Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический институт Кафедра Тепловые Электрические Станции

УТВЕРЖДАЮ Заведующий кафедрой <u>подпись</u> <u>Е. А. Бойко</u> инициалы, фамилия «____» ____ 20____г.

БАКАЛАВРСКАЯ РАБОТА

13.03.01 - «Теплоэнергетика и теплотехника» Проект реконструкции Назаровской ГРЭС

Руководитель	подпись, дата	Доцент к.т.н. должность, ученая степень	<u>С. Р. Янов</u> инициалы, фамилия
Выпускник	подпись, дата		<u>Кириллов Е. В.</u> инициалы, фамилия
Нормоконтроле	ер подпись, дата		<u>П.В. Шишмарев</u> инициалы, фамилия

Тех. контролер

подпись, дата

<u>С. А. Михайленко</u> инициалы, фамилия

Красноярск 2016

Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический институт

Кафедра Тепловые Электрические Станции

УТВЕРЖДАЮ

Заведующий кафедрой _____ <u>Е.А.Бойко___</u> подпись инициалы, фамилия «___» ___ 20__г.

ЗАДАНИЕ

НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

в форме бакалаврской работы

Студенту Кириллову Егору Владимировичу

Группа <u>ФЭ 12-01Б</u>

Направление (специальность) <u>13.03.01 «Теплоэнергетика и теплотехника»</u>

Тема выпускной квалификационной работы <u>Проект реконструкции</u> <u>Назаровской ГРЭС</u>

Утверждена приказом по университету № 5781/с от 28.04.16

Руководитель ВКР <u>С.Р.Янов, Доцент кафедры «ТЭС»</u>

Исходные данные для ВКР: <u>ГРЭС города Назарово ,турбина К-500, котел П-49</u>

Перечень разделов ВКР

1.Укрупненный расчет котлоагрегата;

2Расчет принципиальной тепловой схемы;

3. Расчет технико-экономических показателей;

4.Индивидуальное задание;

Перечень графического или иллюстративного материала с указанием основных чертежей, плакатов, слайдов

Лист 1. Принципиальная схема турбины К-500;

Лист 2. Принципиальная схема турбины К-500 без ВВТО;

Лист 3. Разрез котельного цеха;

Лист 4.Общий вид ОВД-2;

Лист 5.Схема водяной обдувки топки;

Руководитель ВКР

С.Р.Янов

(подпись)

(инициалы и фамилия)

Задание принял к исполнению

Е.В.Кириллов

(подпись) (инициалы и фамилия студента)

«___» ____20_г

РЕФЕРАТ

Выпускная квалификационная работа по теме «<u>Проект реконструкции</u> <u>Назаровской ГРЭС</u>» содержит <u>37</u> страниц текстового документа,11использованных источников, 5 листов графического материала

Объект – ГРЭС г. Назарово.

Цели работы:

-Расчет принципиальной схемы с ВВТО;

- Реконструкция обдувочных аппаратов;

В результате реконструкции ГРЭС были установлены 2 аппарата дальнобойной обдувки ОВД-2 Красмаш.

СОДЕРЖАНИЕ

Введение	3
1 Укрупненный расчет котельного агрегата	4
2 Расчет принципиальной тепловой схемы	10
2.1 Построение процесса расширения пара в турбине	12
2.2 Определение параметров по элементам схемы	17
2.3 Расчет установки по подогреву сетевой воды	20
2.4 Определение расхода пара на турбину	
2.5 Баланс пара и конденсата	
2.6 Расчет схемы ПВД	
2.7 Расчет деаэратора	
2.8 Расчет точки смешения	
2.9 Расчет регенеративной схемы ПНД	27
2.10 Проверка мощности	
3 Расчет технико-экономических показателей работы станции	
4 Индивидуальное задание	
Заключение	
Список используемых источнников	

введение

В настоящее время по мощности ДПМ блок номер 7 не может нести нагрузку, из-за интенсивногошлакования топки. В связи с этим, делаем модернизацию системы очистки топки. Устанавливаем систему диагностики загрязнения и шлакования«Facos» и два дополнительных дальнобойных аппарата обдувки топочных экранов ОВД-2 Красмаш.

1 Укрупненный расчет котельного агрегата

1.1Тепловой расчет.

Используя данные из таблицы 1.1 находим тепловую нагрузку котельного агрегата.

Таблица 1.1- Исходные данные

Наименование величины	Численное значение
Расход пара на первичный	600
пароперегреватель D _{пв} , т/ч	
Расход пара на вторичный	450
пароперегреватель D _{вт} , т/ч	
Расход воды на водяной	300
экономайзер низкого давления	
G _{вэнд} , т/ч	
Энтальпия воды на входе в	1117,6
котелt _п `, кДж/кг	
Энтальпия пара на выходе h _п ``,	3343,2
кДж/кг	
Энтальпия пара на входе во	2989,6
вторичный пароперегреватель	
h _{вт} `, кДж/кг	
Энтальпия пара на выходе h _{вт} ``,	3541,52
кДж/кг	
Энтальпия воды на входе в	690,6
водяной экономайзер низкого	
давления $t_{\text{вэнд}}$, кДж/кг	
Энтальпия воды на выходе $t_{_{g_{3Hd}}}$	552,55
,кДж/кг	

Тепловая нагрузка первичного пароперегревателя, кВт: $Q_{nn} = D_{nn} \cdot (h_{ne} - \overline{t}_{ns})(1.1)$

где $D_{nn} = 600 \text{ кг/с-расход острого пара после котла;}$

 $h_{ne} = 3343, 2 \ \kappa \ Дж/\kappa \ г$ -энтальпия острого пара перед турбиной;

 $\bar{t}_{ns} = 1117.6 \, \mathrm{K} \mbox{Д} \mbox{ж/кг-}$ энтальпия питательной воды

$$Q_{nn} = 1335360$$

Тепловая нагрузка вторичного пароперегревателя, кВт; $Q_{em} = D_{em} \cdot (\dot{h}_{em} - \dot{h}_{em})$ (1.2)

где $D_{nn} = 450 \, \text{кг/c-расход пара на промперегрев;}$

h"_{*nn*} = 3541,52 кДж/кг-энтальпия пара после промперегрева;

h'_{nn} = 2989.6 кДж/кг-энтальпия пара до промперегрева;

$$Q_{em} = 248364$$

Тепловая нагрузка водяного экономайзера низкого давления, кВт

$$Q_{_{63H\partial}} = G_{_{63H\partial}} \cdot \left(\bar{t}_{_{6bx}} - \bar{t}_{_{6x}}\right)$$
(1.3)

где $G_{_{e_{3Hd}}} = 300 \, \mathrm{kr/c}$ -расходводы на водяной экономайзер низкого завления;

*t*_{ex} = 552,55 кДж/кг-энтальпия воды перед водяным экономайзером низкого давления;

*t*_{вых} = 690, 6 кДж/кг-энтальпия воды после экономайзера низкого давления;

 $Q_{_{B heta H d}} = 41415$

Тепловая нагрузка котельного агрегата, кВт

 $Q = Q_{nn} + Q_{6m} + Q_{63H0} \tag{1.4}$

где $Q_{nn} = 893578, 4 \text{ кВт-тепловая нагрузка пароперегревателя;}$

 $Q_{sm} = 182216, 38 \,\mathrm{kBt}$ -тепловая нагрузка вторичного пароперегревателя;

