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Let R be a commutative ring with an identity, R be an almost distributive lattice and Iα(R) be the set of

all α-ideals of R. If L(R) is the principal lattice of R, then R[Iα(R)] is Cohen-Macaulay. In particular,

R[Iα(R)][X1, X2, · · · ] is WB-height-unmixed.
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Introduction

Lattices, in general, (specially multiplicative lattices), are natural abstractions of the set of

ideals of a ring. However, Wihout a good notion of principal lattice, it is impossible to get very

deep results, see [3]. Dilworth overcame this in [4], with a new notion of a principal element.

Recall, that a multiplicative lattice is a complete lattice L with a commutative, associative

multiplication which distributes over arbitrary joins and its largest element I, is the identity for

the multiplication, see [4]. Basically, an element E of a multiplicative lattice L, is said to be

meet-(join-)principal if (A ∧ (B : E))E = (AE) ∧ B (if (BE ∨ A) : E = B ∨ (A : E)) for all A

and B in L. A principal element is an element that is both meet-principal and join-principal or

A∧E = (A : E)E and AE : E = A∨(0 : E), for all A ∈ L. A lattice L, is called a principal lattice,

when each of its elements is principal. Here, the residual quotient of two elements A and B is

denoted by A : B, so A : B = ∨{X ∈ L|XB 6 A}. An almost distributive lattice (ADL), was

introduced by U. M. Swamy and G. C. Rao in [11], as an algebra (R,∨,∧) of type (2, 2), which

satisfies almost all the properties of a distributive lattice, except possibly the commutativity of ∨,

the commutativity of ∧ and the right distributivity of ∨ over ∧. W. H. Cornish studied in to [2],

the properties of α-ideals in a distributive lattice, (see the next section for the definition). In this

paper, the concept of an α-ideal in an ADL is introduced, analogous to the case of distributive

lattices. In section 2, it is shown that, if R is a commutative ring with an identity and L(R)

is the principal lattice, then R is a Cohen-Macaulay ring. In section 3, we prove that, if R is

Cohen-Macaulay ring and if P is a distributive lattice, then R[P ] is Cohen-Macaulay ring, where

R[P ] is the polynomial ring over P . Finally, in section 4, we conclude some properties of L(R).

1. The Principal Lattice and α-ideals

A Noether lattice is a modular multiplicative lattice satisfying the ascending chain condition

in which every element is a join of elements called principal elements. The multiplication, meet,
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and join in a Noether lattice are supposed to mirror the multiplication, intersection, and sum of

ideals. Because of this, a multiplicative lattice is defined to be a complete lattice L, containing

a unite element I and a null element 0, and provided with a commutative, associative, join-

distributive multiplication, for which I is an identity element. We will use ∧ and ∨ to denote

meet and join, respectively, and 6 to denote lattice partial ordering, with < reserved for strict

inequality.

Remark 1.1. Let R be a commutative ring with an identity, I and J be ideals of R, I + J and

IJ , be the ordinary sum and product of ideals. With these two operations as join and meet, the

set of all ideals of a given ring, forms a complete modular lattice. Remember that, a principal

lattice, is a lattice in which every element is principal. The following theorem is proved in [6].

Theorem 1.1. Let R be a commutative ring with identity. Then L(R) is a principal lattice, if

and only if, R is a Noetherian multiplication ring.

Note that, a ring is called a multiplication ring, if every ideal of R is product of two ideals. Let

M be a finitely generated module over a Noetherian ring R. We say that x ∈ R is an M -regular

element, if xg = 0 for g ∈ M implies g = 0, in the other words, if x is not a zero-divisor on M .

A sequence x1, · · ·xr of elements of the ring R, is called an M -regular sequence or simply an

M -sequence if the following conditions are satisfied:

(1) xi is an M/(x1, · · · , xi−1)M -regular element for i = 1, . . . , r;

(2) M/(x1, . . . , xr)M 6= 0.

Suppose I ⊆ R is an ideal with IM 6= M . The depth of I on M is maximal length of an

M -regular sequence in I, denoted by depth(I,M). If R is a local ring with a unique maximal

ideal m, we write depth(m), for depth(m,M).

Let R be a Noetherian local ring. A finitely generated R-module M , is a Cohen-Macaulay

module, if depth(M) = dim(M). If R itself is a Cohen-Macaulay module, then it is called a

Cohen-Macaulay ring. For the proof of the following theorem, see [9].

Theorem 1.2. Suppose R is a Noetherian multiplication ring. Then R is a Cohen-Macaulay

ring.

2. Cohen-Macaulay and Unmixedness

We begin this section by a definition from Bourbaki.

Definition 2.1. A prime ideal P is an associated prime of I, if P = I : x for some x ∈ R.

Remember that the height of a prime ideal P is the maximum length of the chains of prime

ideals of the following form,

P1 ⊂ P2 ⊂ · · · ⊂ Pk = P.

