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The problem of the discrete continuous processes having "tubular" structure in space "input-output"
variables’s modeling is investigated. The fact that when the trained parametrical models of "tubular"
processes’s creating, it’s important to use corresponding nonparametric indicators, is reflected. Some
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processes proceed in the space of fractional dimension.
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Introduction
Identification of stochastic objects is often reduced to the identification of static systems with

delay. This is due to the fact that some output variables of the object are controlled for much
longer time than the input variables. For example, several variables are measured electrically (in
this case, the discrete control can be brief) but the other variables are controlled by chemical
analysis or physical-mechanical tests (in this case the discrete control ∆T is long, i.e. ∆T ≫ ∆t).

The most common scheme of a discrete-continuous process is shown in Fig. 1:
The notation of Fig. 1: A is the investigate object (the process);

−−→
x(t),

−−→
q(t) and

−−→
z(t) are the

output vectors of the process;
−−→
u(t) is the vector of control actions;

−−→
µ(t) is the uncontrolled but

measured input vector of i-th process;
−−→
λ(t) is the input vector of unmanaged and measured process

variable;
−−→
ξ(t) is the casual influence;

−−−→
ωi(t) : i = 1, k are the process variables controlled in object;

t is time; Hµ, Hu,Hx,Hz,Hq, Hω are the communication channels corresponding to various vari-
ables, including control devices and devices for measurement of observed variables; µt, ut, xt, ωt

are measurements of
−−→
µ(t),

−−→
u(t),

−−→
x(t),

−−→
ω(t) at time moment t; hµ(t), hu(t), hx(t), hω1(t), . . . , hωk(t)

are casual hindrances of measurements of the corresponding process variables.
This scheme is well known and it frequently occurs in many fields of research [1].
The distinctive features of output variables

−−→
z(t),

−−→
q(t) and

−−→
x(t) are presented in Fig. 1. Output

variable
−−→
x(t) and input variables are controlled at interval ∆t,

−−→
q(t) is controlled at significantly
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Fig. 1. The general scheme of the test process

biger interval ∆T . Variable
−−→
z(t) is controlled at interval T, T ≪ ∆T ≪ ∆t . The control of

variable
−−→
z(t) is of importance in practical applications.

In this case output variables depend on input variables and ω(t):

x(t) = A
(
u(t), µ(t), ω(t), λ(t), ξ(t), t

)
(1)

Consider various sampling of control of measurements
−−→
x(t),

−−→
q(t) and

−−→
z(t). All variables used

to predict
−−→
x(t),

−−→
q(t),

−−→
z(t) can be used to predict

−−→
q(t) and

−−→
z(t):

x̂(t) = Â
(
u(t), µ(t), ω(t), t

)
(2)

q̂(t) = Â
(
u(t), µ(t), ω(t), x̂(t), t

)
(3)

ẑ(t) = Â
(
u(t), µ(t), ω(t), x̂(t), q̂(t), t

)
(4)

Variables x̂(t), q̂(t), ẑ(t) in (2)–(4) are the estimates of variables
−−→
x(t),

−−→
q(t) and

−−→
z(t). The

values of ∆T and T are much bigger than the object time constant. Then processes considered
are static processes with delay. Such processes play important role in problems of identification
and stochastic systems control.

We reduce all input and output variables in a vector. The object can be represented as a
static object with delay in the following form:

x(t) = f
(
u(t− τ), ξ(t)

)
, (5)

−−→
x(t) is the output variable of the object, u(t− τ) is the aggregate input variable, τ is the time of
delay,

−−→
ξ(t) is the random perturbation, t is time.

1. Identification in "narrow" and "broad" sense
The "narrow" sense identification theory dominates now in the discrete modelling of con-

tinuous processes. In the first stage, on the basis of available a priory information the object
structure (Aα) is defined, for example:

x̂α(t) = Aα(u(t), α), (6)
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Aα is the parametric structure of the object, α is the vector of parameters.
In the second stage the assessment of α is carried out on the basis of available sample

xi, ui, i = 1, s, s is the volume of selection. In this case the accuracy of identification signifi-
cantly depends on operator (6).

The "broad" sense of identification does not assume any particular structure of the object.
It is often much simpler to define a class of operators based on the data type. For example, it
is linearity or nonlinearity, unambiguity or ambiguity of a process. In this case the problem of
identification involves operator estimation. It is based on sample xi, ui, i = 1, s [2, 3].