 $Q_{_{63Hd}} = 19512,5 \,\mathrm{kBt}$ -тепловая нагрузка вторичного пароперегревателя;

Q = 1625139

1.2 Расчет объемов и энтальпий воздуха и продуктов сгорания топочной камеры

Местор	Марк		Рабо	очая м	иасса то	оплив	a, %		Вых од	Тем плав	иперату ления з °С	уры золы,	Тепл ота сгора
ож- дение	a	C^{P}	H^{P}	S^{P}	O^P	N^P	W^P	A^P	лету – чих, <i>V^Г</i> , %	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	ния Q^P_H , кДж/
Назаро вское	2Б	39	2.5	0.4	12.5	0.5	39. 0	7.9	47.0	1200	1221	1240	12850

Таблица 1.2 - Исходные данные

Таблица 1.3 – Объем воздуха и продуктов сгорания

Объем воздуха и продуктов сгорания	Назаровский
Объем воздуха, м ³ /кг	3.74
Объем азота, м ³ /кг	2.95
Объем трехатомных газов, м ³ /кг	0.72

Объем водяных паров, м ³ /кг	0.816
Объем продуктов сгорания, м ³ /кг	4.486

Таблица 1.4 – Объемы продуктов сгорания, объемные доли трехатомных газов и концентрация золовых частиц

Название величины и обозначение	Топка
Коэффициент избытка воздуха за поверхностью нагрева, <i>а</i> "	1.25
Объем водяных паров, V_{H_2O} , м ³ /кг	0.831
Полный объем газов, V_{Γ} , м ³ /кг	5.38
Объемная доля трехатомных газов, r_{RO_2}	0.133
Объемная доля водяных паров, r_{H_2O}	0.153
Суммарная объемная доляпаров, $r_{\Pi} = r_{RO_2} + r_{H_2O}$	0.286
Концентрация золовых частиц, $\mu_{3Л}$, кг/кг	0.00946

Таблица 1.5 – Энтальпии продуктов сгорания

$ 9, H_2 H_6 H_{3\eta} H_{3\eta} H_2 = H_2 + (\alpha - 1) \cdot H_6 + H_{3\eta}$

°C				Топочная
				камера, ширмы
100	619.5	493.6	5.42	748.3
200	1255.9	991.5	11.35	1515.2
300	1910.3	1495.4	17.70	2301.9
400	2621.9	2027.8	24.17	3153.1
500	3325.2	2560.6	30.78	3996.2
600	4047.5	3105.7	37.61	4861.6
700	4788.8	3661.5	44.46	5748.6
800	5543.1	4225.9	51.49	6651.1
900	6332.7	4799.6	58.75	7591.3
1000	7103.4	5379.6	66.05	8514.4
1100	7901.0	6004.0	73.64	9475.7
1200	8709.1	6562.8	81.02	10430.8
1300	9528.6	7164.6	91.27	11411.0
1400	10353. 9	7770.7	106.2	12402.9
1500	11188. 2	8379.6	118.05	13401.1
1600	12029. 3	8993.4	128.16	14405.8
1700	12878. 8	9608.8	138.57	15419.6
1800	13730. 5	10225.2	149.25	16436.1
1900	14587. 8	10849.4	160.21	17460.4
2000	15457. 7	11474.3	168.9	18495.3
2100	16318. 6	12103.8	177.68	19522.2
2200	17186. 3	12732.0	0	20369.3
2300	18127. 1	13364.1	0	21468.1

Таблица 1.6 – Тепловой баланс и расход топлива

Тепловой баланс	Назаровский	
q_2	%	7.657
q_3	%	0.5
q_4	%	1
q_5	%	0.3
q_6	%	0.738
ηκ	%	89.605
В	кг/с	45,99
Bp	кг/с	45,56

Таблица 1.7- Сравнение температуры газов на выходе из топки

	При $\psi_{cp} = 0.3$	При $\psi_{cp} = 0.4$
Температура на выходе из топки , °C	1158	1127

При увеличении коэффициента тепловосприятия топочных экранов температура на выходе из топки уменьшается.

2Расчет принципиальной тепловой схемы

Блок мощностью 500 МВт. Принципиальная тепловая схема включает в себя котельный агрегат марки П-49, турбоагрегат типа К-500-240 и регенеративную схему, представлена на рисунке 2.2

Система регенерации блока 5-и ПНД, такого состоит ИЗ деаэратора, ВВТО, и 3-х ПВД. Блок работает по циклу с промежуточным перегревом пара. Пар из цилиндра высокого давления (ЦВД) отводится в вторичного перегрева промежуточный пароперегреватель котла для И возвращается вдвухпоточный цилиндр среднего давления (ЦСД). Из ЦСД пар поступает в двухпоточный цилиндр низкого давления, а затем в конденсатор. Для регенеративного подогрева конденсата и питательной воды котлоарегата турбина снабжена нерегулируемыми отборами пара.Питательная вода подогревается в подогревателях низкого давления (ПНД), в деаэраторе повышенного давления и в трех подогревателях высокого давления. Потери конденсата восполняются обессоленной водой, поступающей в конденсатор турбины.

Для подогрева сетевой воды используется один сетевой подогреватель (СП) который питается отобранным из турбины паром. Пар из уплотнений поступает в сальниковый подогреватель – охладитель уплотнений (ОУ),а из основных эжекторов конденсатора – в охладитель эжекторного пара (ОЭ), что способствует дополнительному обогреву основного конденсата.

Заводские данные турбоагрегата сводим в таблицу 2.1 принятые из [1].

	~
Наименование	Величина
1	2
Электрическая мощность W_{3} , МВт	500
Теплофикационная нагрузка Q_{omb}^{mypb} , МВт	60
Начальное давление пара P_{01} , МПа	23,54
Начальная температура t_{01} , ⁰ С	545
Давление пара промежуточного перегрева <i>P_{nn}</i> , МПа	3,5
Температура пара промежуточного перегрева t_{nn} , ⁰ С	540
Давление пара на выходе в конденсатор P_{κ} , МПа	0.0035
Число регенеративных отборов	9
Давление пара у турбины для привода питательного насоса $P_{np}^{exo\partial}$, МПа	1,63
Давление пара у турбины для привода питательного насоса P_{np}^{BLXOO} , МПа	0,0065

Таблица 2.1 – 3	Заводские данные дл	ия турбины К-500-240
-----------------	---------------------	----------------------

1	2
Рекомендуемые расчетные значения внутреннего	
относительного КПД турбины блока по отсекам при	
номинальной мощности:	87 5
$\eta_{\scriptscriptstyle oi}^{_{\scriptstyle 460}}$, %	87,5
$\eta_{\scriptscriptstyle oi}^{\;\;\mu c \partial}$, %	91,4
$\eta_{\scriptscriptstyle oi}^{_{_{_{_{_{i}}}}}}$, %	88
Расчетное значение внутреннего относительного КПД	
турбины для привода насоса η_{oi}^{npub} , %	78
Давление пара в нерегулируемых отборах, МПа	
P_{om1}	5,74
P_{om2}	4,07
P_{om3}	1,7
P_{om4}	1,098
P_{om5}	0,52
P_{om6}	0,29
P_{om7}	0,155
P_{om8}	0,082
P_{om9}	0,021

Необходимые данные для расчета тепловой схемы, принятые из [2], сводим в таблицу 2.2.

