Let R be a commutative ring with an identity, \mathcal{R} be an almost distributive lattice and $I_\alpha(\mathcal{R})$ be the set of all α-ideals of \mathcal{R}. If $L(R)$ is the principal lattice of R, then $R[I_\alpha(\mathcal{R})]$ is Cohen-Macaulay. In particular, $R[I_\alpha(\mathcal{R})][X_1, X_2, \cdots]$ is WB-height-unmixed.

Keywords: Almost distributive lattice, principal lattice, α-ideals, multiplicative lattice; complete lattice, WB-height-unmixedness, Cohen-Macaulay rings, unmixedness.

Introduction

Lattices, in general, (specially multiplicative lattices), are natural abstractions of the set of ideals of a ring. However, Without a good notion of principal lattice, it is impossible to get very deep results, see [3]. Dilworth overcame this in [4], with a new notion of a principal element. Recall, that a multiplicative lattice is a complete lattice L with a commutative, associative multiplication which distributes over arbitrary joins and its largest element I, is the identity for the multiplication, see [4]. Basically, an element E of a multiplicative lattice L, is said to be meet-(join-)principal if $(A \land (B : E))E = (AE) \land B$ (if $(BE \lor A) : E = B \lor (A : E)$) for all A and B in L. A principal element is an element that is both meet-principal and join-principal or $A \land E = (A : E)E$ and $AE : E = A \lor (0 : E)$, for all $A \in L$. A lattice L, is called a principal lattice, when each of its elements is principal. Here, the residual quotient of two elements A and B is denoted by $A : B$, so $A : B = \lor \{X \in L | XB \leq A\}$. An almost distributive lattice (ADL), was introduced by U. M. Swamy and G. C. Rao in [11], as an algebra (R, \lor, \land) of type $(2, 2)$, which satisfies almost all the properties of a distributive lattice, except possibly the commutativity of \lor, the commutativity of \land and the right distributivity of \lor over \land. W. H. Cornish studied in to [2], the properties of α-ideals in a distributive lattice, (see the next section for the definition). In this paper, the concept of an α-ideal in an ADL is introduced, analogous to the case of distributive lattices. In section 2, it is shown that, if R is a commutative ring with an identity and $L(R)$ is the principal lattice, then R is a Cohen-Macaulay ring. In section 3, we prove that, if R is Cohen-Macaulay ring and if P is a distributive lattice, then $R[P]$ is Cohen-Macaulay ring, where $R[P]$ is the polynomial ring over P. Finally, in section 4, we conclude some properties of $L(R)$.

1. The Principal Lattice and α-ideals

A Noether lattice is a modular multiplicative lattice satisfying the ascending chain condition in which every element is a join of elements called principal elements. The multiplication, meet,
and join in a Noether lattice are supposed to mirror the multiplication, intersection, and sum of ideals. Because of this, a multiplicative lattice is defined to be a complete lattice \(L \), containing a unite element \(I \) and a null element \(0 \), and provided with a commutative, associative, join-distributive multiplication, for which \(I \) is an identity element. We will use \(\wedge \) and \(\vee \) to denote meet and join, respectively, and \(\leq \) to denote lattice partial ordering, with \(< \) reserved for strict inequality.

Remark 1.1. Let \(R \) be a commutative ring with an identity, \(I \) and \(J \) be ideals of \(R \), \(I + J \) and \(IJ \), be the ordinary sum and product of ideals. With these two operations as join and meet, the set of all ideals of a given ring, forms a complete modular lattice. Remember that, a principal lattice, is a lattice in which every element is principal. The following theorem is proved in [6].

Theorem 1.1. Let \(R \) be a commutative ring with identity. Then \(L(R) \) is a principal lattice, if and only if, \(R \) is a Noetherian multiplication ring.

Note that, a ring is called a multiplication ring, if every ideal of \(R \) is product of two ideals. Let \(M \) be a finitely generated module over a Noetherian ring \(R \). We say that \(x \in R \) is an \(M \)-regular element, if \(xg = 0 \) for \(g \in M \) implies \(g = 0 \), in the other words, if \(x \) is not a zero-divisor on \(M \).

A sequence \(x_1, \ldots, x_r \) of elements of the ring \(R \), is called an \(M \)-regular sequence or simply an \(M \)-sequence if the following conditions are satisfied:

1. \(x_i \) is an \(M/(x_1, \ldots, x_{i-1})M \) regular element for \(i = 1, \ldots, r \);
2. \(M/(x_1, \ldots, x_r)M \neq 0 \).

