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Forests play a key role in the carbon balance of terrestrial ecosys-
tems. One of the main uncertainties in global change predictions
lies on how the spatiotemporal dynamics of forest productivity
will be affected by climate warming. Here we show an increasing
influence of climate on the spatial variability of tree growth during
the last 120 years, ultimately leading to unprecedented temporal
coherence in ring-width records over wide geographical scales
(spatial synchrony). Synchrony in growth patterns across cold-
(central Siberia) and drought-constrained (Spain) Eurasian conifer
forests have peaked in the early twenty-first century at subcon-
tinental scales (∼1,000 km). Such enhanced synchrony is similar
to that observed in trees co-occurring within a stand. In Boreal
forests, the combined effects of recent warming and increasing
intensity of climate extremes are enhancing synchrony through
an earlier start of wood formation and a stronger impact of year-
to-year fluctuations of growing-season temperatures on growth.
In Mediterranean forests, the impact of warming on synchrony is
mainly related to an advanced onset of growth and the strength-
ening of drought-induced growth limitations. Spatial patterns of
enhanced synchrony represent early-warning signals of climate
change impacts on forest ecosystems at subcontinental scales.

tree rings | spatial synchrony | global warming | boreal forests |
Mediterranean forests

Introduction
Understanding how climate change affects forests across multiple
spatiotemporal scales is important for anticipating its impacts on
terrestrial ecosystems. Increases in atmospheric CO2 concentra-
tion and shifts in phenology (1–3) could favor tree growth by
enhancing photosynthesis and extending the effective growing
period, respectively (4). Conversely, recent warming could in-
crease respiration rates and, together with increasing heat and
drought stresses, exert negative impacts on forest productivity
(5, 6). As it is unclear to what extent enhanced carbon uptake
could be offset by the detrimental effects of warming on tree
performance, the actual consequences of climate change on forest
carbon cycling are still under debate. Notably, climate change
has a stronger impact on forests constrained by climatic stressors
such as suboptimal temperatures or water shortage (7). As high-
resolution repositories of biological responses to the environ-
ment, dendrochronological archives can be used to monitor this
impact (8).

The concept of spatial synchrony in tree growth refers to
the extent of coincident changes in ring-width patterns among
geographically disjunct tree populations (9). Climatic restrictions
tend to strengthen growth-climate relationships resulting in en-
hanced common ring-width signals (i.e. more synchronous tree
growth). Thus, regional bioclimatic patterns can be delineated by
identifying groups of trees whose growth is synchronously driven
by certain climatic constraints (10, 11). A number of synthesis
studies provide evidence for globally coherent multispecies re-
sponses to climate change in natural systems, including forests,

with a focus on the role of increasingly warmer temperatures (12,
13). Indeed, climate has changed markedly over the last decades,
prompting an array of physiological reactions in trees that could
strengthen growth-climate relationships, hence enhancing spatial
synchrony. Such tree responses may be linked to global shifts in
the timing of plant activity (2), drought stress in mid latitudes
(6, 14), or uncoupling of air and soil thermal regimes in the
early growing season (15) and direct heat stress (16) in high
latitudes, among others. Changing tree growth patterns associ-
ated to enhanced synchrony in response to warming have been
reported at small geographical scales (<150 km) (14–18, but see
19). However, an extended examination of synchrony patterns is
currently lacking for large (i.e. subcontinental) areas.

