It is caused by enhancing of the contacts

and weak bond formation between polymer molecules at higher concentration. This

interaction ‘‘resists’’ the viscous flow of the sample and increases the corresponding

activation energy. Such trend can be seen for the samples based on starch, but it is

broken for gelatin media. This can be accounted for the change of the viscosity

measuring technique from the steady share tests (for first three concentrations) to the

dynamic oscillation mode (for the last two). E�
a can be correctly compared among

samples with 0.5, 1 and 2 % of gelatin and, separately, between 3 and 5 % gels.

Within these groups the tendency is kept: the apparent activation energy increases

with a polymer concentration.

Table 1 Apparent activation energy of viscous flow E�
a for macroviscosity of the studied samples

No Viscogen

concentration

(wt%)

Macroviscosity

g (20 �C), cP

E�
a (kJ mol-1)

Buffer

1 0 1.23 13.08

Starch

2 0.5 1.32 13.16

3 1 1.44 13.73

4 2 1.68 14.16

5 3 2.05 15.12

6 5 2.80 15.06

Gelatin

7 0.5 1.60 13.61a

8 1 2.79 15.99a

9 2 55.4 17.89a

10 3 8720b 6.06a

11 5 39100b 10.21a

Glycerolc

12 10 1.54 (19 %) 14.7 (18 %)

13 20 1.94 (11 %) 14.7 (11 %)

a Calculated according to the linear range 35–50 �C
b Values of the complex viscosity g*
c In parentheses the relative deviation from tabulated data [18] is shown
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Microviscosity of the media with biopolymers defined by molecular rotor

To estimate microviscosity, the spectral characteristics of the probe were measured

in solutions with different concentrations of gelatin and potato starch and in

reference buffer-glycerol solutions (Fig. 5; Table 2).

It can be seen that the absorption spectra of the probe vary slightly in viscous

media. Fluorescence spectra changes are more pronounced: in viscous media blue

shift is observed up to 9 nm in case of starch (Table 2). It indicates a lower polarity

of probe microenvironment in the studied media if compared to buffer solution. This

cannot be a hindrance to determine viscosity, because CCVJ can be used regardless

of the media polarity. Its quantum yield depends only on the viscosity [25, 26]. It is

worth noting that the obtained spectral shifts depended on biopolymer concentra-

tion, but not on the temperature of media.

To calculate the microviscosity values the calibration curve was obtained using

buffer-glycerol mixtures at three temperatures (Fig. 6).

Figure 6 shows that within viscosity range 0.5–120 cP the relationship between

the fluorescence intensity and the medium viscosity is linear in double-logarithmic

scale (Eq. 1), confirming that the probe molecule behaves in accordance with the
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Fig. 5 Normalized absorption (left) and fluorescence (right) spectra of CCVJ in different media at 30 �C

Table 2 Spectral characteristics of CCVJ in viscous media (30 �C)

No Medium Absorption,

kmax (nm)

Fluorescence,

kmax (nm)

Stokes shift

(nm)

1 Buffer 432 500 68

2 Glycerol, 80 wt% 435 495 60

3 Gelatin, 5 wt% 435 497 62

4 Starch, 5 wt% 434 490 56

5 Sucrose, 20 wt% 436 500 64
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Forster–Hoffmann theory [15]. This relationship does not change within studied

temperature range, what allows applying the same calibration equation for viscosity

estimation at all temperatures. The method was tested by viscous solution with

known macroviscosity: the fluorescence of CCVJ was measured in buffer with 20 %

of sucrose (Table 3). The obtained value of gm was 2.1 cP (20 �C) that well

corresponded to tabulated value of g = 2.0 cP measured by a rolling ball technique

[27].

Calculated microviscosities for gelatin and starch media upon heating are shown

in the Fig. 7. It was revealed that gm for starch solutions is approximately one order

greater than that for gelatin solutions with identical biopolymer content (compare

ordinate scales in Fig. 7a, b).
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Fig. 6 CCVJ fluorescence intensity (I) vs. viscosity of buffer–glycerol mixtures in double-logarithmic
scale: 10 �C (squares), 30 �C (triangles) and 50 �C (diamonds) (solid line calibration straight line)

Table 3 Apparent activation energy of viscous flow E�
a for microviscosity of the studied samples

No Viscogen

concentration

(wt%)

Microviscosity

(20 �C), cP

E�
a (kJ/mol)

Starch

1 0.5 6.53 45.7

2 2 22.97 47.7

3 5 68.28 44.7

Gelatin

4 0.5 1.30 21.9

5 1 1.86 29.9

6 3 4.04 34.9

7 5 5.40 33.7

Sucrosea

8 20 % 2.10 (10 %) –

a In parentheses the relative deviation from tabulated data [29] is shown
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It was found that upon heating the microviscosity decays exponentially for all

concentrations of biopolymers (Fig. 7). Exponential temperature dependence is

typical for liquids [28]. It implies that the calculated microviscosity characterizes

mainly the behavior of the solvent (water) when increasing temperature. The

apparent activation energy of viscous flow E�
a was calculated for all samples

according to Eq. (2) (Table 3).

