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Abstract 11 

Cupriavidus eutrophus В10646 was used to synthesize a series of polyhydroxyalkanoates 12 
(PHA) tetrapolymers composed of the short-chain-length 3-hydroxybutyrate (3HB), 4-13 
hydroxybutyrate (4HB), and 3-hydroxyvalerate (3HV) and the medium-chain-length 3-14 
hydroxyhexanoate (3HHx). The molar fraction of 3HB in the copolymers varied between 63.5 15 
and 93.1 mol.%, 3HV – between 1.1 and 24.6 mol.%, 4HB – between 2.4 and 15.6 mol.%, and 16 
3HHx – between 0.4 and 4.8 mol.%. The properties of PHA tetrapolymers were significantly 17 
different from those of the P(3HB) homopolymer: they had much lower degrees of crystallinity 18 
(reaching 30-45%), and lower melting points and thermal decomposition temperatures, with the 19 
interval between these temperatures remaining practically unchanged. Films prepared from PHA 20 
tetrapolymers were rougher and more porous than P(3HB) films; they showed higher values of 21 
elongation at break (up to 100-200%), i.e. were more elastic. Films prepared from PHA 22 
tetrapolymers were biocompatible and had no toxic effect on mouse fibroblast NIH 3T3 cells. 23 

 24 
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1. Introduction 1 

Polymers of hydroxy derived alkanoic acids (polyhydroxyalkanoates, PHAs) are valuable 2 

products of biotechnology. PHAs are synthesized by prokaryotes as energy and carbon storage. 3 

PHA producers accumulate them intracellularly under the conditions limiting microbial growth 4 

and synthesis of primary metabolites by nutrient (nitrogen, phosphorus, oxygen, etc.) deficiency 5 

[1]. PHAs have a wide range of useful properties, including biocompatibility and 6 

biodegradability. They can be used to fabricate various products – from degradable packaging to 7 

high-tech devices for biomedical applications [2-4]. 8 

PHAs include polymers with various chemical structures, which differ in their basic 9 

physicochemical properties. PHA copolymers are more attractive materials for fabricating 10 

various products than the highly crystalline homopolymer of 3-hydroxybutyric acid [P(3HB)]. 11 

PHA copolymers have aroused considerable interest, and a great number of genetically modified 12 

and a few natural PHA producers capable of synthesizing them have been described by now. 13 

Synthesis of new PHA types with enhanced processing ability is usually aimed at producing 14 

polymers with lower degrees of crystallinity, which show elastomer properties. However, 15 

synthesis of PHA copolymers is a complex and difficult task of biotechnology, as it usually 16 

requires that the culture medium be supplemented with additional carbon sources – precursors of 17 

the target monomers, most of which inhibit the growth of microorganisms. Hence, the cell 18 

biomass production and PHA yields are reduced [5-6]. Difficulties in achieving regulated and 19 

reproducible synthesis of PHA copolymers hinder accumulation of data on the effects of 20 

monomer composition on the physicochemical properties of PHA copolymers. A considerable 21 

amount of literature has been published on synthesis and properties of PHAs consisting of two 22 

monomers; there has been much less research on PHA terpolymers.  23 

Data on synthesis and properties of PHA tetrapolymers are limited. Tan et al. [7] 24 

described the ability of Pseudomonas putida PGA1 grown on saponified palm oil and fatty acid 25 

derivatives to synthesize multicomponent PHAs that contained medium-chain-length monomers 26 
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with even numbered carbon chains (C6, C8, C10, C12, C14). Other authors [8-10] showed that 1 

recombinant Pseudomonas strains harboring cloned genes of the synthesis of short-chain-length 2 

PHAs from Ralstonia and other PHA producers were capable of synthesizing 3-hydroxybutyrate 3 

copolymers with various medium-chain-length monomers, whose properties were similar to 4 

those of low-density polyethylene. In a relatively recent study by Mizuno et al. [11], recombinant 5 