To determine whether climate warming and increased vari-
ability (1) lead to more synchronous tree growth, we examine
changes in spatial synchrony for the last 120 years across sub-
continental areas by using a comprehensive network of 93 ring-
width chronologies from six different conifer species across two
climatically contrasting Eurasian biomes: Boreal forests in central
Siberia (n =45 chronologies) andMediterranean forests in Spain
(n = 48 chronologies; SI Appendix, Fig. S1 and Table S1). Central
Siberia has a severe continental climate with a prolonged cold
season, large intra-annual temperature variations and moderate
precipitation. Spain is dominated by a typical Mediterranean
climate withmild (coast) to cool (inland) wet winters and summer
drought. Thus, temperature exerts the main climatic control over

Significance

Forests dominate carbon fluxes in terrestrial ecosystems. We
demonstrate how an intensified climatic influence over tree
growth during the last 120 years has increased spatial syn-
chrony in annual ring-width patterns within contrasting (Bo-
real and Mediterranean) Eurasian biomes and on broad spatial
scales. Current trends in tree growth synchrony are related
to regional changes in climate factors controlling productiv-
ity, overriding local and taxonomic imprints on forest carbon
dynamics. Enhanced synchrony is becoming a widespread,
although regionally dependent, phenomenon that is related to
warmer springs and increased temperature variability in high
latitudes and to warmer winters and drier growing seasons in
mid latitudes.
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Fig. 1. Synchrony patterns and changes in absolute
growth for the period 1890–2009. The spatial syn-
chrony (âC) is estimated for central Siberia (A) and
Spain (B) using ring-width chronologies for successive
30-year periods lagged by five years. The dotted lines
indicate âC maxima over the study period. Grey lines
represent the number of chronologies with EPS > 0.85
(chronology depth). Temporal trends in the slope (b)
of growth in central Siberia (C) and Spain (D) are
estimated based on raw ring-width data for the same
time intervals used for synchrony. The dashed lines
indicate no change in growth rate over the study pe-
riod. Significant linear trends over time are depicted
as black lines (***, p < 0.001). Shaded areas denote
standard errors. Values in the x-axes correspond to the
middle year of 30-year moving intervals.

Fig. 2. Temporal trends in spatial synchrony for single
and paired species for central Siberia (A) and Spain
(B). Synchrony estimates (âC) in single species (1st and
3rd column) and species pairs (2nd and 4th column)
are calculated based on ring-width chronologies using
successive 30-year periods lagged by five years. The
dotted lines indicate âC maxima over the study period
in each case. Standard errors are shown as shaded
areas. Values in the x-axes correspond to the middle
year of 30-year moving intervals.

Fig. 3. Growth-climate relationships at the species
and regional levels for central Siberia (A) and Spain
(B). Tree growth responses to climate are based on
bootstrapped correlations (indicated by bars) and
response function partial regression coefficients be-
tween tree-ring indices for species or regions and
monthly mean temperature, precipitation and SPEI
drought index for the period 1930 to 2009. Significant
correlation and partial regression coefficients (p <
0.05) are indicated by filled bars and white circles,
respectively. Species are represented in blue (Larix
gmelinii, Abies alba), green (Larix sibirica, Pinus ni-
gra) and red (Picea obovata, Pinus sylvestris). Wide
bars denote significant relationships at the regional
level. Lowercase and uppercase letters in the x-axes
correspond to the years before and during tree-ring
formation, respectively.

productivity in Boreal forests, while Mediterranean forests are
primarily water-limited (SI Appendix, section 1A).

Temporal changes in spatial synchrony (hereafter, âC) are
quantified using a novel mixed model framework (20). This
methodology has two fundamental advantages for dendro-
sciences (21) over other alternative approaches useful for in-
terpreting population dynamics in ecology (22) or patterns of
environmental synchrony (23): (i) it is capable of dealing with
partially overlapping chronologies, yielding valid inferences of
spatial synchrony for large areas in which ring-width data are
available but covering different time periods; (ii) it is highly
flexible to fit general statistical structures for subdivided groups

of chronologies, opening new avenues for interpreting complex
spatial patterns through geographic or taxonomic stratification of
a target region.