Suppose \(I \subseteq R \) is an ideal with \(IM \neq M \). The depth of \(I \) on \(M \) is maximal length of an \(M \)-regular sequence in \(I \), denoted by \(\text{depth}(I, M) \). If \(R \) is a local ring with a unique maximal ideal \(m \), we write \(\text{depth}(m) \), for \(\text{depth}(m, M) \).

Let \(R \) be a Noetherian local ring. A finitely generated \(R \)-module \(M \), is a Cohen-Macaulay module, if \(\text{depth}(M) = \dim(M) \). If \(R \) itself is a Cohen-Macaulay module, then it is called a Cohen-Macaulay ring. For the proof of the following theorem, see [9].

Theorem 1.2. Suppose \(R \) is a Noetherian multiplication ring. Then \(R \) is a Cohen-Macaulay ring.

2. Cohen-Macaulay and Unmixedness

We begin this section by a definition from Bourbaki.

Definition 2.1. A prime ideal \(P \) is an associated prime of \(I \), if \(P = I : x \) for some \(x \in R \).

Remember that the height of a prime ideal \(P \) is the maximum length of the chains of prime ideals of the following form,

\[
P_1 \subset P_2 \subset \cdots \subset P_k = P.
\]

We will denote the height of \(P \) by \(ht(P) \). An ideal \(I \) of \(R \) is said to be height-unmixed, if all the associated primes of \(I \) have equal height. That is \(ht(P) = ht(Q) \), for all \(P, Q \in \text{Ass}(I) \), where \(\text{Ass}(I) \) denotes the set of associated primes of \(I \). An ideal \(I \) is said to be unmixed if there are no embedded primes among the associated primes of \(I \). That is, \(P \subseteq Q \Rightarrow P = Q \), for all \(P, Q \in \text{Ass}(I) \).

We will say that an ideal is WB-height-unmixed, if it is height-unmixed with respect to the set of weak Bourbaki associated primes and an ideal is WB-unmixed if it is unmixed with respect to the set of weak Bourbaki associated primes. The set of weak Bourbaki
associated primes of an ideal \(I \) is denoted by \(\text{Ass}_R(I) \). A prime ideal \(P \) is a weak Bourbaki associated prime of the ideal \(I \) if it is a minimal ideal of the form \(I : a \), for some \(a \in R \).

Theorem 2.1. If \(R \) satisfies GPIT (generalized principal ideal theorem), then \(R \) is WB-height-unmixed if and only if \(R \) is WB-unmixed.

Proof. Suppose \(R \) is a ring which satisfies GPIT.

\((\Rightarrow) \) Suppose \(R \) is WB-height-unmixed and let \(I \) be a height-generated ideal in \(R \). In a ring which satisfies GPIT every ideal \(I \) satisfies \(\text{ht}(I) \leq \ell(I) \), where \(\ell(I) \) denotes the minimal number of generators of \(I \). Thus, in a ring with GPIT, \(I \) is height-generated if and only if \(\ell(I) = \text{ht}(I) < \infty \). To show that \(I \) is WB-height-unmixed, suppose \(P, Q \in \text{Ass}_R(I) \), with \(P \subseteq Q \). Since \(R \) is WB-height-unmixed so \(I \) is WB-height-unmixed. Thus, \(\text{ht}(P) = \text{ht}(Q) = \text{ht}(I) < \infty \). So, \(P \) and \(Q \) are prime ideals with \(P \subseteq Q \) and \(\text{ht}(P) = \text{ht}(Q) < \infty \). Thus, \(P = Q \) and so \(I \) is WB-unmixed. Therefore, \(R \) is WB-unmixed.

\((\Leftarrow) \) Suppose \(R \) is WB-unmixed and let \(I \) be a height-generated ideal in \(R \). In the first part of this proof, we have \(\text{ht}(I) = \ell(I) < \infty \). Let \(n = \text{ht}(I) = \ell(I) \). Note that, since \(R \) satisfies GPIT, we have \(\text{ht}(P) \leq n \) for all \(P \in \text{Min}(I) \). However, since \(\ell(I) = n \), we have \(\text{ht}(P) = n \) for all maximal associated prime \(P \). Since \(I \) is WB-unmixed, we have \(\text{Ass}_R(I) \) is the set of all minimal associated primes of \(I \). Therefore, \(\text{ht}(P) = n \) for all \(P \in \text{Ass}_R(I) \) and thus, \(I \) is WB-height-unmixed. Therefore, \(R \) is WB-height-unmixed. \(\square \)

Theorem 2.2. Let \(R \) be a Noetherian ring and let \(S = R[X_1, X_2, \ldots] \), the ring of polynomials in the variables \(X_1, X_2, \ldots \). For any prime ideal \(P \) in \(R \) we have \(\text{ht}(P) = \text{ht}(PS) \) where \(\text{ht}(PS) \) refers to the height of the ideal \(PS \) in \(S \).