It should be noted that identification in "broad" sense requires high quality selection. We take
the word quality to mean the accuracy of the data and uniformity of distribution of vector

−−→
u(t)

measurements. Quality of data is important because they are used for assessment if parametric
operator is not available.

x̂s(t) = As(u(t),
−→xs,

−→us), (7)
−→xs = (x1, x2, . . . , xs),

−→us = (u1, u2, . . . , us) are temporary vectors. Operator assessment As can
be carried out by means of nonparametric statistics. The choice of a parametric structure is not
considered here. Identification in "broad" sense is more adequate in real problems.

2. Identification of a static system
Let −→u = (u1, . . . , uk) ∈ ω(u) ⊂ Rk, x ∈ ω(u) ⊂ Rk. Generally speaking, every vector

component ui ∈ [ai, bi], i = 1, k, and x ∈ [c; d]. In practice, the values of coefficients ai, bi, c, d, i =
1, k are always known. In technological processes the values of these coefficients are regulated by
the production schedules. Further, we assume that all intervals are [0; 1] [4]. Then ω(u) is the
unit hypercube, ω(u) = [0; 1], i.e. u ∈ [0; 1], ωk(u, x) = [0; 1], (u, x) ∈ [0; 1]. The adaptive model
in this case is 5

x̂s(u) = f̂(u, αs). (8)

Now we should define the parametric structure of the model. If at the first stage the con-
siderable error is introduced then we would not obtain satisfactory model. This problem was
explicitly discussed [2, 3]. Model of class (8) is hyper-surface in the space of "input-output"
variables of the object, i.e. (u, x) ∈ ω(u, x) ⊂ Rk+1.

If the process has "tubular" structure [2] then model (8) should be corrected:

x̂s(u) = Is(u)f̂(u, αs) (9)

or

x̂s(u) = Is(u)
N∑
j=1

αsjφj(u), (10)

φj(u) is the system of linear and independent functions, the indicator Is(u) is defined as

Is(u) =

{
1, if u ∈ ωH

s (u);

0, if u /∈ ωH
s (u).

(11)

Let us note that domain ωH(u) is not known. Sample xi, ui, i = 1, s is only known. If the
indicator is equal to zero the estimate x̂s(u) cannot be calculated, because the process does not
exist at such values of vectoru ∈ ω(u). However, the model without indicator produces estimate
even in this case. If indicator Is(u) is equal to one at any value u ∈ ω(u) model (9) coincides
with (8). One can use the following approximation for the indicator assessment Is(u):

Is(u) = sgn
s∑

i=1

Φ
(
c−1
s (xs(u)− xi)

) k∏
j=1

Φ
(
c−1
s (uj − uj

i )
)
, (12)
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xs(u) =
s∑

i=1

xi

k∏
j=1

Φ
(
c−1
s (uj − uj

i )
)/ s∑

i=1

k∏
j=1

Φ
(
c−1
s (uj − uj

i )
)
, (13)

where parameter cx and bell-shaped function Φ(∗) should satisfy some conditions [2].
Bell-shaped function Φ(∗) is a function that satisfies the following conditions

1

cs

∫ +∞

−∞
Φ

(
t− ti
cs

)
dt = 1, (14)

lim
cs→0

1

cs

∫ +∞

−∞
φ(t)Φ

(
t− ti
cs

)
dt = φ(ti), (15)

where cs is the characteristic of the bell-shaped function called core width.
Thus, given value u = u′ ∈ ω(u) we construct the first assessment xs(u = u′), using (13).

Then indicator Is(u) is calculated. Model (9) or (10) is used in the following stage if the indicator
is equal to one. If indicator equals zero it means that u′ ∈ ω(u) but u′ /∈ ωH(u) and components of
vector u = u′ = (u′

1, . . . , u
′
k) are not true. To put it in other words, the "tubular" process does not

correspond to vector u = u′. This is because components of vector u = u′ = (u′
1, . . . , u

′
k) are not

true or they are measured with the considerable error. This holds only for representative sample
xi, ui, i = 1, s. One should note that traditional model (8) gives incorrect estimate x̂(u = u′).