It was obtained that for the starch solutions E�
a changes slightly when increasing

biopolymer content (Table 2). The activation energy obtained for minimal content

of gelatin (0.5 wt%) is about 21.9 kJ/mol. Further increase of the gelatin content

leads to higher activation energy up to 34–35 kJ/mol.

The high microviscosity of the media with starch is caused by its structural

properties. Potato starch is known to contain the linear amylose and branched

amylopectin molecules, the last can impede the diffusion of smaller molecules, like

CCVJ probe. Gel network in starch is formed by interactions between amylose

chains, whereas more numerous amylopectin molecules mainly stay inside the

granular residues in the random coil form. The fluorescent probe CCVJ, penetrated

inside the amylopectin, manifests rather high viscosity of its microenvironment.

Comparison of macro- and micro-viscosity

The superposition of all the data obtained indicates that the interrelation between

micro- and macroviscosity differs for polypeptide (gelatin) and polysaccharide

(starch) solutions (Fig. 8). Media with 3 and 5 wt% gelatin are characterized by

stronger macroviscosity (low fluidity). But their microviscosity only several times

surpasses viscosity of water, i.e. diffusion of small molecules is slowed marginally.

This finding is in good agreement with that of another investigation showing that

small probe (like fluorescein) is unable to detect the gelatin transition from solution

to gel [30].
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Media with starch reveal opposite feature: they are fluid enough and their

macroviscosity exceeds that of water by not more than three times. But the diffusion

of the components in such media can be very slow—measured microviscosity

exceeds the viscosity of water in about 2 times of magnitude (5 wt% starch).

All results obtained in this investigation are summarized in Fig. 8. The linear

dependence (in double logarithmic scale) between viscosities for different starch

concentration allows finding the power function that relates gm and g for this media:

gm ¼ 3:05 � g3;15 R2 ¼ 0:96
� �

: ð3Þ

It can be also seen (Fig. 8) that at low gelatin content (0.5 and 1 wt%) gm and g
values are very close to each other that is characteristic of unstructured medium

(shown by the dashed line). At these concentrations the gelatin macromolecules do

not interact with each other and the media have properties of true solution.

The observed contrast features of starch- and gelatin-containing media are

mainly due to difference in their structural organization. Measured macro-

characteristics (Figs. 3, 4) indicate that among all samples the strong three-

dimensional network (gel) is formed only in solution with 3 and 5 wt% gelatin

content. Indeed, the biopolymers under study feature the different critical

concentration for gel formation. The gelatin solution is known to form gel on

recooling after heating when the concentration is greater than 0.4–1.0 % [31],

whereas the starch solution at the same conditions becomes a viscoelastic paste,

which ‘‘sets up’’ into the gel at the starch concentration higher than 6 wt% [8]. It

implies that in current investigation the gelatin gels could be formed, but the starch

gels did not. It is worth noting that we did not aim at reaching the critical

concentration for all the biopolymers under study, but tried to reveal the difference
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in rheological properties of the media, already applied for enzyme immobilization

(up to 5 wt% of the biopolymer) [4]. Additionally it should be kept in mind that

gelatin and starch form different types of gels—‘‘strong’’ and ‘‘weak’’, respectively,

with essentially different rheological properties. Both strong and weak gels respond

as solids at small deformations, but whereas the former are also solids at larger

deformation, the latter flow under such conditions [31]. The gelatin gels contain

extended physical cross-links or ‘‘junction zones’’ formed by a partial reversion to

ordered ‘‘triple helical collagen-like’’ sequences. The starch gel is a result of the

networks formation by interactions between leached amylose molecules, whereas

more numerous amylopectin molecules (that lost their crystallinity) mainly stay

inside the granular residues in the random coil form. So, the ‘‘weakness’’ of the gel

structures is also the reason of fluid-like behavior of starch suspensions under steady

share test.