We hypothesize that climate warming triggers more syn-
chronous tree growth at subcontinental scales owing to an am-
plified climatic control of growth (e.g. through higher tempera-
tures in Siberia or decreased water availability in Spain; 1). Our
objective is to interpret forest reactions to warming through an
alternative approach to model-based assessments or field exper-
imentation. Specifically, this study asks the following questions:
(i) is spatial synchrony of tree growth increasing across terrestrial
biomes and at what pace?, (ii) how are synchrony patterns related
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Fig. 4. Climate factors underlying changes in synchrony in central Siberia
(1930–2009). (A) Moving correlation analyses (r-values) between regional
tree-ring indices and April and June mean temperatures (Temp) and (B)
standard deviates (SD) of April and June mean temperatures are displayed
in bar diagrams for successive 30-year periods lagged by five years (upper
panels). Significant correlations are indicated by filled bars in (A) (p <
0.05). Relationships between synchrony estimates (âC) and r-values or SD of
climate variables are presented in scatter plots (lower panels). Note that only
monthly climate factors significantly correlated to âC are displayed (*, p <
0.05; **, p < 0.01). The filled circles correspond to the periods with significant
growth-climate relationships as indicated by moving correlation analyses in
the upper panels. Displayed years in the x-axes correspond to the middle year
of 30-year moving intervals.

Fig. 5. Climate factors underlying changes in synchrony in Spain
(1930–2009). Moving correlation analyses (r-values) between regional tree-
ring indices and February mean temperatures (Temp), and May and June
precipitation (Prec) and SPEI drought index in May and June are displayed
in bar diagrams for successive 30-year periods lagged by five years (upper
panels). Relationships between synchrony estimates (âC) and r-values are
presented in scatter plots (lower panels). For further details see caption to
Fig. 4.

to intra- and inter-specific responses to climate warming?, and
(iii) what are the main climate factors underlying more syn-
chronous forest growth? It is widely accepted in ecological theory
that spatial synchrony influences metapopulation persistence and
the likelihood of species extinction (24). As forests are becoming
more prone to widespread mortality (25), interpreting long-term
synchrony patterns of tree growth may be relevant to identify
broad-scale threshold responses to climate change.

Results and Discussion

Increases in synchrony and absolute growth trends: regional patterns
Synchrony trends show that âC has increased during the

period 1890–2009 in both study regions (Fig. 1 A and B), but at a
two-fold higher pace in Siberia than in Spain (b = 0.002 yr–1 vs.
0.001 yr–1). Whereas the increasing trend is steady over time for
Spain, âC has experienced larger fluctuations for Siberia, with an
abrupt rise observed in the last three decades. Overall, âC values
are significantly higher after 1950 than in the first half of the
twentieth century (p = 0.001 and p < 0.001 for Siberia and Spain,

respectively; one-tailed Student’s test), reaching in both regions
unmatched values after the 1970s.

Notably, peaks in spatial synchrony are reached in the early
twenty-first century (Fig. 1 A and B). This result suggests a pro-
gressive influence of external forcing mechanisms impacting on
tree performance through vast geographical areas and overriding
local drivers of growth (such as topography, nutrient availability,
tree competition or management, to name a few). Regional forest
synchrony is currently reaching values comparable to the mean
synchrony between co-occurring trees within a stand (Spain, âC
= 0.28 ± 0.06 [region] vs. 0.40 ± 0.13 [stand]; Siberia, âC = 0.47 ±
0.07 vs. 0.49 ± 0.10; [mean ± SE]). The lower mean âC in Spain
over the study period (0.21 ± 0.02 vs. 0.32 ± 0.03 in Siberia)
contrasts with the lower average distance between stands in Spain
compared to Siberia (346 ± 195 km vs. 575 ± 331 km [mean ± SD],
respectively; SI Appendix, Fig. S1). In any case, synchrony patterns
in Siberia and Spain are statistically independent (SI Appendix,
Tables S2 and S3), indicating that the increasing synchrony in
tree growth is a widespread ecological phenomenon, although
regionally dependent. Synchrony estimates could be sensitive to
the number of available chronologies, and this number progres-
sively decreases in the most recent years (SI Appendix, Table S1).
However, we find a high agreement in âC between the complete
set of chronologies and a subset that extends beyond the year 2000
(Siberia, r = 0.90; Spain, r = 0.87; p < 0.001 in both cases). An
analysis of anomalously wide or narrow rings (i.e. “pointer years”),
originating from extreme external events (26), is in agreement
with the absolute peaks in synchrony found in both regions at the
turn of this century (SI Appendix, section 2A and Fig. S2).