Таблица 2.2-Данные для расчета тепловой схемы

Величина
2
98
25
98
95
97
97
1,4
1,2
1,1
15

Продолжение таблицы 2.2

1	2
Недогрев воды до температуры насыщения в ПВД \mathcal{G}_{ned} , ⁰	2
Недогрев воды до температуры насыщения в ПНД $g_{_{n+\partial}}, ^{0}$	4

Определив все основные параметры можно приступать к расчету принципиальной схемы блока.

2.1 Построение процесса расширения пара в турбине

Построение процесса расширения пара начинаем нахождения точки A₀, соответствующей параметрам пара перед стопорными клапанами $P_{01} = 23.54$ МПа $t_{01} = 565$ ⁰C (см. таблицу 2.1). С учетом дросселирования пара в регулирующих органах ЦВД давление пара на входе в проточную часть, МПа, составляет:

$$P_0' = P_0 \cdot \eta_{\partial p}^{u \omega}; \qquad (2.1)$$

где η_{dp}^{ued} -КПД дросселирования цилиндра высокого давления, принимаем из таблицы 1.2.

$$P_0' = 23.54 \cdot 0.95 = 22.36$$
;

По давлению P_0' и энтальпии h_{A0} находим на h-s диаграмме точку A_0' . Теоретический процесс расширения пара от давления P_0' до давления P_1 , соответствующего давлению за ЦВД, изображается линией $A_0'B_0$. Энтальпия пара за ЦВД при действительном процессе расширения определяем по следующему выражению, кДж/кг:

$$h_{B} = h_{A0} - (h_{A0} - h_{B0}) \cdot \eta_{oi}^{ueo}; \qquad (2.2)$$

где $h_{A0} = 3343, 2$ -энтальпия пара перед ЦВД (принимается по h-s диаграмме), кДж/кг;

*h*_{B0} = 2930,59 - энтальпия пара за ЦВД при теоретическом процессе расширения пара, кДж/кг, определяем по [2];

 $\eta_{oi}^{_{ueo}}$ -внутренний относительный КПД ЦВД, принимаем из таблицы 2.1.

$$h_{B} = 3402,7 - (3402,7 - 2930,59) \cdot 0.875 = 2989,6;$$

Давление пара на входе в цилиндр среднего давления, МПа, определяется из следующего выражения:

$$P_2' = P_{om2} \cdot \Delta P_{nn} \cdot \eta_{\partial p}^{uc\partial}; \qquad (2.3)$$

где η_{dp}^{uco} -КПД дросселирования цилиндра среднего давления, принимаем из таблицы 1.2;

 $\Delta P_{nn} = 9.5\%$ -потери давления в паропроводе промперегрева, принимаем из [2].

$$P_2' = 4.07 \cdot (1 - 0.095) \cdot 0.97 = 3.57;$$

Теоретический процесс расширения пара от давления P_2' до давления P_6 , соответствующего давлению за ЦСД, изображается линией CD_0 . Энтальпия пара за ЦСД при действительном процессе расширения определяем по следующему выражению, кДж/кг:

$$h_{D} = h_{C} - (h_{C} - h_{D_{0}}) \cdot \eta_{oi}^{\mu c \partial}; \qquad (2.4)$$

где $h_c = 3598,4$ -энтальпия пара за регулирующими органами ЦСД, кДж/кг, определяем по [4];

 $h_{D_0} = 2868$ -энтальпия пара за ЦСД при теоретическом процессе расширения пара, кДж/кг, определяем по [4];

 $\eta_{oi}^{\mu c \partial}$ -внутренний относительный КПД ЦСД, принимаем из таблицы 2.1.

$$h_D = 3598, 4 - (3598, 4 - 2868) \cdot 0.914 = 2926, 8;$$

Давление пара на входе в цилиндр низкого давления, МПа, определяется из следующего выражения:

$$P_6' = P_{om6} \cdot \eta_{dp}^{und}; \tag{2.5}$$

где η_{dp}^{uho} -КПД дросселирования цилиндра низкого давления, принимаем из таблицы 2.2.

 $P_6' = 0.29 \cdot 0.97 = 0.281;$

Теоретический процесс расширения пара от давления P_6' до давления P_{κ} , соответствующего давлению за ЦНД, изображается линией $D'E_0$. Энтальпия пара за ЦНД при действительном процессе расширения определяем по следующему выражению, кДж/кг:

$$h_{E_0'} = h_{D'} - (h_{D'} - h_{E_0}) \cdot \eta_{oi}^{\mu\mu\partial}; \qquad (2.6)$$

где $h_{D'} = 2926,8$ - энтальпия пара за регулирующими органами ЦНД, кДж/кг, определяем по [4];

 $h_{E_0} = 2233,7$ -энтальпия пара за ЦНД при теоретическом процессе расширения пара, кДж/кг, определяем по [4];

п^{инд}-внутренний относительный КПД ЦНД, принимаем из таблицы 2.1.

 $h_{E_{a}} = 2926, 8 - (2926, 8 - 2233, 7) \cdot 0.88 = 2316, 8;$

Рисунок 2.1 – Процесс расширения на h-здиаграмме

Рисунок 2.2 – Принципиальная тепловая схема с ВВТО

Рисунок 2.3 – Принципиальная тепловая схема без ВВТО

2.2Определение параметров по элементам схемы

Задачей данного раздела будет являться определение параметров отобранного пара и конденсата перед и за элементами тепловой схемы турбины. Определение параметров начнем с ПВД1. Давление отобранного пара у подогревателя, МПа, с учетом потери давление в трубопроводах от турбины до подогревателя $\Delta P_{mp} = 5\%$ [3], определяется по следующему выражению:

$$P_{\Pi B J 1} = P_{om1} \cdot \left(1 - \Delta P_{mp}\right); \tag{2.6}$$

где $P_{om1} = 5,74$ МПа- давление пара в первом отборе, (см. таблицу 1.1).

$$P_{\Pi B \square 1} = 5,74 \cdot 0.95 = 5.45;$$

Температура насыщения отобранного пара, ⁰С, [4]:

$$t_{\mu}^{\Pi B J 1} = 269$$
; (2.7)

Энтальпия конденсата греющего пара [4], кДж/кг:

$$\bar{t}_{\mu}^{\Pi B J 1} = 1181,96;$$
 (2.8)

Температура питательное воды за подогревателем определяется по следующему выражению с учетом недогрева,⁰С:

$$t_{\Pi B \mathcal{I} 1} = t_{\mu}^{\Pi B \mathcal{I} 1} - \mathcal{G}_{\Pi B \mathcal{I}}; \qquad (2.9)$$

где $\mathcal{G}_{\Pi B \square} = 2^{\circ} C$ -недогрев воды до температуры насыщения в ПВД, (см. таблицу 1.2);

$$t_{\Pi B \Pi 1} = 269 - 2 = 267$$
;