Ralstonia eutropha PHB-4 carrying synthase gene from Pseudomonas sp. (PhaC1Ps) was used to 6 

synthesize PHA tetrapolymer that was mainly constituted by 3HB monomers (92-99 mol.%) and 7 

minor fractions of 3HV (0.7-3.0), 3H4MV (0.3-0.6), and 3H3PhP (4.2-12.2 mol.%) from the 8 

complex carbon substrate that contained such precursors as 3-hydroxy-3-phenilpropionic acid 9 

(3Р3PhP), 3-phenilpropionic acid  (3PhP), cinnamic acid (CA), 5-phenilvaleric acid (5PhV), and 10 

6-phenilhexanoic acid (6PhHx). Those PHAs had lower melting temperature, enthalpy of fusion, 11 

and number average molecular weight than P(3HB). 12 

In a previous study conducted by our team, two wild-type strains (Wautersia eutropha 13 

H16 and B5786) were grown under autotrophic conditions on CO2 and in heterotrophic culture 14 

on fructose. The addition of valerate or hexanoate or octanoate as a precursor substrate resulted 15 

in the synthesis of PHA copolymers consisting of short-chain-length monomers of 3-16 

hydroxybutyrate and 3-hydroxyvalerate as major monomers (57-98 mol.% and 21-68 mol.%, 17 

respectively) and minor fractions of medium-chain-length monomers (3HHx, 3HO, and 3HHp) – 18 

between 0.10 and 2-3 mol.% [12]. The properties of those PHAs varied depending on the molar 19 

fractions of the monomers: Cx between 49 and 71 %; Тm and Тd between 146 and 168 and 20 

between 210 and 268°C, respectively. 21 

The purpose of the present study was to investigate properties of PHA tetrapolymers 22 

containing short- and medium-chain-length monomers.  23 

2. Experimental 24 

2.1. Materials 25 
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Samples of PHA were synthesized at the Institute of Biophysics of the Russian Academy 1 

of Sciences. PHA tetrapolymers containing short-chain-length and medium-chain-length 2 

monomers were synthesized using Cupriavidus eutrophus B10646. PHA synthesis was 3 

performed on the basis of previously data obtained on the physiological effect of toxic precursor 4 

substrates (γ-butyrolactone; valeric acid, hexanoic acid) and the effect of their concentrations on 5 

specific growth rate of bacteria, cell biomass yield and total yield of PHA [13-15].  6 

 7 

2.2. Analysis of PHA structure 8 

Polymer was extracted with chloroform and then precipitated with hexane. Composition 9 

of extracted polymer samples was analyzed with a GC-MS (6890/5975C, Agilent Technologies, 10 

U.S.). 1H NMR spectra of copolymer were recorded at room temperature in CDCl3 on a 11 

BRUKER AVANCE III 600 spectrometer operating at 600.13 MHz. 12 

 13 

2.3. Analysis of physicochemical properties of PHA 14 

Molecular weight and molecular-weight distribution of PHAs were examined using a gel 15 

permeation chromatograph (Agilent Technologies 1260 Infinity, U.S.) with a refractive index 16 

detector, using an Agilent PLgel Mixed-C column.  17 

Thermal analysis of PHA specimens was performed using a DSC-1 differential scanning 18 

calorimeter (METTLER TOLEDO, Switzerland). Samples were preheated to 60°C and cooled to 19 

25°C. The specimens were heated to temperatures from 25°C to 300°C, at 5°C×min-1 20 

(measurement precision 1.5°C). The thermograms were analyzed using the STARe v11.0 21 

software. 22 

X-Ray structure analysis and determination of crystallinity of copolymers were performed 23 

employing a D8 ADVANCE X-Ray powder diffractometer equipped with a VANTEC fast linear 24 

detector (Bruker, AXS, Germany). Calculations were done by using the Eva program of the 25 

diffractometer software.  26 
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2.4. Analysis of PHA microstructure and physical/mechanical properties 1 

To investigate PHA properties, the polymer was processed into films. Films were 2 

prepared by casting chloroform solution (2% w/v) on degreased glass and subsequent drying at 3 

room temperature for 2-3 days in a dust-free box. The film discs were 100 mm in diameter and 4 