To further explore how increasing synchrony is related to re-
gional growth patterns, we use raw ring-width records and assess
shifts in growth rates over time. We notice differential paces of
tree growth in Siberia and Spain for the period 1890–2009. A
clear growth slowdown is observed in Spain (b = –0.00024 mm
yr–2), whereas no significant trend appears in Siberia (Fig. 1 C
and D). Such temporal changes could be affected by variations in
the population age/size structure (the average chronology length
is 303 ± 82 years and 247 ± 129 years for Siberia and Spain
[mean ± SD], respectively). To check for age-independent growth
declines, we assess growth dynamics only for old-growth forest
stands (>200 years old; n = 43 chronologies for Siberia; n =
30 chronologies for Spain). This approach minimizes temporary
dynamics associated with stand development and succession. We
observe a good agreement when comparing the results from this
subset with the growth patterns found for the complete dataset
(r = 0.99, p < 0.001 for Siberia; r = 0.87; p < 0.001 for Spain,
slowdown for Spain b = –0.00014 mm yr–2), indicating that age-
dependent declines cannot explain temporal changes in growth.
Growth reduction in Mediterranean forests may be caused by
increasing water limitations (6), but the lack of a positive growth
response to warming in Boreal forests is puzzling. Various hy-
potheses have been raised to explain this phenomenon (27), but
temperature-induced drought or direct heat stress are plausible
constraints of forest productivity in high latitudes (16).

Increases in synchrony and absolute growth trends: taxonomic
patterns

At the species level, âC peaks at the turn of this century
in most cases (Fig. 2). Overall, species-specific changes in syn-
chrony are in good agreement with regional trends, although
Larix gmelinni in Siberia and Pinus sylvestris in Spain exhibit less
obvious (but also significant) increments in âC over the past 120
years. Notably, the spatial synchrony between pairs of species also
increases with time (Fig. 2). However, âC values across species
pairs tend to be lower than for individual species which indicates
that, while inter-specific variability in growth responses certainly
exists and is important (e.g., deciduous vs. evergreen conifers in
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Table 1. Multiple linear stepwise regressions explaining synchrony (âC) patterns from changing growth-climate relationships
(correlation coefficients, r) and climate variability (standard deviates of climate factors, SD) over the period 1930 to 2009. Codes of the
variables are as in Figs. 4 and 5 (upper panels) for Siberia and Spain, respectively. Abbreviation: MSE, mean square error.

Synchrony Initial variable Initial r2 Initial MSE Final stepwise model Final r2 Final MSE

Siberia correlation with climate factors
(rTmeanAPR, rTmeanJUN)
rTmeanAPR 0.63** 0.020 âC = 0.26 ‒ 0.29 rTmeanAPR 0.63** 0.020
correlation with climate factors and
variability (rTmeanAPR, rTmeanJUN,
SDTmeanAPR, SDTmeanJUN)
SDTmeanJUN 0.63** 0.020 âC = ‒0.47 + 0.28 SDTmeanJUN

+ 0.10 SDTmeanAPR

0.75*** 0.013

Spain correlation with climate factors
(rTmeanFEB, rPrecMAY, rPrecJUN, rSPEIMAY,
rSPEIJUN)
rSPEIJUN 0.43* 0.003 âC = 0.18 + 1.03 rSPEIJUN ‒ 0.93

rPrecJUN + 0.08 rTmeanFEB

0.75*** 0.002

*: p<0.05; **, p<0.01; ***: p<0.001

Siberia), the strength of these inter-specific differences is dimin-
ishing with time, resulting in more synchronous tree growth.