Энтальпия питательной воды за ПВД1 определяется по следующему выражению, кДж/кг:

$$\bar{t}_{\Pi B \mathcal{I} 1} = t_{\Pi B \mathcal{I} 1} \cdot c_{\mathfrak{s}}; \qquad (2.10)$$

где $c_s = 4.186 \frac{\kappa \not \exists \mathcal{H}}{\kappa z \cdot K}$ -теплоемкость воды, [4].

$$\bar{t}_{\Pi B \Pi 1} = 267 \cdot 4.186 = 1117,6$$
;

Энтальпия греющего пара, кДж/кг, (см. рисунок 2.1):

$$h_{om1} = 3056,9; (2.11)$$

Использованный теплоперепад турбиной до отбора пара на ПВД1, кДж/кг:

$$H_{om1} = h_{A0} - h_{om1}; (2.12)$$

где h_{A0} = 3402,7 кДж/кг- энтальпия пара перед входом в ЦВД, (см. рисунок 2.1);

$$H_{om1} = 3343, 2 - 3056, 9 = 296, 3;$$

Аналогично определяем параметры по остальным элементам схемы, результаты расчетов сводим в таблицу 2.3. Определив параметры по всем элементам схемы можно приступать к определению расхода пара на турбину и расчету элементов схемы.

Наименован величины	ПВД1	ПВД2	ПВД3	Д	CII5	ШНД5	ПНД4	ПНД3	ПНД2	1ДНЛ1	конденсато
Давление отобранног пара, МПа	5.74	4.07	1.7	1.098	0.52	0.52	0.29	0.155	0.082	0.016	0.0035
Энтальпи: отобранноі пара, кДж/	3056.9	2989.6	3359.9	3237.86	3052.6	3052.6	2926.8	2814.7	2711.3	2504.3	2316.8
Давление пара у подогреват я, МПа	5.45	3.86	1.61	1.043	0.49	0.49	0.276	0.147	0.078	0.0152	0.0035
Температуј насыщени греющего пара, ^о С	269	248	204	182	151	151	131	111	63	54	27
Энтальпия конденсата греющего пара, кДж/к	1182	1077	860	770.8	637	637	549.4	464.5	389	227	111.8
Температу воды за подогреват ем, ^о С	267	246	202	165	140	147	126	105	98	<i>L</i> 4	27
Энтальпия нагреваемо среды за подогревател , кДж/кг	1117.6	1029.7	845.7	697	611	619,34	529,1	440,23	360,16	196,8	111.8
Использованный теплоперепад, кДж/кг	296,3	353,6	535,22	657,26	852,52	978,32	1090,42	1193,82	1398,8	1578,32	1610,8

Таблица 2.3-Параметры по элементам схемы

2.3Расчет установки по подогреву сетевой воды

Задачей расчета установки по подогреву сетевой воды является нахождение расхода сетевой воды и греющего пара для подогревателя. Расчетная схема подогрева сетевой воды представлена на рисунке 2.4

П- тепловой потребитель; СН - сетевой насос; СП- сетевой подогреватель

Рисунок 2.4-Схема подогрева сетевой воды

Расход сетевой воды, кг/с, определяется по следующему выражению:

$$G_{c_{\theta}} = \frac{Q_{om\delta}^{myp\delta}}{c_{\theta} \cdot \Delta t}; \qquad (2.13)$$

где $Q_{om\delta}^{myp\delta}$ -теплофикационная нагрузка на блок, кВт (см. таблицу 2.1) c_{s} -теплоемкость воды, [4];

 Δt -разность температур прямой и обратной сетевой воды, ⁰С.

$$G_{cs} = \frac{60000}{4.1867 \cdot (140 - 70)} = 181,436;$$

Расход греющего пара на сетевой подогреватель определяется по выражению, кг/с:

$$D_{C\Pi} = \frac{G_{ce} \cdot \Delta t_{ec} \cdot c_{e}}{\left(h_{om5} - \bar{t}_{cn}^{4}\right) \cdot \eta_{cn}}; \qquad (2.14)$$

где $c_{e} = 4.186 \frac{\kappa \square \mathcal{H}}{\kappa r \cdot K}$ -теплоемкость воды, [4];

 Δt_{sc} – -разность температур сетевой воды до и после верхнего сетевого подогревателя;

*h*_{om5} = 3052,6 кДж/кг-энтальпия отобранного пара на сетевой подогреватель, (см. рисунок 2.1);

 $\bar{t}_{cn}^4 = 637$ -энтальпия конденсата греющего пара, кДж/кг, (см. таблицу 2.3);

 $\eta_n = 0.98$ -коэффициент полезного действия сетевого подогревателя.

$$D_{CII} = \frac{60000}{(3052, 6-637) \cdot 0.98} = 25,35;$$

2.4Определение расхода пара на турбину

Расход пара на турбину определяется по следующему выражению, кг/с:

$$D_m = k_p \cdot \left(\frac{W_{\mathfrak{s}}}{H_i \cdot \eta_{\mathfrak{s}\mathfrak{M}}} + y_{cn} \cdot D_{cn} + y_{mn} \cdot D_{mn} \right);$$
(2.15)

где $k_p = 1.22$ -коэффициент регенерации, принимаем из [2];

 $W_{3} = 500000 \kappa Bm$ - мощность блока, $H_{i} = 1694,7 \kappa Дж/кг$ -теплоперепад, срабатываемый турбиной, (см. таблицу 1);

 $\eta_{_{3M}} = 0.98$ -электромеханический КПД, принимаем по [3];

 $D_{cn} = 16.9$ -расход пара на сетевой подогреватель, кг/с;

*у*_{сп}-коэффициент недовыработки мощности отопительных отборов, определяется по следующему выражению:

$$y_{cn} = \frac{h_{cn} - h_{\kappa}}{h_{01} - h_{\kappa} + q_{nn}}; \qquad (2.16)$$

где *h*_{cn} = 3052,6 кДж/кг- энтальпия греющего пара на сетевой подогреватель, (см. таблицу 2.3);

 $h_{\kappa} = 2316,8 \, \text{кДж/кг-}$ энтальпия пара на выходе из конденсатора, (см. таблицу 1.3);

 $h_{01} = 3052,6 \text{ кДж/кг- энтальпия пара на входе в турбину, (см. рисунок 2.1);}$

 $q_{nn} = h_{B0'} - h_{C0'} = 3598,4 - 2989,6 = 608.8 кДж/кг-разность энтальпий пара до и после промперегрева, (см. рисунок 2.1).$

$$y_{cn} = \frac{3052, 6 - 2316, 8}{3052, 6 - 2316, 8 + 608.8} = 0.562;$$

где *у_{mn}*-коэффициент недовыработки мощности отбора на привод питательного насоса, определяется по следующему выражению:

$$y_{mn} = \frac{h_{mn} - h_{\kappa}}{h_{01} - h_{\kappa} + q_{nn}}; \qquad (2.17)$$

где $h_{mn} = 3359,9 \, \text{кДж/кг-энтальпия}$ греющего пара на привод питательного насоса, (см. таблицу 2.3);