0.04 mm thick.  5 

The microstructure of the surface of PHA films was analyzed using scanning electron 6 

microscopy (S 5500, Hitachi, Japan). Prior to microscopy, the samples were sputter coated with 7 

platinum (at 10 mA, for 40 s), with an Emitech K575X sputter coater. 8 

The roughness of film surface was determined using atomic-force microscopy (AFM) in 9 

semicontact mode (Smart SPM™, AIST-NT, Zelenograd, Russia).  10 

Surface properties of the polymer films and 3D constructs were examined using a DSA-11 

25E drop shape analyzer (Krüss, Germany) and software DSA-4 for Windows.  12 

Physical/mechanical properties of films were investigated using an Instron 5565 13 

electromechanical tensile testing machine (U.K.). Young’s modulus (E, MPa), tensile strength 14 

(σ, MPa) and elongation at break (ε, %) were automatically calculated by the Instron software 15 

(Bluehill 2, Elancourt, France).  16 

 17 
2.5. Assays of PHA biocompatibility 18 

Films were cut into disks of 10 mm diameter, using a mold cutter. The samples were 19 

packed using an NS 1000 shrink-wrapping machine (Hawo Gmbh, Germany) and sterilized with 20 

H2O2 plasma in the Sterrad NX system (Johnson & Johnson, U.S.) for 45 min. The ability of 21 

ultrafine PHA films to facilitate cell attachment was studied using NIH 3T3 mouse fibroblast 22 

cells. Cell cytoplasm and nuclear DNA molecules were stained with phalloidin conjugated with 23 

fluorescein (FITC) and DAPI, respectively (Sigma–Aldrich). The cells were analyzed using a 24 

Leica DM6000 B fluorescence microscope. Cell viability was evaluated using MTT assay at Day 25 

3 after cell seeding onto films. Optical density of the samples was measured at wavelength 540 26 
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nm, using a Bio-Rad 680 microplate reader (Bio-Rad LABORATORIES Inc., U.S.  1 

All the characterization was performed in similar procedures as previous described [13-2 

14]. 3 

3. Results and Discussion 4 

Copolymers of different compositions were synthesized in C. eutrophus В-10646 culture, 5 

under specialized conditions. The molar fraction of 3HB in the copolymers varied between 63.5 6 

and 93.1 mol.%, 3HV – between 1.1 and 24.6 mol.%, 4HB – between 2.4 and 15.6 mol.%, and 7 

3HHx – between 0.4 and 4.8 mol.% (Table 1). Thus, the lowest total content of the three 8 

monomer units other than the major 3-hydroxybutyrate (3HB) was 6.9 mol.% and the highest 9 

36.5 mol.%. The monomer composition of the PHAs was determined by chromatography-mass 10 

spectrometry and 1H NMR spectroscopy. Figure 1 shows the ion chromatogram with mass 11 

spectra of the monomers and a 1H NMR spectrum of one PHA – P(3HB/3HV/4HB/3HHx) 12 

(63.5/19.4/12.3/4.8 mol.%). 13 

 14 

3.1. Physicochemical properties of PHA tetrapolymers  15 

Thermal properties of PHAs and their ability to crystallize in their native state are their 16 

most significant parameters, as they determine the thermomechanical properties of the polymers 17 

and, hence, their ability to be processed from the melts. PHAs, like many other polymers, have a 18 

heat distortion temperature somewhat lower than the thermal degradation temperature. Thus, 19 

polymers cannot exist in the gaseous state, and the main type of phase equilibrium in them is a 20 

condensed state – crystalline, glassy, viscoelastic, and liquid. The ability of PHA to crystallize is 21 

determined by the inner properties of its chains. In a number of polymers, crystallization 22 

develops only partly for various reasons. Thus, most of the polymers, including PHAs, are semi-23 

crystalline materials.  24 
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The relative fractions of monomers influenced physicochemical properties of PHAs, 1 

including their degrees of crystallinity, molecular-weight properties, and thermal characteristics 2 