Proof. Note that the proof of this theorem depends only on the weaker condition that \(R \) is a strong \(S \)-ring (see [8] for more information on strong \(S \)-rings). It is not necessary for the ring to be Noetherian. First, note that, we have trivially \(\text{ht}(P) \leq \text{ht}(PS) \), since the extensions of a chain of distinct prime ideals in \(R \) is a chain of distinct prime ideals in \(S \). For \(i \geq 1 \), let \(R_i = R[X_1, X_2, \ldots, X_i] \). Since \(R \) is Noetherian (and thus a strong \(S \)-ring), we have \(\text{ht}(P) = \text{ht}(P_i) \), see [8](Theorem 149, page 108). Now, suppose \(\text{ht}(PS) > n \), where \(n = \text{ht}(P) \). Then there is a chain of prime ideals

\[
Q_0 \subset Q_1 \subset \cdots \subset Q_{n+1} = PS,
\]

in \(S \). For \(1 \leq i \leq n+1 \), choose \(x_i \in Q_i \setminus Q_{i-1} \). Since \(S = \lim R_i \), there is a positive integer \(j \) such that \(\{x_1, \cdots, x_{n+1}\} \subseteq R_j \). For \(0 \leq i \leq n+1 \), let \(T_i = Q_i \cap R_i \). Then

\[
T_0 \subset T_1 \subset \cdots \subset T_{n+1}
\]

is a chain of prime ideals in \(R_j \). So, \(\text{ht}(T_{n+1}) \geq n+1 \). However, \(T_{n+1} = Q_{n+1} \cap R_j = PS \cap R_j = P_j \) and we have already noted that \(\text{ht}(P_j) = n \), a contradiction. Therefore, \(\text{ht}(PS) = \text{ht}(P) \). \(\square \)

In [1], it was shown that \(R[X_1, X_2, \ldots] \) satisfies GPIT (if \(R \) is a Noetherian ring). The statement of this fact in [1] actually makes the assumption that \(R \) is a domain, however, the fact that \(R \) is a domain, is not necessary in the proof given in [1], so we will use the more general result. By applying 2.1 to this result, we get the following theorem

Theorem 2.3. Let \(R \) be a Cohen-Macaulay ring. Then \(R[X_1, X_2, \ldots] \) is WB-height-unmixed.

Theorem 2.4. Let \(L \) be a Noetherian multiplicative lattice. Every element of \(L \) is principal element, if and only if, for all \(a \leq b \), there is an element \(c \in L \), such that \(a = bc \).

– 294 –
Proof. Suppose that elements of \(L \) are principal and let \(a, b \in L \) and \(a \leq b \). Then \(a = a \cap b = (a : b)b \), and so \(c = (a : b) \). Conversely, it follows from (ACC), that each element of \(L \) is a join of a finite number of principal elements. Therefore, to prove the theorem it is sufficient to show that if \(m \) and \(n \) are principal elements of \(L \), then \(m \cup n \) is principal. Let \(m \) be principal and let \(m \leq d \), where \(d \in L \). Then \(m = cd, \) for some \(c \in L \), and since \(m \) is join principal \((a \cup b)\) : \(cd = a : m \cup b \), for all \(a, b \in L \). Hence \((a \cup b) : c \) : \(d = a : m \cup b \). However, \((a \cup b)c = ac \cup bdc \leq a \cup bdc \), and so \(a \cup b \leq (a \cup b) : c \). Therefore, \((a \cup b) : d \leq a : m \cup b \) for all \(a, b \in L \). Thus, if \(m \) and \(n \) are principal elements of \(L \), we have for all \(a, b \in L \),

\[
(a \cup b(m \cup n)) : (m \cup n) & \leq (a : m \cup b) \cap (a : n \cup b) \\
& = (a : m \cap a : n) \cup b \\
& = a : (m \cap n) \cup b.
\]

\[\square\]

Corollary 2.1. Let \(R \) be a commutative ring with an identity and \(L(R) \) be a Noether lattice. Every ideal of \(R \) is an principal element in \(L(R) \), if and only if, \(R \) is a multiplication ring.

For the proof of the following theorem, see [5].

Theorem 2.5. If \(R \) is Cohen-Macaulay ring, and if \(P \) is a distributive lattice, then \(R[P] \) is Cohen-Macaulay.