 $h_{\kappa} = 2318,8 \, \text{кДж/кг-}$ энтальпия пара на выходе из турбины, (см. таблицу 2.3);

 h_{A0} = 3402,7 кДж/кг- энтальпия пара на входе в турбину, (см. рисунок 2.1);

*q*_{nn} = 608.8 кДж/кг- разность энтальпий пара до и после промперегрева, (см. рисунок 2.1);

$$y_{mn} = \frac{3359,9 - 2318,8}{3343,2 - 2316.8 + 608.8} = 0.615;$$

 D_{mn} -расход пара на привод питательного насоса, кг/с, принимаем из заводских параметров[5]: $D_{mn} = 27,47$;

$$D_m = 1,22 \cdot \left(\frac{500000}{1694,7 \cdot 0,98} + 0,562 \cdot 25,35 + 0,615 \cdot 27,47\right) = 401,5;$$

2.5Баланс пара и конденсата

Расход пара на эжектор определяется по следующей формуле, кг/с:

$$D_{\rm SHC} = \alpha_{\rm SHC} \cdot D_m; \qquad (2.18)$$

где $\alpha_{_{3}\mathcal{H}} = 0.006$ -доля пара пошедшего на эжектора [3].

$$D_{ax} = 0.006 \cdot 401, 5 = 1,408;$$

Расход пара на уплотнения турбины, кг/с, определяется по следующему выражению:

$$D_{ynn} = \alpha_{ynn} \cdot D_m; \qquad (2.19)$$

где $\alpha_{_{3,\infty}} = 0.01$ -доля пара пошедшего на уплотнения турбоагрегата [3].

$$D_{ynn} = 0.01 \cdot 401, 5 = 1,29;$$

Утечки пара и конденсата, кг/с:

$$D_{ym} = \alpha_{ym} \cdot D_m; \qquad (2.20)$$

где $\alpha_{vm} = 0.0011$ -доля утечек пара (см. таблицу 2.2).

$$D_{ym} = 0.011 \cdot 401, 5 = 4,416;$$

Расход пара на собственные нужды, кг/с:

$$D_{_{CH}} = \frac{\alpha^{_{_{CH}}} + \alpha^{_{CH}}_{_{CH}}}{100} \cdot D_{_{m}}; \qquad (2.21)$$

где $\alpha_{cn}^{M3} = 1.2\%$ -доля пара на собственные нужды турбинного отделения (см. таблицу 2.2);

 $\alpha_{cn}^{\kappa o} = 1.2\%$ -доля пара на собственные нужды котельного отделения (см. таблицу 2.2).

$$D_{cn} = \frac{1.2 + 1.2}{100} \cdot 401, 5 = 9,636;$$

Расход перегретого пара, кг/с:

$$D_{ne} = D_m + D_{3xc} + D_{ynn} + D_{ym} + D_{cH}; \qquad (2.22)$$

$$D_{ne} = 401, 5+1, 408+1, 29+4, 416+9, 636 = 418, 001;$$

 $G_{ne} = 418,001;$

Расход химически очищенной воды, подаваемой в конденсатор, кг/с:

$$G_{xog} = D_{ym} + D_{cu};$$
 (2.23)

$$G_{xos} = 4,416+9,636=14,052;$$

2.6 Расчет схемы ПВД

Задачей данного раздела является тепловой расчет всех элементов регенеративной схемы и нахождение расходов отобранного пара и основного конденсата на основе решение тепловых и материальных балансовых уравнений.

На блоке К- 500-240 регенеративная схема ПВД состоит из трех подогревателей, конденсат греющего пара в которых сливается каскадно(рисунок 2.5).

Рисунок 2.5 - Схема включение подогревателей высокого давления

Уравнение теплового баланса для ПВД1 имеет следующий вид:

$$D_{om1} \cdot (h_{om1} - \bar{t}_{\partial 1}) \cdot \eta_n = G_{ns} \cdot (\bar{t}_{ns} - \bar{t}_{ns}'); \qquad (2.24)$$

Расход пара на ПВД1 определяется из следующего выражения, кг/с:

$$D_{om1} = \frac{G_{ne} \cdot (\bar{t}_{ne} - \bar{t}_{ne'})}{(h_{om1} - \bar{t}_{o1}) \cdot \eta_n}; \qquad (2.25)$$

где $G_{ne} = 418 \text{ кг/с-расход питательной воды, (см. формулу 2.21);}$

 $\bar{t}_{ne} = 1176,6 \, \kappa Дж/кг-энтальпия питательной воды за подогревателем, (см. таблицу 2.3);$

 \bar{t}_{ns} '=1029,7 кДж/кг-энтальпия питательной воды перед подогревателем, (см. таблицу 2.1);

 $h_{om1} = 3056,9 \text{ кДж/кг-энтальпия греющего пара, (см. таблицу 2.1);}$

 $\eta_n = 0.98$ -КПД подогревателя, (см. таблицу 2.2).

$$D_{om1} = \frac{418,001 \cdot (1176,6-1029,7)}{(3056,9-1182) \cdot 0.98} = 32,09;$$

Уравнение теплового баланса для ПВД2 имеет следующий вид:

$$(D_{om2} \cdot (h_{om2} - \bar{t}_{\partial 2}) + D_{om1} \cdot (\bar{t}_{\partial 1} - \bar{t}_{\partial 2})) \cdot \eta_n = G_{n_{\theta}} \cdot (\bar{t}_{n_{\theta}}' - \bar{t}_{n_{\theta}}''); \qquad (2.26)$$

Расход пара на ПВД2 определяется из следующего выражения, кг/с:

$$D_{om2} = \frac{G_{n6} \cdot (\bar{t}_{n6} - \bar{t}_{n6}) - D_{om1} \cdot (\bar{t}_{\partial 1} - \bar{t}_{\partial 2}) \eta_n}{(h_{om2} - \bar{t}_{\partial 2}) \cdot \eta_n}; (2.27)$$

где G_{ns} = 418 кг/с-расход питательной воды, (см. формулу 2.5);

*ī*_{ne}"= 845,7 кДж/кг-энтальпия питательной воды перед подогревателем, (см. таблицу 2.3);

 \bar{t}_{ne} '=1029,7 кДж/кг-энтальпия питательной воды за подогревателем, (см. таблицу 2.3);

 $h_{om2} = 2989,6 \ \kappa \ Дж/кг-энтальпия греющего пара, (см. таблицу 2.3);$ $<math>\eta_n = 0.98 \ - K \Pi \ Д$ подогревателя, (см. таблицу 2.2).

$$D_{om2} = \frac{418 \cdot (1029, 7 - 845, 7) - 32, 9 \cdot (1182 - 1077) \cdot 0.98}{(2989, 6 - 1077) \cdot 0.98} = 39, 23;$$

Уравнение теплового баланса для ПВДЗ имеет следующий вид:

$$(D_{om3} \cdot (h_{om3} - \bar{t}_{\partial3}) + (D_{om1} + D_{om2}) \cdot (\bar{t}_{\partial2} - \bar{t}_{\partial3})) \cdot \eta_n = G_{ns} \cdot (\bar{t}_{ns} '' - \bar{t}_{nn});$$
(2.28)

