Bidiagonal Ranks of Completely (0-)simple Semigroups

Ilia V. Barkov*
National Research University of Electronic Technology
Shokin square, 1, Moscow, Zelenograd, 124498
Russia

Received 12.09.2015, received in revised form 19.01.2016, accepted 24.02.2016

Abstract

A bidiogonal act over a semigroup is a two-sided act, where the semigroup acts on its Cartesian power. A bidiagonal rank of a semigroup is the least power of a generating set of the bidiagonal act over this semigroup. In this paper we compute bidiagonal ranks of completely (0-)simple semigroups.

Keywords: act over a semigroup, diagonal rank, completely (0 -) simple semigroup.
DOI: 10.17516/1997-1397-2016-9-2-144-148.

A right act over a semigroup S is a set X with a map $X \times S \rightarrow X,(x, s) \mapsto x s$ satisfying $(x s) s^{\prime}=x\left(s s^{\prime}\right)$ for all $x \in X, s, s^{\prime} \in S$ (see [1]). A left S-act Y over the semigroup S is defined analogously: $S \times Y \rightarrow Y,(s, y) \mapsto s y, s\left(s^{\prime} y\right)=\left(s s^{\prime}\right) y$ for all $s, s^{\prime} \in S, y \in Y$. Let S, T be semigroups. A set Z is called an (S, T)-act (bi-act over S and T), if it is a left S-act and a right T-act at the same time and $(s z) t=s(z t)$ for all $z \in Z, s \in S, t \in T$. The right S-act X, left S-act Y and (S, T)-bi-act Z may be denoted by $X_{S},{ }_{S} Y$, and ${ }_{S} Z_{T}$.

A generating set G of the act $(S \times S)_{S}$ is called irreducible if none of its subsets $G^{\prime} \subset G$ is a generating set of this act. Clearly, any finite generating set may be reduced to an irreducible one. A generating set is called minimal if it is minimal with respect to power.

Note that a diagonal act over a semigroup is a unary algebra. Indeed, if S is a semigroup, then multiplication by $s \in S$ may be thought as applying unary operation $\varphi_{s}: x \mapsto x s$, where $x \in S$. Therefore, the following theorem is applicable to diagonal acts.

Theorem 1 (Kartashov, [2], Theorem 1). Let A be an algebra with signature $\Sigma=\left\{\varphi_{i} \mid i \in I\right\}$, where all operations φ_{i} are unary. If A is finitely generated, then any irreducible generating set of A is minimal.

Let S be a semigroup. A right diagonal rank of S (denoted by $\operatorname{rdr} S$) is called the least power of generating sets of the diagonal rigth act of S, or

$$
\operatorname{rdr} S=\min \left\{|A| \mid A \subseteq S \times S \wedge A S^{1}=S \times S\right\}
$$

A bidiagonal rank bdr S of S is defined in a similar way.
Diagonal acts were used in $[3,4]$ to study conditions of wreath products to be finitely generated. Diagonal acts themselves became a subject of study in [5-7] and others. In these papers the prime problem were conditions of finite generateness of infinite diagonal acts. The notion of diagonal rank was explicitly formulated in the paper [8]. In the paper [9] one-sided diagonal ranks of completely (0 -) simple semigroups were calculated. In this paper we continue the study of diagonal ranks of semigroups and calculate bidiagonal ranks of completely (0 -) simple semigroups. For completeness we cite the prime results of [9] concerned with completely (0-)simple

[^0]semigroups. These theorems may be proven using reasoning similar to the one in the presented theorems.

Theorem 2 ([9], Theorem 2). Let S be a Rees matrix semigroup with sandwich-matrix P: $S=\mathcal{M}(G, I, \Lambda, P)$. Then the right diagonal rank of S equals $|I|^{2} G$, if Λ is singleton and $|I|^{2}|G|^{2} \Lambda(\Lambda-1)$ otherwise.
Theorem 3 ([9], Theorem 3). Let S be a Rees matrix semigroup with zero: $S=\mathcal{M}^{0}(G, I, \Lambda, P)$. Let $|I|=k,|G|=t,|\Lambda|=l$. If $l \geqslant 2$ then:

- if there are no zeros in P, then $\operatorname{rdr} S=k^{2} t^{2}\left(l^{2}-l\right)+2 k$;
- if there are zeros in P, but there is no column with two or more nonzero elements, then $\operatorname{rdr} S=k^{2} t^{2}\left(l^{2}-l\right)+k^{2} t ;$
- otherwise, $\operatorname{rdr} S=k^{2} t^{2}\left(l^{2}-l\right)$.