Also the data point out that fluorescent probe is insensitive to the polymeric mesh

formation and its melting during heating (Fig. 7). It means that the mesh size is

much larger than the diameter of the probe and no hindrance for its diffusion occurs

in gelatin gels. Indeed, the mesh size in gel of 5 wt% gelatin was estimated to be

51 ± 2 Å [32] while the diameter of CCVJ molecule is about 7 Å. Different

situation is observed in the media with potato starch, which consists of two

structural components: linear amylose molecules (20–30 %) and branched amy-

lopectin molecules (70–80 %). There is a number of experimental data to suggest

that the starch gel matrix with mesh size 35–36 nm [33] is formed by amylose

chains while amylopectin functions as a solute in water that is compartmentalized

by network [34]. In this case the used fluorescent probe gets into a ‘‘tangle’’ of

amylopectin and faces significant diffusion difficulties, which is reflected in the high

values of the calculated microviscosity of media with starch. This assumption is

supported by the hypsochromic shift of the probe fluorescence spectrum observed in

the media with starch (Fig. 5) that indicates the microenvironment with lower

polarity [35]. It should be noted that the CCVJ fluorescence in solution with sucrose

(20 wt%) has no hypsochromic shift (Table 1) that means the absence of specific

interactions between the probe and the monosaccharide groups. Earlier this probe

was used to measure the viscosity of starch solutions, and the high microviscosity at

very low concentrations of hydroxyethyl starch was also observed [36].

The obtained characteristics of biopolymer solutions allow approaching the

mechanisms underlying the media effects on the activity of coupled-enzyme system

NAD(P)H:FMN-oxidoreductase ? bacterial luciferase observed earlier. It was

shown that media with 1 and 5 wt% gelatin enhance the activity of this coupled-

enzyme system about twofold under the temperatures B20 and B25 �C, respectively

[4]. After further heating the inhibition effect was observed. For the media with

2 wt% of potato starch the different trend was obtained: the inhibition of the

coupled-enzyme system under the temperatures B20 �C and no effect after further

heating as compared with buffer solution.

The results of current research generally support the idea of a critical role of the

polymeric mesh formation for activation of enzymatic reactions in the case of

gelatin. Indeed, the macroviscosity of the samples with 1 and 5 wt% gelatin

dramatically decreases after 20 and 25 �C, respectively (Figs. 3, 4) that means
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melting of the gel mesh. Low microviscosity of these samples (Fig. 7) indicates

insignificant diffusion restriction for substrates of reaction and points out on the

interaction of gelatin polymeric mesh with enzymes. Conversely, the inhibition of

enzymatic reactions in a medium with 2 wt% starch may be due to difficulties of

diffusion (high microviscosity, Fig. 7), which is removed with increased

temperature.

Additionally, the variety of properties can be an advantage when it comes to

practical application of biopolymers. Gelatin-based gels are rugged, recalling the

solids by its physical state, forming some kind of skeleton, such that small

molecules can easily diffuse through. Opposite to this, a suspension of starch (in

particular, the potato starch which is characterized by a high content of

amylopectin) is not able to form strong gels [37], but according to our results, it

can provide a high degree of immobilization probably due to hydrophobic

interactions. All features of the studied biopolymer types have many applications as

they both are widely used individually, and in combination with each other [38].

Also, recently the media with gelatin and starch were shown to be proper

surroundings to simulate the intracellular environment for enzymatic reactions [2,

39]. Here it can be mentioned that the environment with polypeptide and

polysaccharides simulate different intracellular space areas with various structural

organization. It can be assumed that the gelatin gels simulate the cytoskeleton and

the general poroelastic behavior of the cytoplasm [40–42]. Starch suspensions

imitate the media with inhomogeneous polarity and viscosity, which is typical

characteristic for the cell [43].

Conclusions

Different trends of gm(g) dependence for gelatin and potato starch solutions were

obtained in this work, highlighting the complexity of determining the physical and

chemical characteristics of the solutions with polymers at the micro-scale, basing

only on the macro-properties of the samples (which are usually easier to measure). It

is considered that few of the functional properties of biopolymers are directly

governed by their primary sequence structure, and the main factor is the spatial

conformation which biopolymer takes in solution. But in our case, it is obvious that

for an accurate interpretation of the micro-characteristics values obtained the

detailed understanding of the ‘‘architecture’’ of the internal space environments with

biopolymers is required, which is related to the chemical nature of the

macromolecules.
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