(Table 1).  3 

One of the most important macroscopic parameters characterizing polymer properties is 4 

molecular weight, which determines the processability of the material. PHAs produced by 5 

microbial synthesis show higher molecular weights than chemically synthesized PHAs [16]. 6 

PHA molecular weight is a variable parameter, depending on physiological and biochemical 7 

properties of the PHA producing strain, the conditions of carbon nutrition, and the method of 8 

polymer recovery. For instance, the number average molecular weight (Mn) of P(3HB) 9 

synthesized by Comamonas acidovorans is no more than 58 kDa [17] while the Mn of the 10 

polymer synthesized by recombinant strain Ralstonia eutropha PHB-4 is 1580 [18]. The Mn 11 

values of the P(3HB/4HB) copolymer also vary widely, but its average Mn is lower than that of 12 

the P(3HB) homopolymer. The Mn values of P(3HB/4HB) containing 23-24 mol.% 4HB 13 

reported by different authors range between 104 and 590 kDa [19-20]. Similar values are 14 

reported for P(3HB/3HV) and P(HB/3HHx). Results of examining molecular-weight properties 15 

of PHA tetrapolymers are given in Table 1. Mn values varied between 72 and 223 kDa, being 16 

1.5-5.0 times lower than the Mn values of P(3HB). The P(3HB/3HV/4HB/3HHx) specimen 17 

containing 63.5/19.4/12.3/4.8 mol.% of the monomers showed the lowest Mn and Mw values – 72 18 

and 437 kDa, respectively. The Mn and Mw of the polymers with lower molar fractions of 4HB 19 

and 3HHx were higher. The polymers with higher molar fractions of 3HV, 4HB, and 3HHx also 20 

showed higher polydispersity, ranging between 3.03 and 6.07 versus 2.52 in P(3HB). The higher 21 

Đ values suggested heterogeneity of the fragments of polymer carbon chains. The decrease in the 22 

Mw of PHA tetrapolymers is consistent with the data on PHA copolymers [15, 19-20] and 23 

terpolymers [2, 14]. 24 

Important properties of PHAs are their melting temperature (Tm) and thermal degradation 25 

temperature (Tdegr). The Tm for P(3HB) reported in the literature ranges between 162°C [21] and 26 
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197°C [22]. The data reported on the Tm of P(3HB/3HV) copolymers are contradictory. For 1 

instance, the Tm of a P(3HB/3HV) copolymer with 6 mol.% 3HV was determined as 186°C [22], 2 

but in a study by Zhao and Chen, the copolymer of a similar composition had the Tm of 156°C 3 

[21], while Zhang et al. reported the value of 170°C [23]. The Tm of the copolymers with 20 4 

mol.% 3HV was 114°C as reported in a study by Avella et al. [24] but 145°C as measured by 5 

Tsuge [25]. The data on the Tm of other PHA types are also inconsistent. According to the 6 

literature data, the Tm of P(3HB/4HB) copolymers containing between 2 and 7 mol.% 4HB may 7 

range between 114 and 172°C. As the molar fraction of 4HB was increased to 75-100%, the Tm 8 

dropped to 40-54°C [20, 26-27]. Another study, however, showed that the Tm of P(3HB/4HB) 9 

copolymer containing 84 mol.% 4HB was at least 130°C [28]. Similar differences between the 10 

data and the trend to a decrease in Tm and Tdegr were reported for PHA terpolymers [13-14, 23]. 11 

For PHA tetrapolymers, thermograms were taken within a wide temperature range, 12 

including melting point (Tm) and thermal degradation temperature (Tdegr) (Table 1). The melting 13 

temperature of P(3HB/3HV/4HB/3HHx) (93.1/1.1/5.4/0.4 mol.%) was 166°C, i.e. 12°C lower 14 

than the melting temperature of P(3HB); moreover, this PHA specimen had the lowest 15 

thermal degradation temperature – 259°C, which was 36°C lower than that of P(3HB). It is 16 

important that although the melting temperature and the thermal degradation temperature 17 

decreased in all PHA specimens, the interval between these two parameters remained almost 18 