We will denote the height of P by ht(P ). An ideal I of R is said to be height-unmixed, if all

the associated primes of I have equal height. That is ht(P ) = ht(Q), for all P,Q ∈ Ass(I),

where Ass(I) denotes the set of associated primes of I. An ideal I is said to be unmixed if

there are no embedded primes among the associated primes of I. That is, P ⊆ Q ⇒ P = Q,

for all P,Q ∈ Ass(I).1 We will say that an ideal is WB-height-unmixed, if it is height-unmixed

with respect to the set of weak Bourbaki associated primes and an ideal is WB-unmixed if it is

unmixed with respect to the set of weak Bourbaki associated primes. The set of weak Bourbaki
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associated primes of an ideal I is denoted by Assf (I). A prime ideal P is a weak Bourbaki

associated prime of the ideal I if it is a minimal ideal of the form I : a, for some a ∈ R.

Theorem 2.1. If R satisfies GPIT (generalized principal ideal theorem), then R is WB-height-

unmixed if and only if R is WB-unmixed.

Proof. Suppose R is a ring which satisfies GPIT.

(⇒) Suppose R is WB-height-unmixed and let I be a height-generated ideal in R. In a

ring which satisfies GPIT every ideal I satisfies ht(I) 6 ℓ(I) where ℓ(I) denotes the minimal

number of generators of I. Thus, in a ring with GPIT, I is height-generated if and only if

ht(I) = ℓ(I) < ∞. To show that I is WB-unmixed, suppose P,Q ∈ Assf (I), with P ⊆ Q. Since

R is WB-height-unmixed so I is WB-height-unmixed. Thus, ht(P ) = ht(Q) = ht(I) < ∞. So,

P and Q are prime ideals with P ⊆ Q and ht(P ) = ht(Q) < ∞. Thus, P = Q and so I is

WB-unmixed. Therefore, R is WB-unmixed.

(⇐) Suppose R is WB-unmixed and let I be a height-generated ideal in R. As in the first

part of this proof, we have ht(I) = ℓ(I) < ∞. Let n = ht(I) = ℓ(I). Note that, since R satisfies

GPIT, we have ht(P ) 6 n for all P ∈ Min(I). However, since ht(I) 6 ht(P ) for all P ∈ Min(I)

and ht(I) = n, we have ht(P ) = n for all minimal associated prime P . Since I is WB-unmixed,

we have Assf (I) is the set of all minimal associated primes of I. Therefore, ht(P ) = n for all

P ∈ Assf (I) and thus, I is WB-height-unmixed. Therefore, R is WB-height-unmixed. 2

Theorem 2.2. Let R be a Noetherian ring and let S = R[X1,X2, . . .], the ring of polynomials

in the variables X1,X2, . . .. For any prime ideal P in R we have ht(P ) = ht(PS) where ht(PS)

refers to the height of the ideal PS in S.

Proof. Note that the proof of this theorem depends only on the weaker condition that R

is a strong S-ring ( see [8] for more information on strong S-rings). It is not necessary for the

ring to be Noetherian. First, note that, we have trivially ht(P ) 6 ht(PS), since the extensions

of a chain of distinct prime ideals in R, is a chain of distinct prime ideals in S. For i > 1, let

Ri = R[X1,X2, . . . ,Xi]. So, S = lim
−→

Ri. Let Pi = PRi. Since R is Noetherian (and thus a strong

S-ring), we have ht(P ) = ht(Pi), see [8](Theorem 149, page 108). Now, suppose h(PS) > n,

where n = ht(P ). Then there is a chain of prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn+1 = PS,

in S. For 1 6 i 6 n + 1, choose xi ∈ Qi \ Qi−1. Since S = lim
−→

Ri, there is a positive integer j

such that {x1, · · · , xn+1} ∈ Rj . For 0 6 i 6 n + 1, let Ti = Qi

⋂
Ri. Then

T0 ⊂ T1 ⊂ · · · ⊂ Tn+1

is a chain of prime ideals in Rj . So, ht(Tn+1) > n+1. However, Tn+1 = Qn+1

⋂
Rj = PS

⋂
Rj =

Pj and we have already noted that ht(Pj) = n, a contradiction. Therefore, ht(PS) = ht(P ). 2

In [1], it was shown that R[X1,X2, . . .] satisfies GPIT (if R is a Noetherian ring). The

statement of this fact in [1] actually makes the assumption that R is a domain, however, the fact

that R is a domain, is not necessary in the proof given in [1], so we will use the more general

result. By applying 2.1 to this result, we get the following theorem

Theorem 2.3. Let R be a Cohen-Macaulay ring. Then R[X1,X2, . . .] is WB-height-unmixed.