Boreal forests in Siberia, mainly limited by low temperatures
(15, 16), show high synchrony irrespective of the species; instead,
primarily water-limited forests in Spain (14, 19) have lower syn-
chrony. It is likely that temperature exerts a larger influence on
the spatial signal imprinted in tree rings than precipitation (10)
owing to the higher spatial homogeneity of temperature in Siberia
compared to the more complex rainfall pattern countrywide in
Spain (SI Appendix, Fig. S3). In fact, Abies alba shows the largest
âC among the three Spanish species, which could be explained
by its limited spatial distribution and narrow niche amplitude at
mesic sites in north-eastern Spain (mean distance between stands
= 124 ± 68 km) (SI Appendix, Fig. S1).

To further test for spatial consistency in synchrony patterns
(22), we examine how the correlations between pairs of chronolo-
gies vary with distance among forest stands. The spatial synchrony
spreads over distances >900 km and >600 km for Siberia and
Spain, respectively (SI Appendix, Fig. S3). More importantly,
synchrony is higher in the second than in the first half of the
twentieth century, for all species and regions at most distances (SI
Appendix, Fig. S4). The intercept (but not the slope) of the linear
relationship between r-values and distances increases for all ever-
green conifers. In the case of Larix spp. we find significant slope
changes, indicating that synchrony increases more after 1950 than
before proportionally to distance. Altogether, our results suggest
that external forcing factors superimpose on species-specific and
local controls, hence triggering a more synchronous tree growth.

We also investigate shifts in absolute growth trends over time
at the species level (SI Appendix, Fig. S5). We observe a growth
slowdown for all species in Spain, whereas the rate of growth
changes remains steady in Siberia. Notably, growth fluctuations
in Siberia become more consistent across species after the 1950s
(mean correlation of growth trends between pairs of species
before 1950, r = –0.41; after 1950, r = 0.53). A gradual growth
decline in Spain, reflecting increasingly limiting conditions over
time, and a more systematic pattern of growth changes in Siberia
from 1950 onwards seem to concur with the rise in synchrony
observed at different regional paces (sustained in Spain, abrupt
in the last decades in Siberia) during the last 120 years.

Processes driving increases in synchrony
Increases in synchrony are usually attributed to the influence

of climate on tree growth, as no other environmental driver is
likely to act on the same range in time and space (8). Yet, a
number of additional global drivers might also trigger the ob-

served increase in synchrony through their effect on growth. First,
increasing atmospheric CO2 concentrations can be expected to
augment water-use efficiency, hence boosting forest productivity
(4). Second, nitrogen deposition could further increase growth
through higher rates of carbon sequestration in sites with unfertile
or poorly developed soils (28). Third, a decrease in solar radiation
caused by anthropogenic aerosol emissions from 1950 (global
dimming; 29) may counteract the effect of CO2 fertilisation or
rising N deposition, negatively impacting on photosynthesis, es-
pecially in high latitudes (30). Fourth, changes in stand structure
due to rural abandonment, limited forest management and en-
croachment usually increase competition for resources and could
reduce tree growth (31). A detailed examination of these drivers
(SI Appendix, section 2B) leads us to discard them asmajor causes
of growth synchrony as opposed to climate.

We then examine whether enhanced synchrony is driven by
regional climate trends. Although the Earth’s surface has ex-
perienced a conspicuous warming in the last century, the pace
of temperature changes differs regionally (1). Interestingly, the
steady increase in synchrony among Spanish forests seems in line
with the gradual warming observed over the twentieth century. In
turn, temperature at high Eurasian latitudes shows a consistent
upward trend since the 1970s, which coincides with the steep
increase in synchrony observed in Siberia (SI Appendix, Fig. S6).