The object identification in the parametric statement should be also carried out with regard
to the "tubular" structure of the object. Let us consider the following class of models of "tubular"
process

x̂(u) = I(u)
N∑
j=1

αjφ(u), (16)

φ(u), j = 1, N is the system of linear and independent functions. Let us introduce the optimality
criterion

R(α) =

(
x(u)− I(u)

N∑
j=1

αjφj(u)

)2

. (17)

Our purpose is to find such α∗ = (α∗
1, . . . , α

∗
N ), that

R(α∗) = minR(α). (18)

The solution of (18) is the system of recurrence relations

αl
s = αl−1

s + γl−1
s

(
xs − Is(us)

N∑
j=1

αj
s−1φj(us)

)
φj(us)Is(us), l = 1, . . . , N. (19)

One can use the following approximation for assessment I(us)

Is(us) = sgn

s∑
i=1

k∏
j=1

Φ
(us − uj

i

cs

)
. (20)

It is clear that αs tens to α∗
s when s → ∞.
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3. On one feature of the model operation of "tubular"
processes

Let the object be described by the equation

x(u) = f(u1, u2, u3) (21)

where three-dimensional vector −→u = (u1, u2, u3) ∈ R3 is the input variable and x ∈ R1 is the
output variable. The traditional way of modelling such process has been described (6). We define
x̂(u) = f̂(u1, u2, u3, α) and assessment parameters α, using observations, (ui, xi, i = 1, s), s is
the sample size. Let us analyze this example from a different point of view. Let us assume
that input variables −→u = (u1, u2, u3) are independent. In this case we can use the traditional
algorithm described above. Now we assume that objective components of the vector of input
variables are not independent, for example,

u2 = φ1(u1), u3 = φ2(u2) = φ2(φ1(u1)). (22)

Naturally, we do not know about the existence of dependences (22). Such process was called
the H-process. Otherwise it would be possible to substitute (22) into (21) and to obtain the
dependence of x on one variable u1:

x(u) = f
(
u1, φ1(u1), φ2(φ1(u1))

)
. (23)

When u2 depends on u1 we have

x(u) = f
(
u1, φ1(u1), u3

)
, (24)

i.e. x depends on u1, u3. Let us emphasize again that input variables are not independent. We do
not know about the existence of interrelation between input variables. Now we analyse the most
interesting case directly related to the H-process[ [4]. Let us assume that u3 and u2 are related
to each other stochastically [2]. First, if components of vector −→u are independent the process
is described by the function of the three variables. If only two components of vector −→u are
independent the process is described by the function of two variables. If two variables are related
to each other stochastically the process is described by the function of more than two variables
but less than three variables. It is possible to assume that we have fractional number of variables.
Therefore, we deal with a space of fractional dimension. For example, B. Mondelbrot [5] noticed:
"The vascular system of the person – pulsing alive – has dimension 2.7". For the first time
fractional dimension of space was introduced in works of Hausdorff and Bezikovich.

Let us consider process (21).
In the case of a stochastic relation between variables u2(u1), u3(u1) on the available training

selections it is possible to calculate a squared error δ of the estimate û2s(u1), û3s(u1)

δ21 =
s∑

i=1

(
u2 − û2s(u1)

2
)
/σ2

u2
, δ31 =

s∑
i=1

(
u3 − û3s(u1)

2
)
/σ2

u3
, (25)

Here û2s(u1), û3s(u1) there are nonparametric estimates [4], δij is the squared error of the
estimate ui based on uj .

The value of stochastic communication λ between any two variables can be calculated as

λ = 1− δ. (26)

In the case strong functional communication λ = 1, lack of communication corresponds to
λ = 0. In the case of stochastic relation between input variables 0 < λ < 1. In general case,
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one can interpret such process as function of many variables. For example, this function can be
expressed as follows [4]:

x =



f(t, u1,u2,u3, u4, u5)− T1

f(t, u1, u2,u3, u4, u5)− T2

f(t, u1, u2, u3, u4, u5)− T3

f(t, u1, u2, u3, u4, u5, u6)− T4

f(t, u1, u2, u3, u4, u5, u6)− T5

f(t, u1, u2, u3, u4, u5, u6)− T6

f(t, u1,u2, u3, u4,u5, u6)− T7

f(t,u1,u2, u3, u4,u5,u6, u7)− T8

. (27)

Variables which have strong impact on x (functional relation) are designated in dark colour
(u1). Less dark colour (u1) means that this variable has weaker influence on x than (u1) (perhaps
strong stochastic dependence). Variables marked as u1 and u1 have weaker influence on x than
(u1). Parameters Ti, i = 1, 8 are time intervals. Role of each variable may change in real process.
Given above relations show that some variables can lose their significance, some variables can
restore their significance and some variables can appear for the first time such as u6, u7.