Расход пара на ПВДЗ определяется из следующего выражения, кг/с:

$$D_{om3} = \frac{G_{n6} \cdot (\bar{t}_{n6} "-\bar{t}_{n4}) - (D_{om1} + D_{om2}) \cdot (\bar{t}_{\partial 2} - \bar{t}_{\partial 3}) \eta_n}{(h_{om3} - \bar{t}_{\partial 3}) \cdot \eta_n}; \qquad (2.29)$$

где G_{ns} = 418 кг/с-расход питательной воды, (см. формулу 2.5);

 \bar{t}_{ns} " = 845,7 кДж/кг-энтальпия питательной воды за подогревателем, (см. таблицу 2.3);

 $\bar{t}_{a3} = 860 \, \text{кДж/кг-энтальпия}$ питательной воды за подогревателем, (см. таблицу 2.3);

*h*_{от3} = 3359,9 кДж/кг-энтальпия греющего пара, (см. таблицу 2.3);

 $\eta_n = 0.98$ -КПД подогревателя, (см. таблицу 2.2);

 \bar{t}_{nn} -энтальпия питательной воды после питательного насоса, определяется по следующему выражению:

$$\bar{t}_{n\mu} = \bar{t}_{o} + \frac{\Delta P_{\mu} \cdot v}{\eta_{\mu}}; \qquad (2.30)$$

где $\bar{t}_{o} = 697.14 \, \text{кДж/кг-энтальпия}$ питательной воды после деаэратора (см. таблицу 2.3);

 $\Delta P_{\mu} = 317 \,\mathrm{M\Pi a}$ -перепад давлений питательной воды в питательном насосе; $v = 0.001108 \,\mathrm{m}^3/\mathrm{kr}$ - удельный объем питательной воды [4]; $\eta_{\mu} = 0.75$ - КПД питательного насоса, [3].

$$\bar{t}_{n\mu} = 697.14 + \frac{317 \cdot 0.001108 \cdot 10^2}{0.75} = 741;$$

$$D_{om3} = \frac{418 \cdot (845, 7 - 741) - (32, 9 + 39, 23) \cdot (1077 - 860) \cdot 0.98}{(3359, 9 - 860) \cdot 0.98} = 11, 6;$$

2.7 Расчет деаэратора

В задачу расчета деаэрационной установки входит нахождение расхода греющего пара и расхода основного конденсата поступающего в деаэратор, для чего необходимо составить уравнение теплового и материального баланса деаэратора. Схема включения деаэратора представлена на рисунке 2.6.

Уравнение материального баланса:

$$G_{ne} = D_{om1} + D_{om2} + D_{om3} + G_{o\kappa} + D_{om4}; (2.31)$$

Уравнение теплового баланса:

$$G_{n_{\theta}} \cdot \bar{t}_{\partial} = (D_{om1} + D_{om2} + D_{om3}) \cdot \bar{t}_{\partial 3} + G_{o_{\kappa}} \cdot \bar{t}_{o_{\kappa}} + D_{om4} \cdot h_{om4}; \qquad (2.32)$$

Объединяем уравнения в одну систему:

$$\begin{cases} G_{n_{\theta}} \cdot \bar{t}_{\partial} = (D_{om1} + D_{om2} + D_{om3}) \cdot \bar{t}_{\partial 3} + G_{o\kappa} \cdot \bar{t}_{o\kappa} + D_{om4} \cdot h_{om4}, \\ G_{n_{\theta}} = D_{om1} + D_{om2} + D_{om3} + G_{o\kappa} + D_{om4} \end{cases}$$
(2.33)

где $\bar{t}_{o\kappa}$ = 615,4 кДж/кг-энтальпия основного конденсата на входе деаэратор(см. таблицу 2.3);

 $G_{ns} = 412,3 \, \mathrm{kr/c}$ -расход питательной воды (см. формулу 2.5).

2.8 Расчет точки смешения

$$\begin{cases} G_{_{o\kappa}} \cdot 654,059 + D_{_{om4}} \cdot 3237 = 418,001 \cdot 697. - (32,09 + 39,23 + 11,6) \cdot 860 \\ G_{_{o\kappa}} + D_{_{om4}} = 418,001 - 32,09 - 39,23 - 11,6 \end{cases}$$
(2.34)

Решаем эту систему методом Крамера и находим неизвестныевеличины:

$$G_{o\kappa} = 329,8\kappa c / c$$

$$D_{om4} = 5\kappa c / c$$

2.9 Расчет регенеративной схемы ПНД

Схема включения подогревателей низкого давления представлена на рисунке 2.7.

Рисунок 2.7 – Схема включения ПНД

Уравнение теплового и материального балансов для точки смешения ТС-1:

$$\begin{cases} G_{_{OK}} = G_{_{OK}} \cdot 0.7 + G_{_{OK}} \cdot 0.3 \\ G_{_{OK}} \cdot \overline{t}_{_{CM}} = G_{_{OK}} \cdot 0.7 \cdot \overline{t}_{_{BBTO}} + G_{_{OK}} \cdot 0.3 \cdot \overline{t}_{_{nn\partial 5}} \end{cases};$$
(2.35)

Решая эти уравнения, находим:

 $\overline{t_{c_{M}}} = 156,1;$

Уравнение теплового баланса для ПНД-5выглядит следующим образом:

$$D_{om5} \cdot (h_{om5} - \bar{t}_{\partial 4}) \cdot \eta_n = G_{o\kappa} \cdot (\bar{t}_{o\kappa} - \bar{t}_{o\kappa'}); \qquad (2.36)$$

Расход пара на ПНД-5 определяется из следующего выражения, кг/с:

$$D_{om5} = \frac{G_{o\kappa} \cdot \left(\bar{t}_{o\kappa} - \bar{t}_{o\kappa}'\right)}{\left(h_{om5} - \bar{t}_{o4}\right) \cdot \eta_n}; \qquad (2.37)$$

где $G_{o\kappa} = 329,8 \, \mathrm{kr/c}$ -расход основного конденсата на деаэратор;

 $\bar{t}_{o\kappa} = 615,4 \, \text{кДж/кг-энтальпия}$ основного конденсата за подогревателем, (см. таблицу 2.3);

 $\overline{t}_{o\kappa}$ '= 529,1 кДж/кг-энтальпия основного конденсата перед подогревателем, (см. таблицу 2.3);

 $h_{om5} = 3052,6 \,\mathrm{кДж/кг}$ -энтальпия греющего пара, (см. таблицу 2.3);

 $\eta_n = 0.98$ -КПД подогревателя, (см. таблицу 2.2).

$$D_{om5} = \frac{329,8 \cdot (619,4-529,1)}{(3052,6-637) \cdot 0.98} = 12,074;$$

С учетом дренажа ПНД-5, расход греющего пара на ПНД-4 будет составлять, кг/с :

$$D_{om6} = \frac{G_{o\kappa} \cdot (\bar{t}_{o\kappa}' - \bar{t}_{o\kappa}'') - D_{om1} \cdot (\bar{t}_{\partial 4} - \bar{t}_{\partial 5}) \eta_n}{(h_{om6} - \bar{t}_{\partial 5}) \cdot \eta_n}; \quad (2.38)$$

$$D_{om6} = \frac{329,8 \cdot (440,23 - 360,16) - 12,074 \cdot (637 - 549,4) \cdot 0,98}{(2926,8 - 549) \cdot 0,98} = 10,88;$$

Расход пара на ПНД-3 определяется из следующего выражения, кг/с:

$$D_{om7} = \frac{G_{o.\kappa.} \cdot (h_7 - \overline{t}_{08}) + (D_{om5} + D_{om6}) \cdot (\overline{t}_{06} - \overline{t}_{07}) \cdot \eta_{\Pi H \square}}{h_7 - \overline{t}_{07}}; \qquad (2.39)$$

$$D_{om7} = \frac{329,8 \cdot (360,16-196,8) + (12,0736+10,88) \cdot (549,4-464,5) \cdot 0,98}{(2814,7-464,5)} = 22,09;$$

где \bar{t}_{cm} – кДж/кг; $\bar{t}_{ok}^{''}$ – энтальпия основного конденсата после ПНД-3, кДж/кг.