Analyses of climatic factors causing changes in growth and
of climate drivers underlying âC fluctuations are restricted to
data collected after 1930, in concert with the availability of reli-
able instrumental records (32). Despite species-specific ecolog-
ical features, the main climate variables related to growth are
regionally consistent across taxa (Fig. 3). As expected, we find
strong positive associations between growth and June–July tem-
peratures in Siberia (15, 33) (cold-limited growth) and May–July
precipitation and the SPEI drought index in Spain (19) (drought-
constrained growth). Besides, growth correlates with early spring
(April) temperature in Siberia (negatively) and with late winter
(February) temperature in Spain (positively, Fig. 3). Such con-
trasting regional responses to temperature in the early growing
season may be a consequence of varying physiological processes
underlying the mechanisms of dormancy breaking. After chilling
requirements are met in winter, cambial reactivation can occur
earlier in Siberia under higher April temperatures (34), hastening
the onset of xylogenesis (35). However, newly formed tissues can
be damaged if followed by severe frosts (33), causing hydraulic
dysfunction (freeze–thaw events) (36). A warm spring may also
activate the photosynthetic machinery in crowns that are func-
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tionally uncoupled from roots (35), and sudden early-spring tem-
perature drops may impair photosynthesis in Boreal evergreen
conifers (37). These mechanisms may restrict radial growth in
high latitudes (38). In contrast, in Mediterranean environments
an early cambial reactivation triggered by warm winters usually
increases carbon uptake and enhances wood formation (39).

The spatial structures of these growth-climate relationships
are characterized through cross-correlation analyses. The spatial
association is significant for most climate factors at sites >900
km apart in Siberia and >600 km apart in Spain (SI Appendix,
Fig. S7), confirming the existence of consistent subcontinental
forest responses to climate (11). This result means that climate
is a primary mechanism of synchrony in our tree-ring network. It
is therefore possible that increases in forest synchrony have been
driven by concomitant increases in regional climate synchrony.
However, we find that this is actually not the case (SI Appendix,
section 2C and Fig. S8).

Alternatively, we evaluate whether enhanced synchrony is
related to climate trends and variability. For this purpose we first
assess regional changes in growth-climate relationships through
moving correlations. Most relevant changes span from the onset
of the growing season through early summer, hence matching
the period of earlywood formation. For Siberia, the negative
dependence of growth on warmer April temperature increases
over time (Fig. 4A); for Spain, high February temperatures and
high May–June precipitation and SPEI become more important
for growth (Fig. 5). In this regard, we observe that âC values
are significantly associated to the correlation coefficients of the
varying relationship between growth and early growing-season
temperature. Notably, this association is negative for April in
Siberia (Fig. 4A) and positive for February in Spain (Fig. 5), hence
indicating divergent regional growth dynamics. In both cases, we
interpret this result as a sign of earlier cambial reactivation pro-
moting more synchronous growth over time. Rising temperatures
may induce an earlier cambial reactivation (40) resulting in both
a higher rate of xylem cell production and a longer duration of
cambial growth which, in principle, should increase ring-width
(41). However, this is not the case for Siberia, where an earlier
onset of cambial activity might be associated with increasing risk
of frost damage to the cambium (40). In this region tree growth
remains limited by low summer temperatures (Fig. 4A and SI
Appendix, S9) but this constraint has decreased after the 1970s
because of the positive warming trend (SI Appendix, Fig. S6),
exerting a growth desynchronization in June (Fig. 4A). This effect
is counterbalanced by a reinforcement of the negative impact of
high April temperatures on growth as a driver of synchrony (Fig.
4A). In Spain we also observe a diminishing growth dependence
on July precipitation and SPEI (SI Appendix, Fig. S10) (19),
which suggests a reduction of cambial activity in summer (36)
in response to warming-induced drought (SI Appendix, Fig. S11)
and a growth shift towards spring (May-June) (Fig. 5), hence
enhancing synchrony.