the same. A decrease in the melting temperature (to 53-54°C) was also observed for PHA 19 

tetrapolymers with another composition, which contained medium-chain-length monomers 20 

with even numbers of carbon atoms (C6, C8, C10, C12, C14) [7]. Thus, the PHA tetrapolymers 21 

with different monomer compositions all exhibited thermoplasticity – one of the most 22 

important properties of PHAs.  23 

The monomer composition of the PHA tetrapolymers exerted the most significant effect 24 

on their degrees of crystallinity (Table 1), which were generally considerably lower (under 50%) 25 

than the degree of crystallinity of P(3HB) (76%). As the total proportion of the monomer units 26 
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other than 3HB increased, the Cx value dropped, and the most substantial decrease, to 30 and 1 

34%, was observed in the polymers in which 3HV, 4HB, and 3HHx totaled about 29.4 and 36.5 2 

mol.%. Thus, in all the PHA tetrapolymers, the crystalline phase decreased and the amorphous, 3 

disordered regions increased, indicating higher processing ability of the material. Literature data 4 

on the degree of crystallinity of PHA copolymers are limited and rather contradictory. The Cx of 5 

P(3HB) reported by different authors varied between 59 and 86% [17, 29-30]. Noda et al. [31] 6 

showed that the presence of a 20-22% 3HV molar fraction exerted very little influence on the 7 

degree of crystallinity of the copolymer, but Dai et al. [32] reported that the degree of 8 

crystallinity of the copolymer containing 29 and 32 mol.% 3HV dropped dramatically (to 5 and 9 

9%, respectively). Even fewer data are available on the degree of crystallinity of 3HB/3HHx 10 

copolymers, and they are also contradictory. In their study, Noda et al. showed that the 11 

copolymer containing 12-18 mol.% 3HHx had the degree of crystallinity of 38-40% [31], while 12 

Fukui et al. reported the same degree of crystallinity for the copolymer that contained a much 13 

smaller fraction of 3HHx (1.5 mol.%) [33]. The lowest Cx values were reported for PHA 14 

copolymers (9-20%) and terpolymers (30-50%) containing 4HB monomer units [14, 17, 34]. 15 

 16 

3.2. Physical/mechanical properties of PHA tetrapolymers  17 

In order to investigate physical/mechanical properties of the PHAs, dense smooth films 18 

were prepared from the chloroform solutions of PHAs. The films differed considerably in their 19 

mechanical strength (Table 2). Strength parameters, i.e. tensile strength and Young’s modulus, of 20 

PHA copolymers were considerably lower than those of the P(3HB) homopolymer. This 21 

difference was more noticeable in Young’s modulus, which was the lowest (102.47 MPa) in the 22 

3HB/3HV/4HB/3HHx = 63.5/19.4/12.3/4.8 polymer – one with the lowest 3HB molar fraction 23 

(63.5 mol.%) and the highest total content of the other three monomers (36.5 mol.%). The 24 

specimens with a somewhat higher 3HB fraction, which varied between 70.6 and 93.1 mol.%, 25 

and the lower total content of the other three monomers (between 6.9 and 29.4 mol.%), showed 26 
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similar values of Young’s modulus – 337.01 – 352.59 MPa. That was 6 times lower than 1 

Young’s modulus of P(3HB). The values of tensile strength of the specimens examined were 2 

also lower than the tensile strength of P(3HB), although to a lesser extent, reaching 7.12 – 14.29 3 

MPa. By contrast, elongation at break (an indicator of elasticity) was considerably higher in all 4 

copolymer specimens. The highest values reached 103.21-113.32% and the lowest 37.75-5 

56.25%, i.e. they were 40-80 and 15-20 times higher, respectively, than elongation at break of 6 

P(3HB). Having reviewed the available literature, we did not find any data on strength 7 

parameters of PHA copolymers of the same composition. There are data, however, suggesting 8 

that incorporation of 3HHx and/or 4HB monomer units into the carbon chain of 3-9 

hydroxybutyrate increased elasticity but decreased mechanical strength of polymer products 10 

fabricated from PHA co- and terpolymers [13-14, 20, 35]. Thus, PHA tetrapolymers containing 11 