To treat function of many variables as a point in many-dimensional space we introduce space
of fractional dimension Fλ. The dimension of Fλ can be calculated as

dimFλ = (n+ 1)−
n−1∑
i=1

λi,i+1 , (28)

n is the dimension of a vector u, λi,i+1 is the intensity of stochastic relation between ui and ui+1.
There are other ways to calculate space dimension, for example,

dimFλ = (n+ 1)−
n−1∑
i=1

λ1,i , (29)

λ1,i is the relation between ui and u1.
When we deal with the Taylor series expansion of a function one should recall V. I. Arnold’s

phrase from the book "Catastrophe Theory" [1]: "Calculation in these applied studies§.

4. Computing experiments

Let us consider process that is described by function x = f(u1, u2) with the noise ξ(t):
f(u1, u2) = u2

1 + 2u2 + ξ(t).
Let us assume that training selection s is equal to 500 and input variables are independent.
Fig. 3 illustrates that the space dimension Fλ decreases with decreasing sample size and the

space dimension tends to 3 with increasing sample size.
Let us consider a process that has "tubular" structure, that is, H-process. We assume that

relation between two variables is u2 = 3u1. Function f(u1, u2) is given above. Fig. 2 shows that
when input variables are independent the dimension of process is close to 3.

In the case of H-process the space dimension is close to 2 (Fig. 4).
We have x = f(u1, u2) but this process has "tubular" structure, so u2 = g(u1). Then

x = f(u1, u2) = f(u1, g(u1)). As a result we have the process that is described by one variable.

§We are talking about the elasticity theory.
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Fig. 2. dependence of dimension of space Fλ

and noise level
Fig. 3. dependence of dimension of space Fλ

and sample size

When the noise level is increased the relation between u1 and u2 becomes weaker and dimension
of the process grows.

Computational experiments show (Fig. 5) that space dimensions dimFλ are different. This
is because u2 stochastically depends on u1 in the second experiment. Let us consider experiment
with 10 input variables and one output variable.

Fig. 4. dependence of dimension of space Fλ

and noise level
Fig. 5. dependence of dimension of space Fλ

and sample size

Fig. 6 shows that the space dimension is close to 11. Now we consider two cases: in the
former case we have 10% noise and no noise in the second case. As one would expect, the space
dimension Fλ tends to 11 (Fig. 7). Let us calculate space dimension Fλ versus the level of noise
if all input variables are stochastically related (Fig. 8).

Space dimension Fλ equals two when there are functional relations between input variables.
Space dimension dimFλ is increased when functional relations become weaker. Space dimension
dimFλ is increased with increasing the sample size (Fig. 9). This is due to more precise estimation
of parameter δ.

Conclusion
The analysis of processes of "tubular" structure is presented. Such structure takes always

place if components of the vector of input variables are stochastically related. In this case tradi-
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Fig. 6. dependence of dimension of space Fλ

and noise level
Fig. 7. dependence of dimension of space Fλ

and sample size

Fig. 8. dependence of dimension of space Fλ

and noise level
Fig. 9. dependence of dimension of space Fλ

and sample size

tionally used models of static systems with delay are not applicable or they can give inaccurate
results. It is found that one need to consider space of fractional dimension. It is also found that
relation between input and output variables may appear and disappear. This is connected not
only with the space of fractional dimension but also with the space of variable dimension.

The work was supported by the Ministry of Education. Agreement: 14.578.21.0021 Unique
identifier: RFMEFI57814X0021.
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Математическое моделирование H-процессов
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Россия

Исследуется проблема моделирования дискретно-непрерывных процессов, имеющих «трубчатую»
структуру в пространстве «входных–выходных» переменных. Отражено то, что при постро-
ении обучающихся параметрических моделей «трубчатых» процессов необходимо использование
соответствующих непараметрических индикаторов. Рассмотрены некоторые частные примеры
моделирования «трубчатых» процессов, из которых следует, что «трубчатые» процессы проте-
кают в пространстве дробной размерности.

Ключевые слова: априорная информация, идентификация, непараметрическая модель, непара-
метрические алгоритмы, H-модели, пространство дробной размерности.
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