Расход пара на ПНД-2 определяется из следующего выражения, кг/с:

$$D_{om8} = \frac{G_{o.\kappa.} \cdot (h_8 - \overline{t}_{\partial 9}) - (D_{om5} + D_{om6} + D_{om7}) \cdot (\overline{t}_{\partial 7} - \overline{t}_{\partial 8}) \cdot \eta_{\Pi H \underline{\beta}}}{(h_8 - \overline{t}_{\partial 8})}; \qquad (2.40)$$

$$D_{om8} = \frac{329,8 \cdot (360,16-196,8) - (12,07+10,88+22,09) \cdot (464,5-389) \cdot 0,98}{(2711,9-389)} = 21,73;$$

Расход пара на ПНД-1 определяется из следующего выражения, кг/с:

$$D_{om9} = \frac{G_{o.\kappa.} \cdot (h_9 - \overline{t}_{\kappa}) - (D_{om5} + D_{om6} + D_{om7} + D_{om8}) \cdot (\overline{t}_{\partial 8} - \overline{t}_{\partial 9}) \cdot \eta_{\Pi H \overline{\lambda}}}{(h_9 - \overline{t}_{\partial 9})} \quad ; (2.41)$$

$$D_{om9} = \frac{329,8 \cdot (196,8-111,81) - (12,07+10,88+22,09+21,73) \cdot (389-127) \cdot 0,98}{(2054,3-227)} = 17,8;$$

2.10Проверка мощности

где $D_{3xc} = 2,35 \text{ кг/с-расход пара на эжектора(см. формулу 2.1);}$

 $D_{yn} = 3,92 \text{ кг/с-расход пара на уплотнения}(см. формулу 2.2);$

*D*_{хов} = 13,7 кг/с-расход химически очищенной воды(см. формулу 2.7);

 $D_{mn} = 12,2 \, \mathrm{kr/c}$ -расход пара на привод питательного насоса (по заводским параметрам).

Расход пара в конденсатор составит, кг/с:

$$D_{\kappa} = G_{o\kappa} - D_{om5} - D_{om6} - D_{om7} - D_{om8} - D_{om9} - D_{c.n.} - D_{mn}; (2.42)$$

 $D_{x} = 329, 8 - (12,0736 + 10,88 + 22,09 + 21,73 + 17,8 + 25,35 + 12,2) = 207,67;$

Проверка по мощности:

$$W = \left(\sum_{i=1}^{n} D_{i}^{om\delta} \cdot H_{i}^{om\delta}\right) \cdot \eta_{\mathfrak{M}}; \quad (2.43)$$

 $500000 = [32,09 \cdot 286,3+39,23 \cdot 353,6+11,6 \cdot 535,22+(5,3+12,2) \cdot 657,26+(25,35+12,074) \cdot 968,32+10,88 \cdot 1080,42+22,09 \cdot 1183,82+21,73 \cdot 1390,8+17,8 \cdot 1578,2+207,67 \cdot 1578,32] \cdot 0,96 = 500989,404$

500000 = 500989,404;

Погрешность расчета составляет:

$$\delta = \left| \frac{W - W_p}{W} \right| = \left| \frac{500000 - 500989, 404}{500000} \right| \cdot 100\% = 0.198\%;$$
(2.44)

Так как погрешность расчета меньше 2%, то расчет можно считать завершенным.

ЗРасчет технико-экономических показателей работы станции

Расход тепла на турбоустановку, кВт:

$$Q_{my} = D_m \cdot (h_{01} - \bar{t}_{n_{\theta}}) + D_{nn} \cdot (h_{nn}" - h_{nn}') + G_{xo_{\theta}} \cdot (t_{xo_{\theta}} \cdot c_{\theta} - \bar{t}_{n_{\theta}})$$
(3.1)

где $D_m = 401,5 \, \text{кг/c-расход острого пара на турбину (см. формулу 2.1);}$

 $h_{01} = 3343, 2 \ \kappa \ Дж/\kappa \ г$ -энтальпия острого пара перед турбиной;

 $\bar{t}_{ne} = 1117,6 \,\mathrm{K} \mbox{Д} \mbox{ж/k}\mbox{г- энтальпия питательной воды; } D_{nn} = 330,15 \,\mathrm{K} \mbox{г/c-pacxod пара на промперегрев; }$

h"_{пп} = 3541,52 кДж/кг-энтальпия пара после промперегрева;

h'_{nn} = 2989,6 кДж/кг-энтальпия пара до промперегрева.

 Q_{my} =401,5 · (3343,2-1117,6)+330,15 · (3541,52-2989,6)+14,052 · (25 · 4,186-1117,6)=1085530;

Затраченная теплота на сетевой подогреватель, кВт:

$$Q_m = D_{cn} \cdot \left(h_{om} - \bar{t}_{cn}^{\,\mu}\right); (3.2)$$

где $D_{cn} = 25,35 \, \text{кг/c-}$ расход пара на сетевой подогреватель (см. формулу 2.2);

*h*_{om5} = 3052,6 кДж/кг-энтальпия отобранного пара на сетевой подогреватель (см. таблицу 2.3);

 $\bar{t}_{cn}^{n} = 637 \, \kappa Дж/кг$ -энтальпия конденсата греющего пара (см. таблицу 2.3).

 $Q_m = 25,35(3052.6 - 637) = 61233,48;$

Расход тепла турбоустановкой на производство электроэнергии, кВт:

 $Q_{my}^{3} = Q_{my} - Q_{m}; (3.3)$

 $Q_{mv}^{3} = 1085530, 53 - 61233, 48 = 1024295, 07;$

Тепловая нагрузка котельного агрегата, кВт:

$$Q_{ne} = D_{ne} \cdot (h_{ne} - \bar{t}_{ne}) + D_{nn} \cdot (h_{nn}" - h_{nn}") + G_{B \ni n\partial} \cdot (\bar{t}_{Gblx} - \bar{t}_{Gx}); \qquad (3.4)$$

где $D_{ne} = 401,5 \, \text{кг/c-расход острого пара после котла (см. формулу 2.4);}$

 $h_{ne} = 3343, 2 \ \kappa \ Дж/\kappa \ г$ -энтальпия острого пара перед турбиной;

 $\bar{t}_{ns} = 1117.6 \, \text{кДж/кг-}$ энтальпия питательной воды;

 $D_{nn} = 330,15 \, \mathrm{kr/c}$ -расход пара на промперегрев;

h"_{*nn*} = 3541,52 кДж/кг-энтальпия пара после промперегрева;

h'_{*nn*} = 2989.6 кДж/кг-энтальпия пара до промперегрева.