Theorem 2.4. Let L be a Noetherian multiplicative lattice. Every element of L is principal

element, if and only if, for all a 6 b, there is an element c ∈ L, such that a = bc.
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Proof. Suppose that elements of L are principal and let a, b ∈ L and a 6 b. Then a = a∩ b =

(a : b)b, and so c = (a : b). Conversely, it follows from (ACC), that each element of L is a

join of a finite number of principal elements. Therefore, to prove the theorem it is sufficient to

show that if m and n are principal elements of L, then m ∪ n is principal. Let m be principal

and let m 6 d, where d ∈ L. Then m = cd, for some c ∈ L, and since m is join principal

,(a ∪ bcd) : cd = a : m ∪ b, for all a, b ∈ L. Hence ((a ∪ bcd) : c) : d = a : m ∪ b. However,

(a ∪ bd)c = ac ∪ bdc 6 a ∪ bcd, and so a ∪ bd 6 (a ∪ bcd) : c. Therefore, (a ∪ bd) : d 6 a : m ∪ b

for all a, b ∈ L. Thus, if m and n are principal elements of L, we have for all a, b ∈ L,

(a ∪ b(m ∪ n)) : (m ∪ n) 6 (a : m ∪ b) ∩ (a : n ∪ b)

= (a : m ∩ a : n) ∪ b

= a : (m ∪ n) ∪ b.

2

Corollary 2.1. Let R be a commutative ring with an identity and L(R) be a Noether lattice.

Every ideal of R is an principal element in L(R), if and only if, R is a multiplication ring.

For the proof of the following theorem, see [5].

Theorem 2.5. If R is Cohen-Macaulay ring, and if P is a distributive lattice, then R[P ] is

Cohen-Macaulay.

3. α-ideals and Cohen-Macaulay Rings

In this section we introduce the concept of an α-ideal in an ADL with zero, analogous to

that in a distributive lattice [2]. An Almost Distributive Lattice (ADL) is an algebra (R,∨,∧)

of type (1.2) satisfying:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3. (x ∨ y) ∧ y = y

4. (x ∨ y) ∧ x = x

5. x ∨ (x ∧ y) = x for any x, y, z ∈ R

If R has an element 0, and satisfies 0 ∧ x = 0 and 0 ∨ x = 0 alogn with the above properties,

then R is called an ADL with 0.

Definition 3.1. For any non-empty subset A of an ADL, R with 0, define A∗ = {x ∈ R | a∧x =

0, for all a ∈ A}. Then A∗ is called the annihilator of A. For any a ∈ R, we have {a}∗ = (a]∗,

where (a] is the principal ideal generated by a. For any ∅ 6= A ⊆ R, we have clearly A∩A∗ = (0].

For the proof of the next lemmas, see [10].

Lemma. For any non-empty subset A of R, A∗ is an ideal of R.

Lemma. For any non-empty subsets I, J of R, we have the following:

1. If I ⊆ J , then J∗ ⊆ I∗

2. I ⊆ I∗∗

3. I∗∗∗ = I∗

4. (I ∨ J)∗ = I∗ ∩ J∗.

– 295 –



Ali Molkhasi Polynomials, α-ideals, and the Principal Lattice

Definition 3.2. Let R be a ADL with 0. An ideal I of R is called an α-ideal if (x]∗∗ ⊆ I for

all x ∈ I.

We now denote the set of all α-ideal of an ADL R by Iα(R). If R is an ADL, then we know

that (I(R),∨,∧) is a distributive lattice. But the set Iα(R) is not a sublattice of I(R).

Definition 3.3. A Noether lattice is said to be complete if it is complete in the topology of the

Jacobson radical.

In [7], the following theorem is proved.

Theorem 3.1. Let (L,m) be a distributive local Noether lattice of dimension d. Then L is

complete in the m-adic topology.

Let R be a local Noetherian ring with the maximal ideal M . Then L(R), the lattice of ideals

of R, is a local Noether lattice and also L(R) is a complete modular lattice. A ring R is called

an arithmetical ring, if L(R) is distributive.

Corollary 3.1. If (R,m) is a local Noetherian ring and is arithmetical ring, then L(R) is a

complete in the m-adic topology.

Proof. This is immediate from Remark 1.1 and Theorem 3.1 and if L is an ADL, then L(R)

is a distributive lattice. 2

Corollary 3.2. If (R,m) is local Noether lattice and is an ADL, then I(R) is a complete in the

m-adic topology.

In [10], it is proved that, if R is an ADL with 0, then Iα(R) forms a distributive lattice. So

we have

Theorem 3.2. Let R be a commutative ring with an identity and let Iα(R) be the set of all

α-ideal of an ADL R. If L(R) is a principal lattice, then R[Iα(R)][X1,X2, . . .] is WB-height-

unmixed.

Proof. Since L(R) is a principal lattice, R is Cohen-Macaulay . By assumption, Iα(R)

is a distributive lattice. Thus the R[Iα(R)] is Cohen-Macaulay and R[Iα(R)][X1,X2, . . .] is

WB-height-unmixed. 2
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Полиномы, α-идеалы и главные решетки

Али Молхаси

Пусть R — коммутативное кольцо с единицей, R — почти дистрибутивная решетка и Iα(R) —

множество всех α-идеалов в R. Если L(R) — главная решетка R, то R[Iα(R)] — кольцо Коэна-

Маколея. В частности, R[Iα(R)][X1, X2, · · · ] — WB-высота несмешанности.

Ключевые слова: почти дистрибутивные решетки, главные решетки, α-идеалы, WB-высота

несмешанности, полные решетки, Коэна-Маколея кольца, несмешанность.

– 297 –