3. \(\alpha \)-ideals and Cohen-Macaulay Rings

In this section we introduce the concept of an \(\alpha \)-ideal in an ADL with zero, analogous to that in a distributive lattice [2]. An Almost Distributive Lattice (ADL) is an algebra \((\mathcal{R}, \lor, \land)\) of type \((1.2)\) satisfying:

1. \((x \lor y) \land z = (x \land z) \lor (y \land z)\)
2. \(x \land (y \lor z) = (x \land y) \lor (x \land z)\)
3. \((x \lor y) \land y = y\)
4. \((x \lor y) \land x = x\)
5. \(x \lor (x \land y) = x \) for any \(x, y, z \in \mathcal{R}\)

If \(\mathcal{R}\) has an element \(0\), and satisfies \(0 \land x = 0\) and \(0 \lor x = 0\) along with the above properties, then \(\mathcal{R}\) is called an ADL with 0.

Definition 3.1. For any non-empty subset \(A\) of an ADL, \(\mathcal{R}\) with 0, define \(A^* = \{x \in \mathcal{R} \mid a \land x = 0, \text{for all } a \in A\}\). Then \(A^*\) is called the annihilator of \(A\). For any \(a \in \mathcal{R}\), we have \(\{a\}^* = [a]^*\), where \([a]\) is the principal ideal generated by \(a\). For any \(\emptyset \neq A \subseteq \mathcal{R}\), we have clearly \(A \land A^* = \{0\}\).

For the proof of the next lemmas, see [10].

Lemma. For any non-empty subset \(A\) of \(\mathcal{R}\), \(A^*\) is an ideal of \(\mathcal{R}\).

Lemma. For any non-empty subsets \(I, J\) of \(\mathcal{R}\), we have the following:

1. If \(I \subseteq J\), then \(J^* \subseteq I^*\)
2. \(I \subseteq I^{**}\)
3. \(I^{***} = I^*\)
4. \((I \lor J)^* = I^* \cap J^*\)
Definition 3.2. Let \mathfrak{R} be a ADL with 0. An ideal I of \mathfrak{R} is called an α-ideal if $(x)^{**} \subseteq I$ for all $x \in I$.

We now denote the set of all α-ideal of an ADL \mathfrak{R} by $I_\alpha(\mathfrak{R})$. If \mathfrak{R} is an ADL, then we know that $(I(\mathfrak{R}), \lor, \land)$ is a distributive lattice. But the set $I_\alpha(\mathfrak{R})$ is not a sublattice of $I(\mathfrak{R})$.

Definition 3.3. A Noether lattice is said to be complete if it is complete in the topology of the Jacobson radical.

In [7], the following theorem is proved.

Theorem 3.1. Let (L, m) be a distributive local Noether lattice of dimension d. Then L is complete in the m-adic topology.

Let R be a local Noetherian ring with the maximal ideal M. Then $L(R)$, the lattice of ideals of R, is a local Noether lattice and also $L(R)$ is a complete modular lattice. A ring R is called an arithmetical ring, if $L(R)$ is distributive.

Corollary 3.1. If (R, m) is a local Noetherian ring and is arithmetical ring, then $L(R)$ is a complete in the m-adic topology.

Proof. This is immediate from Remark 1.1 and Theorem 3.1 and if L is an ADL, then $L(R)$ is a distributive lattice.

Corollary 3.2. If $(\mathfrak{R}, \mathfrak{m})$ is local Noether lattice and is an ADL, then $I(\mathfrak{R})$ is a complete in the m-adic topology.

In [10], it is proved that, if \mathfrak{R} is an ADL with 0, then $I_\alpha(\mathfrak{R})$ forms a distributive lattice. So we have

Theorem 3.2. Let R be a commutative ring with an identity and let $I_\alpha(\mathfrak{R})$ be the set of all α-ideal of an ADL \mathfrak{R}. If $L(R)$ is a principal lattice, then $R[I_\alpha(\mathfrak{R})][X_1, X_2, \ldots]$ is WB-height-unmixed.

Proof. Since $L(R)$ is a principal lattice, R is Cohen-Macaulay. By assumption, $I_\alpha(\mathfrak{R})$ is a distributive lattice. Thus the $R[I_\alpha(\mathfrak{R})][X_1, X_2, \ldots]$ is WB-height-unmixed.

References

Полиномы, α-идеалы и главные решетки

Али Молхаси

Пусть R — коммутативное кольцо с единицей, R — почти дистрибутивная решетка и $I_\alpha(R)$ — множество всех α-идеалов в R. Если $L(R)$ — главная решетка R, то $R[I_\alpha(R)]$ — кольцо Коэна-Маколея. В частности, $R[I_\alpha(R)][X_1, X_2, \cdots]$ — WB-высота несмешанности.

Ключевые слова: почти дистрибутивные решетки, главные решетки, α-идеалы, WB-высота несмешанности, полные решетки, Коэна-Маколея кольца, несмешанность.