 $Q_{ne} = 401, 5(3343, 2-1117.6) + 330, 15 \cdot (3541, 52-2989.6) = 1075614, 78;$

Полный расход условного топлива на блок определяется из следующего выражения, кг/с:

$$B^{ycn} = \frac{Q_{ne}}{Q_{\mu}^{pycn} \cdot \eta_{nc}}; \qquad (3.5)$$

где $Q_{\mu}^{pycn} = 29310 \, \kappa \, \text{Дж/кг-}$ низшая теплота сгорания условного топлива, принимаем из [4];

 $\eta_{nz} = 0.905$ - КПД парогенератора.

Расход условного топлива на выработку электроэнергии определяется по следующему выражению,кг/с:

$$B^{y_{Cn}} = B^{y_{Cn}} \cdot K_{2} \frac{W_{om}}{W - W_{2}^{CH}}; \qquad (3.6)$$

$$B_{2}^{ycn} = 40,45 \cdot 0,947 \cdot \frac{460000}{500000 - 25000} = 37,133;$$

Расход условного топлива на отпуск тепла определяется из следующего выражения, кг/с:

Фактическое значение удельных расходов условного топлива на отпуск электроэнергии и тепла определяются по формулам:

$$b_{3}^{ycn} = \frac{B^{ycn}_{3} \cdot 3600}{W_{omn}} = \frac{37,133 \cdot 3600}{460000} = 0,290 \kappa c / \kappa Bm \cdot \psi \quad ; \quad (3.8)$$

$$b^{y_{Cn}}_{m} = \frac{B^{y_{Cn}}_{m} \cdot 10^{6}}{Q^{my}_{m}} = \frac{3,31 \cdot 10^{6}}{41532} = 80,88\kappa \epsilon / \Gamma \square \varkappa c;(3.9)$$

Таблица 3.1 – Сравнение принципиальных схем (см.рисунок 2.2;2.3) по техникоэкономическим показателям

Показатели	без ВВТО	c BBTO
<i>Q_m</i> Расход тепла турбоустановку,кВт	1085850	1085830
<i>Q</i> _{сп} Расход тепла на сетевой подогреватель,кВт	61233,47	61233,48
<i>Q^эту</i> Расход тепла на выработку электроэнергии,кВт	1024616,53	1024295,07
<i>Q</i> _{пк} Тепловая нагрузка котельного агрегата,кВт	1075794,78	1075614,88

Продолжение таблицы 3.1		
Вусл	40,56	40,45
Расход условного		
топлива,кг/с		
B_{2}^{jee}	37,2	37,133
Расход условного топлив		
на выработку		
электроэнергии,кг/с		
$B_m^{y_{C\pi}}$	3,36	3,31
Расход условного топлив		
на выработку тепла,кг/с		
$b_{\mathfrak{I}}^{ycn}$	0,291	0,290
Удельный расход топлив		
на вырботку		
электроэнергии, кг / кВт · ч		
b_m^{ycn}	80,9	80,88
Удельный расход топлив		
на выработку тепла,		
кг / ГДж		

Вывод: проведя анализ сравнения схем по технико-экономическим показателям, схема с ВВТО является выгоднее, чем без ВВТО.

4Индивидуальное задание

После проведения модернизации блока номер 7 ГРЭС г. Назарово котла П-49, из опыта эксплуатации были выявлены интенсивные места шлакования топочной камеры:

-фронтового экрана ,высота отложений до 10см;

-тыловой скат холодной воронки, высота отложений от 30см, переходящие в глыбы до 1м;

-топочные ширмы, отложения на боковых поверхностях до 50 см с перекрытием межширмового пространства.

Данные факторы влияют на нагрузку котла,для снижения интенсивности шлакования был рассмотрен вопрос установки аппаратов очистки топочной камеры ОВД-2 Красмаш.

В местах интенсивного шлакования были установлены термовставки, которые позволяют определять время очистки поверхностей нагрева в реальном времени за счет разности температур холодной и горячей стен трубы.

Рисунок 4.1- Место установки аппарата водяной обдувки топки 1, с наглядным изображением зон действия струи воды

Рисунок 4.2-Место установки аппарата водяной обдувки 2, с наглядным изображением зон действия струи воды

Аппарат дальнобойной обдувки ОВД-2Красмаш выглядят следующим образом.

Рисунок 4.3 – Аппарат водяной обдувки ОВД-2 Красмаш

Достоинства аппарата водяной обдувки ОВД-2 Красмаш:

-Обдувают более широкую зону; -Большой диапазон настройки от 1 до 20м.

ЗАКЛЮЧЕНИЕ

Целью данного дипломного проекта являлось рассмотрение вопроса

эффективности установки ВВТО в тепловую схему, и установки дополнительных обдувочных аппаратов марки ОВД-2Красмаш.

При выполнении дипломного проекта были произведены следующие расчеты:

1) расчет тепловой схемы паровой турбины К-500-240;

2) укрупненный расчет котельного агрегата П-49;

3) выбор мест установки обдувочных аппаратов ОВД-2Красмаш;

Устанавливая дополнительные аппараты обдувки мы снижаем температуру на выходе из топки с 1158°С, до 1127°С

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Михайленко С.А., Цыганок А.П. Тепловые электрические станции: Учебное пособие. – Красноярск: ИПЦ КГТУ, 2003. 300 с.

2. Цыганок А.П., Михайленко С.А. Проектирование тепловых

электрических станций: Учебное пособие. – Красноярск: КРПИ, 1991. 119 с.

3. Тепловые и атомные электрические станции: Справочник / Под ред. В.А. Григорьева и В.М. Зорина. М.: Энергоатомиздат, 1982. 624 с.

4. Цыганок А.П. Тепловые и атомные электрические станции: Учебное пособие: В 2 ч. Ч. 2. – Красноярск: ИПЦ КГТУ, 2000. 123 с.

5. Ривкин С.Л., Александров А.А. Теплофизические свойства воды и водяного пара. – М.: Энергоатомиздат, 1984.

6. Котельный агрегат: Справочно-нормативные данные по курсовому проектированию для студентов специальности 100500 / Сост. И.С.Деринг, В.А. Дубровский, Т.И. Охорзина. – Красноярск: КГТУ, 2000. 40 с.

7. Тепловой расчет котельных агрегатов (Нормативный метод)/ Под ред. Н.В. Кузнецов и др. – М.: Энергия, 1973.

8. Рыжкин В.Я. Тепловые электрические станции - М.: Энергоатомиздат, 1987.

9. Паротурбинные энергетические установки: Отраслевой каталог /Под ред. Н.Н. Ермашов и др.- М.: 1988.

10. Золоулавливающие устройства теплоэлектростанций: конструкции и методы расчетов: Учеб. Пособие. Красноярск: ИПЦ КГТУ, 2001. 80 с.

11. Бойко Е.А., Баженов К.В., Грачев П.А. Тепловые электрические станции: Справочное пособие – Красноярск 2006. 153с.