Synchrony patterns may not be exclusively linked to long-
term climate trends but also to changes in climate extremes over
time (26), as suggested by the reported independence of spatial
correlations of record-breakingmonthly temperatures time series
from those of the temperatures themselves (42). In general, sig-
nificant linear trends in climate variability (i.e. standard deviates
of monthly climate factors; SI Appendix, Fig. S11) are observed
for relevant growth periods (cf . Fig. 3). We find that a more
synchronous growth in Siberia is related to a larger temperature
variability in April and June (Fig. 4B), but not in peak summer
(July; SI Appendix, Fig. S9). Instead, the variability of climate
is unrelated to changes in synchrony in Spain (SI Appendix, Fig.
S10).

Finally, we explore the complementarity of climate trends
and variability in explaining regional synchrony through stepwise

linear regressions (Table 1). Initially, the impact of climate trends
on synchrony is considered using the subset of monthly climate
factors whose temporal relationships with growth exhibit a sig-
nificant association with âC values (Figs. 4 and 5). These models
provide a good explanation of synchrony changes (especially
for Spain), indicating that recent warming is a significant driver
of synchrony across the studied Eurasian forests. However, if
climate variability is also considered the model fitting is further
improved in Siberia up to r2-values similar to those for Spain.
In fact, climate variability for April and June in Siberia and cli-
mate trends for February temperature and June water availability
(precipitation and SPEI) in Spain explain 75%of the observed re-
gional synchrony patterns. Unravelling the exact effects of climate
warming and extremes on forest synchrony would require both a
higher spatial saturation of site chronologies and more detailed
instrumental records covering large geographic areas.

This study illustrates how early signals of climate change im-
pacting on forests can be traced back through the interpretation
of synchrony patterns stored in tree rings. Here we demonstrate
that climate change ismodulating spatial synchrony in tree growth
over disparate Eurasian regions, increasing the strength of the
common signal shared by trees under warmer conditions to levels
comparable to the mean synchrony between co-occurring trees
within a stand. Even reporting on differentPinaceae, including ev-
ergreen and deciduous conifers, our results are consistent across
species. The mechanisms behind this pattern require further
examination, but they seem to be dependent on the increasing
importance of regional-scale climate signals in tree rings overrid-
ing local growth drivers. The observed enhanced synchrony may
anticipate declines in tree vigor and growth that are critical for the
functioning and maintenance of forest ecosystem services under
a warmer future climate.

Materials and methods
Tree-ring indices and absolute growth trends. Site chronologies of tree-ring
indices (SI Appendix, section 1B) were obtained by cross-dating the tree-
ring width (TRW) series and posterior detrending and autocorrelation re-
moval with the Friedman supersmoother spline and autoregressive modeling
(43). This procedure eliminates the juvenile growth trend and generates
stationary (mean = 1) and residual TRW chronologies of dimensionless indices
that preserve common variance encompassing inter-annual timescales (high-
frequency variability potentially related to climate). Adequacy of sample
size for capturing the hypothetical population signal was assessed by the
Expressed Population Signal (EPS), with a threshold value of 0.85 used to
identify the ‘critical year’ at which the site chronology becomes reliable (44).
The study period was 1890 to 2009, i.e. period when the impact of climate
change on tree performance becomes noticeable (45). The common time
span across chronologies was 1924 to 1990 (central Siberia) and 1950 to 1988
(Spain).

Temporal trends in tree growth were characterized by the estimation
of growth rate changes using raw TRW records. To this end, the slope of
the linear regression of TRW on time was calculated for each chronology
for successive 30-year periods lagged by five years. The slopes were then
averaged for a particular region and for each period, and a simple linear
function was fitted after visual inspection. The slope of this function was
interpreted as rate of regional (or species) growth change. Comparison of
growth rates between regions (species) was performed through ANOVA
heterogeneity of slopes.

