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Let R be a commutative ring with an identity, R be an almost distributive lattice and I (R) be the set of
all a-ideals of K. If L(R) is the principal lattice of R, then R[I1.(R)] is Cohen-Macaulay. In particular,
R[I.(R)][X1, X2, -] is WB-height-unmized.
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Introduction

Lattices, in general, (specially multiplicative lattices), are natural abstractions of the set of
ideals of a ring. However, Wihout a good notion of principal lattice, it is impossible to get very
deep results, see [3]. Dilworth overcame this in [4], with a new notion of a principal element.
Recall, that a multiplicative lattice is a complete lattice L with a commutative, associative
multiplication which distributes over arbitrary joins and its largest element I, is the identity for
the multiplication, see [4]. Basically, an element E of a multiplicative lattice L, is said to be
meet-(join-)principal if (AA (B : E))E = (AE)AB (if (BEV A): E=BV(A: E)) for all A
and B in L. A principal element is an element that is both meet-principal and join-principal or
ANE = (A:E)Eand AE: E = AV(0: E), forall A € L. Alattice L, is called a principal lattice,
when each of its elements is principal. Here, the residual quotient of two elements A and B is
denoted by A: B,so A: B=V{X € L|XB < A}. An almost distributive lattice (ADL), was
introduced by U. M. Swamy and G. C. Rao in [11], as an algebra (R, V, A) of type (2,2), which
satisfies almost all the properties of a distributive lattice, except possibly the commutativity of Vv,
the commutativity of A and the right distributivity of v over A. W. H. Cornish studied in to [2],
the properties of a-ideals in a distributive lattice, (see the next section for the definition). In this
paper, the concept of an a-ideal in an ADL is introduced, analogous to the case of distributive
lattices. In section 2, it is shown that, if R is a commutative ring with an identity and L(R)
is the principal lattice, then R is a Cohen-Macaulay ring. In section 3, we prove that, if R is
Cohen-Macaulay ring and if P is a distributive lattice, then R[P] is Cohen-Macaulay ring, where
RJ[P] is the polynomial ring over P. Finally, in section 4, we conclude some properties of L(R).

1. The Principal Lattice and a-ideals

A Noether lattice is a modular multiplicative lattice satisfying the ascending chain condition
in which every element is a join of elements called principal elements. The multiplication, meet,
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and join in a Noether lattice are supposed to mirror the multiplication, intersection, and sum of
ideals. Because of this, a multiplicative lattice is defined to be a complete lattice L, containing
a unite element I and a null element 0, and provided with a commutative, associative, join-
distributive multiplication, for which I is an identity element. We will use A and V to denote
meet and join, respectively, and < to denote lattice partial ordering, with < reserved for strict
inequality.

Remark 1.1. Let R be a commutative ring with an identity, I and J be ideals of R, I + J and
1J, be the ordinary sum and product of ideals. With these two operations as join and meet, the
set of all ideals of a given ring, forms a complete modular lattice. Remember that, a principal
lattice, is a lattice in which every element is principal. The following theorem is proved in [6].

Theorem 1.1. Let R be a commutative ring with identity. Then L(R) is a principal lattice, if
and only if, R is a Noetherian multiplication ring.

Note that, a ring is called a multiplication ring, if every ideal of R is product of two ideals. Let
M be a finitely generated module over a Noetherian ring R. We say that x € R is an M-regular
element, if zg = 0 for ¢ € M implies g = 0, in the other words, if z is not a zero-divisor on M.
A sequence z1,---x, of elements of the ring R, is called an M-regular sequence or simply an
M-sequence if the following conditions are satisfied:

(1) z; is an M/(x1,- - ,x;—1)M-regular element for i = 1,...,7;

(2) M/(z1,...,2.)M #0.

Suppose I C R is an ideal with IM # M. The depth of I on M is maximal length of an
M-regular sequence in I, denoted by depth(I, M). If R is a local ring with a unique maximal
ideal m, we write depth(m), for depth(m, M).

Let R be a Noetherian local ring. A finitely generated R-module M, is a Cohen-Macaulay
module, if depth(M) = dim(M). If R itself is a Cohen-Macaulay module, then it is called a
Cohen-Macaulay ring. For the proof of the following theorem, see [9].

Theorem 1.2. Suppose R is a Noetherian multiplication ring. Then R is a Cohen-Macaulay
ring.

2. Cohen-Macaulay and Unmixedness

We begin this section by a definition from Bourbaki.
Definition 2.1. A prime ideal P is an associated prime of I, if P =1 : x for some x € R.