3HHx, 4HB, and 3HV showed enhanced elasticity and decreased mechanical strength. 12 

 13 

3.3. Morphology and characterization of the surface of the films prepared from PHA 14 

tetrapolymers   15 

SEM and AFM images of the surfaces of PHA specimens prepared from PHAs with 16 

different chemical compositions that had dissimilar physicochemical properties are shown in 17 

Figure 2. The surface of the films prepared from PHA tetrapolymers [P(3HB/3HV/4HB/3HHx)] 18 

was rougher than the surface of P(3HB) films, with numerous pores of different diameters (1 to 6 19 

µm) (Fig. 2a). As the molar fraction of 4HB was increased, the pores became more numerous 20 

and of larger size (between 3 and 6 µm); their shape and size became more diverse. 21 

Analysis of the atomic-force microscopy images (Fig. 2b) suggested that the root mean 22 

square roughness (Rq) of all copolymer films was 2.0 to 4.7 times higher than the Rq of P(3HB) 23 

films (Table 2). The highest value of Rq (375.110 nm) was determined for the 24 

P(3HB/3HV/4HB/3HHx) = 70.6/24.6/4.3/0.5 (mol.%) specimen. The surface roughness of the 25 

films used as cell scaffolds may determine cell attachment, spreading, and motility; it may also 26 
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influence the synthesis of specific proteins. However, while some data suggest that cells are 1 

attached better to rough surfaces than to polished ones, other data state that changes in roughness 2 

are not accompanied by any cellular effects [36]. In a previous study, we observed considerable 3 

differences between the roughness of the films of PHA terpolymers consisting of 3HB/3HV/4HB 4 

or 3HB/3HV/3HHx monomers and the roughness of P(3HB) films, but we did not reveal any 5 

direct relationship of the roughness to the monomer composition [14]. 6 

An important parameter indirectly characterizing biocompatibility and influencing cell 7 

attachment and viability is the hydrophilic/hydrophobic balance of the surface [37]. It is 8 

evaluated by measuring contact angles for water or diiodomethane. Results of these 9 

measurements are used to determine surface energy and polar and dispersive components of 10 

surface free energy. The water contact angle for PHA tetrapolymers varied between 87.62 and 11 

101.06° and was generally close to the water contact angle for P(3HB) films (97.4°); the other 12 

parameters of the homopolymer and copolymer films were similar, too (Table 3).   13 

 14 

3.4. Cytotoxicity assay of films of PHA tetrapolymers with different molar fractions of 15 

monomer units  16 

Biological properties of PHA films (their adhesive properties and ability to facilitate cell 17 

proliferation) were studied in the culture of NIH 3T3 mouse fibroblast cells. MTT assay showed 18 

that none of the PHA specimens produced any cytotoxic effect in direct contact testing. The 19 

fibroblasts attached to the surface of the polymer films retained their normal morphology, were 20 

metabolically active, and proliferated without any toxic changes during the entire observation 21 

period. After 24 h of cultivation, cell counts were comparable on all films of PHA copolymers, 22 

polystyrene (control), and on P(3HB) films (Supplementary Fig.). Some differences in the 23 

number of viable cells were recorded at Day 3, but they were not statistically significant.  24 

Results of investigating the morphology of fibroblasts cultivated on the PHA films by 25 

using fluorescent dyes – a nuclear DNA marker (DAPI) and a cytoplasm marker (FITC) – were 26 
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consistent with results of MTT assay. After three days of cultivation, more than 80% of the 1 

surface of each film made of PHA tetrapolymers was covered by a confluent monolayer of cells 2 

(Fig. 3).  3 

Conclusion 4 

In this work, we investigated PHA tetrapolymers composed of different fractions of the 5 

short-chain-length 3-hydroxybutyrate, 4-hydroxybutyrate, and 3-hydroxyvalerate and the 6 

medium-chain-length 3-hydroxyhexanoate. Physicochemical, physical/mechanical, and 7 

biological properties of the PHA copolymers in which the total content of the three monomer 8 

other than the major 3-hydroxybutyrate varied between 6.9 and 36.5 mol.% were investigated. 9 