Mixed modelling. To investigate spatial synchrony patterns in indexed
chronologies we made extensive use of variance-covariance (VCOV) mixed
modelling (20) (SI Appendix, section 1C). To this end, chronologies were
grouped into potentially homogeneous subsets (20). First, two groups were
formed corresponding to each region. Next, chronologies were classified
at the regional level into three groups according to membership to a
particular species. A number of VCOV models accommodating between- and
within-group variability were tested (SI Appendix, section 1C) and compared
by Akaike and Bayesian information criteria, which favour parsimonious
models (46). We then derived estimates of spatial synchrony (or mean inter-
chronology correlation, âC) for chronologies belonging to either the same
region (species) or different regions (pairs of species) through the best VCOV
model (SI Appendix, section 1D, Tables S2 and S3). The parameter âC is
related to the mean inter-series correlation defined at the intra-site level in
dendrosciences (44). In both cases, VCOV structures were tested for successive
30-year segments lagged by five years. The length of 30 years was established
by plotting the standard error of âC against segments of varying length (from
10 to 50 years) for each region. The segment length corresponding to the
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inflection point of the curves was selected as a balance between number of
years and precision achieved (SI Appendix, Fig. S12).

Development of regional and species master chronologies. TRW indices
at the regional and species levels were estimated by best linear unbiased
prediction (BLUP), thus obtaining regional and species master chronologies
underlying the network of site chronologies (SI Appendix, section 1E). We
derived BLUP estimates from the best VCOV model fitted to the whole study
period using either a regional or a species classification as grouping criterion.
BLUPs were used as input for climate analysis.

Spatial patterns in synchrony. To assess how far the spatial patterns in
forest synchrony extend, we calculated the geographical distance between
pairs of chronologies, which were used (i) to obtain correlograms (47) testing
for significant correlations between chronologies located within ranges
of 300 km apart (SI Appendix, section 1F) and (ii) to regress correlations
between pairs of chronologies on distances. The linear regressions were
calculated at the species level for the periods 1890–1949 and 1950–2009
and their slopes tested through ANOVA heterogeneity of slopes. Regression
slopes were interpreted as indicators of spatial synchrony.

Relationships with climate. The effect of temperature, precipitation
and SPEI (48) on the inter-annual variability of TRW indices was quantified
through bootstrapping correlations and response function analyses (8) re-
lating regional and species master chronologies to monthly climatic data (SI
Appendix, section 1G). Growth-climate relationships were analyzed from the
previous October to current September, i.e. the year of tree-ring formation.
In addition, we obtained correlograms for temperature and precipitation
testing for significant correlations between sites located within ranges of
300 km apart (47). We also performed cross-correlation analyses to test for
causality of synchrony patterns in relevant climate factors as drivers of forest
synchrony over progressively larger distances (SI Appendix, section 1F) (47).

The influence of climate change on regional synchrony was assessed
through a two-step procedure. First, a moving correlation analysis involv-
ing regional chronologies and monthly climate factors was performed for
successive 30-year periods lagged by five years; subsequently, changes in
temporal dependence of growth on climate (i.e. r-values of the moving
correlation analysis) were related to variation in âC over time through simple
correlations. Second, we examined a possible role of climate variability in
explaining changes in synchrony. To this end, we calculated the standard
deviation (SD) for monthly climate factors of successive 30-year periods
lagged by five years. The relationships between SD of climate variables and
âC were also investigated through simple correlations. The analyses of both
climate trends and variability determining synchrony was restricted to the
subset of climate factors showing a significant impact on growth for the
entire period, 1930 to 2009, as a prerequisite for identifying climate drivers
of âC fluctuations. To determine the predictive ability of climate factors and
their variability on the explanation of synchrony patterns, linear stepwise
models were built at the regional level using as independent variables the
r-values of the moving correlation analysis (step 1) and the SD changes over
time (step 2), with a threshold value of p = 0.15 as the criterion for variables
to be either included or removed.
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