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The article concluded probability distribution functions sum of the squares of the random variables in
the non-zero expectations. The resulting distribution function is possible to create an efficient single-step
phase ambiguity resolution algorithm in determining the spatial orientation of the signals of satellite
radio navigation systems. Obtained thresholds at rejecting false solutions, as well as statistical data of

the algorithm.
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Most problems in designing, research and operation of electronic equipment operate on a ran-
dom variable having a normal distribution of probabilities. The value of the normal distribution
is characterized by two parameters - the expectation of m and variance D. In practice, very often
have to deal with the sum of normally distributed variables. In the case of the independence of
these variables as a result of the addition is normally distributed, and the expectations and vari-
ances are added. Given that the variance is the square of the standard deviation, the resulting
dispersion is the sum of squares of the standard variance of the initial terms.
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In the analysis of the resulting error is usually assumed that the individual components are
independent and have the expectation of zero. On this basis, the resulting error is determined
as the sum of squares of the components of the error or the square root of this value. For the
statistical analysis used probability distribution of the sum of squares of random variables with
expectation of zero. This is a known distribution x2. However, in some cases, it may be that
error components are the expectation, not equal to zero and a priori unknown. For example,
such a situation is encountered in the resolution of phase ambiguity in the measurement of the
spatial orientation of the signals of satellite navigational systems [1-3]. When iterating cycles
phase is obtained only right decision and many false. In case the right decision expectation
error is zero and the measurement error of spatial orientation is determined solely by the errors
of measurement of phase shifts. The false solutions, an additional error a result of incorrect
decision that the redundancy of systems of equations leads to additional the residuals measuring
the phase shift. These residuals are constant for given values of phase ambiguity and have the
character of a priori unknown mathematical expectation.

Another example is the ionosphere and troposphere delay error of measurement signals in
satellite navigation systems [4,5]. They are usually taken into account in the overall budget as
a measurement error variance, ie a sum of squares, although these errors are always positive, ie,
have a non-zero expectation. In these cases x? distribution function can be used.

Despite the prevalence of cases with zero expectation, distribution function y? with nonzero
mathematical expectation is unknown.

1. The conclusion probability distribution functions sum
of the squares of the aundom variables in the non-zero
mathematical expectations

So you need to get the value of the probability distribution function

By 0
=1

where z; is independent random variables distributed normally with different mathematical ex-
pectations m; and standard deviations ;. Consider the special case when o1 =09=...=0,= 0.
Because the Z value is always greater than zero, then the probability density

p(Z <0) =0, (2)
The values of x; are independent and normally distributed
1 (wi—m;)?
T;) = e 202 3
p(a) = )

The joint probability density is the product of the probability densities (3) each of independent
variables:

)

1 n _iil (z5—m;)?2
p(x1,22,...x) =p(x1) - p(22)...p(x0) = < /271-02> 7= E— (4)

To get the probability density value of Z, you must first obtain the probability density function
of the square of a random variable, and then, under the law of addition of random variables, can
be obtained and the desired probability density.
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For one, we have a random variable

o _ o (z—m) _ 1
Zy =17, x=%\/2, pl(x)_gme 27, D 27\/2—1,
If 7, < 0 then p(Z) =0, if Z; > 0 then
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This result is known, and shown for example in [6]. Clearly, when m = 0, p(Z;) becomes x>

z 2 VZ /7] /7
1 B 1+;n.1 1M1 _ 12rnl:| 1 1+m1 < m1>

distribution with one degree of freedom.

To calculate the probability density function of the sum of squares of random variables we use
characteristic functions [7]. It is known that the characteristic function of the sum of independent
random variables is equal to the the characteristic functions of the terms, while the density of
the probability distribution of the sum is the convolution operation using the probability density
function of terms.

Distribution function of a random variable and the characteristic function associated Fourier
transform:

o0 - | (@) 7z, (6)

h ' 1 1 -2 T
@(v)=/ p(Z)-e“’Zdzzam/ N A

dz
By replacing y = v/Z, obtain dy = ——, from
y rep gy Y w7

2
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y2 02
e 22t g dy. (8)
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Making the change of variable retransmission t =

from

O (v) =

2 2 1 2 1
/ St = il

. = . 9
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It is also a known expression for the characteristic function of the distribution x?2.

We make the conclusion of the characteristic function at nonzero mathematical expectation
m # 0.