The properties of PHA tetrapolymers were significantly different from those of the P(3HB) 10 

homopolymer: they had much lower degrees of crystallinity (reaching 30-45%) and lower 11 

melting points and thermal decomposition temperatures, with the interval between these 12 

temperatures remaining practically unchanged. All films prepared from PHA tetrapolymers with 13 

different compositions were biocompatible and had no toxic effect on mouse fibroblast NIH 3T3 14 

cells. 15 
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Table 1 Physicochemical properties of films of PHA tetrapolymers with different molar 1 

fractions of monomer units  2 

Specimen 

No. 

PHA composition, mol.% Тmelt., 

°С 

Тdegr., 

°С 

Сх, 

% 

Мn, 

kDa 

Мw, 

kDa 
Ð 

3HB 3HV 4HB 3HHx

P(3HB) 100.0 0.0 0.0 0.0 178 295 76 365 920 2.52

1 93.1 1.1 5.4 0.4 166 259 42 102 476 4.67

2 89.7 4.9 2.9 2.5 168 284 42 178 787 4.42

3 79.5 4.5 15.6 0.4 169 285 45 183 554 3.03

4 77.5 19.6 2.4 0.5 171 284 37 223 817 3.66

5 74.7 17.8 3.7 3.8 173 270 37 126 542 4.30

6 70.6 24.6 4.3 0.5 169 272 34 139 814 5.85

7 63.5 19.4 12.3 4.8 168 286 30 72 437 6.07

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
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Table 2 Physical/mechanical properties of films of PHA tetrapolymers with different 1 

molar fractions of monomer units (numbers according to Table 1).  2 

Specimen 

No. 

Tensile 

strength, 

MPa 

Young’s 

modulus, 

MPa 

Elongation 

at break, % 

Ra – arithmetic 

mean surface 

roughness, nm 

Rq – root mean 

square roughness, 

nm 

P(3HB) 16.70 2071.20 2.50 71.749 80.283 

3 7.51 346.73 37.75 158.257 198.504 

5 14.29 337.01 113.32 189.619 244.497 

6 11.04 352.59 56.25 305.577 375.110 

7 7.12 102.47 103.21 120.908 157.535 

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
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Table 3 Surface properties of films of PHA tetrapolymers with different molar fractions 1 

of monomer units (numbers according to Table 1).  2 

Specimen 

No. 

Water contact 

angle, θ, ° 

Diiodomethane 

contact angle, θ, ° 

Surface free 

energy, erg/cm2 

Polar component 

of surface free 

energy, erg/cm2 

P(3HB) 97.42±2.63 58.52±1.44 30.43±1.01 1.23±0.18 

3 87.62±1.91 49.94±1.25 36.80±1.21 2.56±0.23 

5 101.06±2.43 44.18±1.10 37.80±0.68 0.12±0.42 

6 96.50±1.33 53.76±1.37 33.04±0.55 0.88±0.36 

7 97.98±1.91 67.56±2.02 25.82±1.25 1.58±0.42 

 3 
 4 
 5 
 6 
 7 

 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
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 25 
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 27 
 28 
 29 
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 31 
 32 
 33 
 34 
 35 
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Figure Legends 1 

Fig. 1. Ion chromatogram (a) with mass spectra and 1H NMR spectrum (b) of 2 

P(3HB/3HV/4HB/3HHx) (63.5/19.4/12.3/4.8 mol.%) 3 

Fig. 2. SEM (a) and AFM (b) images of the films prepared from PHA tetrapolymers with 4 

different molar fractions of monomers (bar =10 µm). 5 

Fig. 3. Morphology of NIH 3T3 fibroblast cells cultivated on films of PHA tetrapolymers 6 

with different proportions of monomers (Day 3): DAPI (A) and FITC (B) staining. Bar = 50 µm.  7 
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