Remember that the height of a prime ideal P is the maximum length of the chains of prime
ideals of the following form,
PchcCc---CP,=P

We will denote the height of P by ht(P). An ideal I of R is said to be height-unmixed, if all
the associated primes of I have equal height. That is ht(P) = ht(Q), for all P,Q € Ass(I),
where Ass(I) denotes the set of associated primes of I. An ideal I is said to be unmixed if
there are no embedded primes among the associated primes of I. That is, P C Q = P = Q,
for all P,@Q € Ass(I).1 We will say that an ideal is WB-height-unmixed, if it is height-unmixed
with respect to the set of weak Bourbaki associated primes and an ideal is WB-unmixed if it is
unmixed with respect to the set of weak Bourbaki associated primes. The set of weak Bourbaki
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associated primes of an ideal I is denoted by Assy(I). A prime ideal P is a weak Bourbaki
associated prime of the ideal [ if it is a minimal ideal of the form I : a, for some a € R.

Theorem 2.1. If R satisfies GPIT (generalized principal ideal theorem), then R is WB-height-
unmized if and only if R is WB-unmized.

Proof. Suppose R is a ring which satisfies GPIT.

(=) Suppose R is WB-height-unmixed and let I be a height-generated ideal in R. In a
ring which satisfies GPIT every ideal I satisfies ht(I) < ¢(I) where £(I) denotes the minimal
number of generators of I. Thus, in a ring with GPIT, I is height-generated if and only if
ht(I) = ¢(I) < oo. To show that I is WB-unmixed, suppose P,Q € Ass¢([), with P C Q. Since
R is WB-height-unmixed so I is WB-height-unmixed. Thus, ht(P) = ht(Q) = ht(I) < co. So,
P and @ are prime ideals with P C @ and ht(P) = ht(Q) < oo. Thus, P = @ and so I is
WB-unmixed. Therefore, R is WB-unmixed.

(<) Suppose R is WB-unmixed and let I be a height-generated ideal in R. As in the first
part of this proof, we have ht(I) = ¢(I) < co. Let n = ht(I) = £(I). Note that, since R satisfies
GPIT, we have ht(P) < n for all P € Min(I). However, since ht(I) < ht(P) for all P € Min(I)
and ht(I) = n, we have ht(P) = n for all minimal associated prime P. Since I is WB-unmixed,
we have Assy(I) is the set of all minimal associated primes of I. Therefore, ht(P) = n for all
P € Assy(I) and thus, I is WB-height-unmixed. Therefore, R is WB-height-unmixed. O

Theorem 2.2. Let R be a Noetherian ring and let S = R[X1, Xo,...], the ring of polynomials
in the variables X1, Xa,.... For any prime ideal P in R we have ht(P) = ht(PS) where ht(PS)
refers to the height of the ideal PS in S.

Proof. Note that the proof of this theorem depends only on the weaker condition that R
is a strong S-ring ( see [8] for more information on strong S-rings). It is not necessary for the
ring to be Noetherian. First, note that, we have trivially ht(P) < ht(PS), since the extensions
of a chain of distinct prime ideals in R, is a chain of distinct prime ideals in S. For ¢ > 1, let
R; = R[X1,Xs,...,X;]. So, S = hi>nRZ Let P, = PR;. Since R is Noetherian (and thus a strong
S-ring), we have ht(P) = ht(P;), see [8](Theorem 149, page 108). Now, suppose h(PS) > n,
where n = ht(P). Then there is a chain of prime ideals

QQCQ1C"'CQn+1:PS,

in S. For 1 < i< n+1, choose x; € Q; \ Q;—1. Since S = li_I)IlRi, there is a positive integer j
such that {z1,--- ,zp41} € Rj. For 0<i<n+1,let T; = Q; () R;. Then

ToCT1C"'CTn+1

is a chain of prime ideals in R;. So, ht(T,,+1) = n+1. However, T, 1 = Quni1 [\ Rj = PSR, =
P; and we have already noted that ht(P;) = n, a contradiction. Therefore, ht(PS) = ht(P). O

In [1], it was shown that R[X;, Xo,...] satisfies GPIT (if R is a Noetherian ring). The
statement of this fact in [1] actually makes the assumption that R is a domain, however, the fact
that R is a domain, is not necessary in the proof given in [1], so we will use the more general
result. By applying 2.1 to this result, we get the following theorem

Theorem 2.3. Let R be a Cohen-Macaulay ring. Then R[X1, Xs,...] is WB-height-unmized.
Theorem 2.4. Let L be a Noetherian multiplicative lattice. FEvery element of L is principal

element, if and only if, for all a < b, there is an element ¢ € L, such that a = be.
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Proof. Suppose that elements of L are principal and let a,b € L and a < b. Thena =anNb =
(a : b)b, and so ¢ = (a : b). Conversely, it follows from (ACC), that each element of L is a
join of a finite number of principal elements. Therefore, to prove the theorem it is sufficient to
show that if m and n are principal elements of L, then m U n is principal. Let m be principal
and let m < d, where d € L. Then m = cd, for some ¢ € L, and since m is join principal
J(aUbed) : ed = a:muUb, for all a,b € L. Hence ((aUbcd) : ¢) : d = a : mUb. However,
(aUbd)c = acUbde < aUbed, and so a Ubd < (aUbced) : c. Therefore, (aUbd) :d <a:mUb
for all a,b € L. Thus, if m and n are principal elements of L, we have for all a,b € L,

(aUb(mun)):(mUn) < (a:mUb)N(a:nUb)
= (a:mNa:n)Ub
= a:(mUn)Ub.