1 _(VZ-m)? _(=vZ-m)?
p(2) = [ } ,

— |e 202 + e 252
20V 217
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(10)
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1
We make the change of variable y = /Z, where dy = ﬁdZ . Then we have:
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m
Given that c = ———, z = yV1 — 2i0%v, dz = V1 — 2ic2v-dy, we arrive at the following
V1=2ic%v’
expression:
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ztc 1
and replacing t = ——, where dt = —dz, we arrive at the following expression
o o
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(13)

With zero expectation m = 0 coincides with the formula obtained (9). The characteristic
function of the sum of squares of independent normal random variables with nonzero expectation
is equal to the product of the characteristic functions of the terms:

v 35 m3

O, (v) = (1- 21’02@)_% TR (14)

If my = 0 This formula becomes the known expression for the characteristic function distributed
according to x? with n degrees of freedom

3

0, (v) = (1 -2ic%v) 2, (15)
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From the expression (14) shows a remarkable property of the characteristic function - with
equal accuracy terms (o7 = 02 = ... = 0, = 0), it does not depend on the distribution of
the expectations of random variables separately, and from the sum of their squares. The same
property must have a probability density function and the sum of squares of random variables.
Let the total expectation

m? = Zmi (16)
k=1

The density of the probability distribution can be obtained by performing the inverse Fourier
transform of the characteristic function.
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We make the change of variable y = 202v, where dy = 202dv, v = 52. Then we have:

1 m? > _n m?2 .
P (2) e [y rm gy, (18)

= 2
4o oo

From the expression (19) shows that the probability density function depends on the ratio of
the total of the expectation of a standard deviation ™/,.
Charts probability density for various values are ™/, shown in Fig. 1.

p(Z)

Fig. 1. The density of the probability distribution of the sum of squares of random variables for
different values of m

The probability density (18) cannot be expressed in terms of elementary and tabulated func-
tions, complicating the task of calculating the probability of finding a given value in a particular
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area. For these purposes, you can get a cumulative distribution function

o (19)
TUmROR) T (1o ) ao,

I , 1 [ ‘
P(Z) = g/ / (@) (fu) e dndZ = %/ GZE]U) ) (1 B ewa) dv —
L 2

27 J_ o v

Conclusion

The resulting probability distribution function is possible to create an efficient single-step

algorithm for phase ambiguity resolution in the measurement of the spatial orientation of the
signals of satellite radio navigation systems [8-12]. Obtained thresholds at rejecting false solu-
tions, as well as statistical data of the algorithm.
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Q)YHKI_[I/IH paciipedejieHnd IIJIOTHOCTU BepOHTHOCTeﬁ CYMMBI
KBaJApaToOB CﬂyqaﬁHbIX BE€JINYUH IIPA HEHYJIEBbIX
MaTeMaTNnIYeCKNUX OKMNAJAaAHMNAX

FOpuwuii JI. ®areesn
Baagumup B. Ilaiigypos
Esrennit H. l'apun
Avurpuii . Imurpuen
Banepmit H. Tankun

B cmamwve npouseeden 6vi600 dyHKuuu pacnpedeserus NAOMHOCU 8ePOAMHOCTEL CYMMbL KEAOPAMOE
CAYHATHDIT BEAUNUH NPU HEHYAEEHIT MAMEMAMUYECKUT oocudanuax. ITorywennas Gynrkyus pacnpede-
NEHUA NO3BOAUAG CO30aMD IPPHEKMUSHBLT 0OHOMOMEHMHVIT AN2OPUMM PA3PEWEHUA Pa30680U HEOOHO-
BHAYHOCTAU NPU USMEPEHUU NPOCTNPAHCTNEEHHOT, OPUEHMAUUY NO CULHAAGM CIYMHUKOSHLT PadUOHAEU-
2auuoHHbT cucmem. Iloayuerve Mopozosvle 3HAMEHUA NPU OMOPAKOBKE AOHCHOIL PEWEHUT, @& MAKHCE
CMAMUCTMUYECKUE TAPAKMEPUCTIUKY NOAYUEHHOZ0 AAZOPUMMA.

Karouesvie cao6a: GyHKuus pacnpedeserus nAomHocmy 6eposmmocmeti, HOPMAAdbHOE DPacnpedeseHue,
ducnepcusa, Keadpam cpednexsadpamuieckozo OMmKAOHEHUS.
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