O

Corollary 2.1. Let R be a commutative ring with an identity and L(R) be a Noether lattice.
Every ideal of R is an principal element in L(R), if and only if, R is a multiplication ring.

For the proof of the following theorem, see [5].

Theorem 2.5. If R is Cohen-Macaulay ring, and if P is a distributive lattice, then R[P] is
Cohen-Macaulay.

3. «a-ideals and Cohen-Macaulay Rings

In this section we introduce the concept of an a-ideal in an ADL with zero, analogous to
that in a distributive lattice [2]. An Almost Distributive Lattice (ADL) is an algebra (2R, V, A)
of type (1.2) satisfying:

L. (zVyAhz=(xA2)V(yAz)

2.2A(yVvVz)=(xAy)V(rAz)

3. (zVy)Ay=y

4. (zVy) A==z

5.2V (zxAy) == for any z,y,z € R

If R has an element 0, and satisfies 0 Az = 0 and 0V = = 0 alogn with the above properties,
then fR is called an ADL with 0.

Definition 3.1. For any non-empty subset A of an ADL, R with 0, define A* = {x € R | ahz =
0, for all a € A}. Then A* is called the annihilator of A. For any a € R, we have {a}* = (a]*,
where (a] is the principal ideal generated by a. For any O # A C R, we have clearly AN A* = (0].

For the proof of the next lemmas, see [10].
Lemma. For any non-empty subset A of R, A* is an ideal of *R.

Lemma. For any non-empty subsets I, J of R, we have the following:
1. If1 C J, then J* C I*
2. 1 C T
8. I =7T*
4. IV ) =I"NJ*.
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Definition 3.2. Let R be a ADL with 0. An ideal I of R is called an a-ideal if (z]** C 1 for
allz e I.

We now denote the set of all a-ideal of an ADL R by I, (R). If R is an ADL, then we know
that (I(R), V, A) is a distributive lattice. But the set I, (R) is not a sublattice of I(fR).

Definition 3.3. A Noether lattice is said to be complete if it is complete in the topology of the
Jacobson radical.

In [7], the following theorem is proved.

Theorem 3.1. Let (L, m) be a distributive local Noether lattice of dimension d. Then L is
complete in the m-adic topology.

Let R be a local Noetherian ring with the maximal ideal M. Then L(R), the lattice of ideals
of R, is a local Noether lattice and also L(R) is a complete modular lattice. A ring R is called
an arithmetical ring, if L(R) is distributive.

Corollary 3.1. If (R, m) is a local Noetherian ring and is arithmetical ring, then L(R) is a
complete in the m-adic topology.

Proof. This is immediate from Remark 1.1 and Theorem 3.1 and if L is an ADL, then L(R)
is a distributive lattice. |

Corollary 3.2. If (R, m) is local Noether lattice and is an ADL, then I(R) is a complete in the
m-adic topology.

In [10], it is proved that, if R is an ADL with 0, then I,,(9R) forms a distributive lattice. So
we have

Theorem 3.2. Let R be a commutative ring with an identity and let 1,(R) be the set of all
a-ideal of an ADL R. If L(R) is a principal lattice, then R[I,(R)]|[X1, Xa,...] is WB-height-
unmized.

Proof. Since L(R) is a principal lattice, R is Cohen-Macaulay . By assumption, I,(R)
is a distributive lattice. Thus the R[I, ()] is Cohen-Macaulay and R[I,(R)]|[X1, Xa,...] is
WB-height-unmixed. ]
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HOJII/IHOMBI, a-maeaJibl 1 I'JlaBHbIE PEIIEeTKN

Anu MoJaxacu

ITyemv R — xommymamueHnoe Koavyo ¢ edunuyet, R — noumu ducmpubymuenas pewemra u Io(R) —
MmHoocecmeo ecex a-udeanos 6 R. Ecau L(R) — arasnas pewemka R, mo R[I.(R)] — xoavyo Kosna-

Maxoaes. B wacmuocmu, R[I,(R)][X1, X2, -] — W B-6vicoma necmewarHocmu.

Karoueswie caosa: nowmu ducmpubymueHsie peulemxu, 24a8hvie peuemku, a-udeaav,, W B-ewvicoma

HECMEUWAHHOCTNU, NOAHDIE PEWEMKU, Kosna-Maxones KoAvbuya, HECMEWAHHOCMD.
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