If $l=1$, then $\operatorname{rdr} S=k^{2} t+2 k$.
The following theorems are the body of this paper. As in the case of one-sided ranks, bidiagonal ranks of completely (0 -) simple semigroups depend on sandwich-matrices insignificantly.

Theorem 4. Let S be a completely simple semigroup: $S=\mathcal{M}(G, I, \Lambda, P)$, where G is a group of t elements and f conjugacy classes, I and Λ are index sets of k and l elements correspondingly and P is a sandwich-matrix. Then

- if $k, l \neq 1$, then $\operatorname{bdr} S=t^{2} l(l-1) k(k-1)$;
- if $k=1, l \neq 1$, then $\operatorname{bdr} S=t l(l-1)$;
- if $l=1, k \neq 1$, then $\operatorname{bdr} S=t k(k-1)$;
- if $l=1, k=1$, then $\operatorname{bdr} S=f$.

Proof. Let $k, l>1, M=\left\{\left((x)_{i_{1} \lambda_{1}},(y)_{i_{2} \lambda_{2}}\right) \mid i_{1} \neq i_{2}, \lambda_{1} \neq \lambda_{2}\right\}$. We prove that M is an irreducible generating set of $S_{S}(S \times S)_{S}$. Indeed, from

$$
(a)_{i \lambda}\left((x)_{i_{1} \lambda_{1}},(y)_{i_{2} \lambda_{2}}\right)=\left(\left(a p_{\lambda i_{1}} x\right)_{i \lambda_{1}},\left(a p_{\lambda i_{2}} y\right)_{i \lambda_{2}}\right)
$$

and

$$
\left((x)_{i_{1} \lambda_{1}},(y)_{i_{2} \lambda_{2}}\right)(b)_{i \lambda}=\left(\left(x p_{\lambda_{1} i} b\right)_{i_{1} \lambda},\left(y p_{\lambda_{2} i} b\right)_{i_{2} \lambda}\right)
$$

we see that pairs from M cannot be obtained from any other pairs using one-sided or two-sided multiplication. Therefore, M is a subset of any generating set.

Now we prove that M itself is a generating set. A pair of a kind $\left((u)_{j_{1} \mu},(v)_{j_{2} \mu}\right)$, where $j_{1} \neq j_{2}$, may be obtained from M in the following way. Take $\lambda_{1} \neq \lambda_{2} \in \Lambda$ and any $i \in I$. Then

$$
\left((1)_{j_{1} \lambda_{1}},\left(v u^{-1} p_{\lambda_{1} i} p_{\lambda_{2} i}^{-1}\right)_{j_{2} \lambda_{2}}\right)\left(p_{\lambda_{1} i}^{-1} u\right)_{i \mu}=\left((u)_{j_{1} \mu},(v)_{j_{2} \mu}\right) .
$$

In a similar way we may get pairs of a kind $\left((u)_{i \lambda_{1}},(v)_{i \lambda_{2}}\right)$, where $\lambda_{1} \neq \lambda_{2}$.
Pairs of a kind $\left((u)_{j \mu},(v)_{j \mu}\right)$ are obtained by multiplying the pair

$$
\left(\left(p_{\lambda_{1} i_{2}}^{-1} u p_{\lambda_{2} i_{4}}^{-1}\right)_{i_{2} \lambda_{2}},\left(p_{\lambda_{1} i_{3}}^{-1} v p_{\lambda_{3} i_{4}}^{-1}\right)_{i_{3} \lambda_{3}}\right)
$$

by elements $(1)_{j \lambda_{1}}$ and $(1)_{i_{4} \mu}$. Here $i_{2} \neq i_{3}$, and $\lambda_{2} \neq \lambda_{3}$. These pairs are in M and M is a generating set. Hence, $\operatorname{bdr} S=|M|=t^{2} l(l-1) k(k-1)$.

Let $l=1, k>1$. Matrix P is a vector. Using Lemma 3.6 from [10] and the remark after we can say that P consists of 1 's. Let $M=\left\{\left((1)_{i},(t)_{j}\right) \mid i \neq j\right\}$.

Take a pair $x=\left((a)_{i},(b)_{j}\right)$ such that $i \neq j$. Since

$$
\left((1)_{i},\left(b a^{-1}\right)_{j}\right)(a)_{i}=\left((a)_{i},(b)_{j}\right),
$$

then $x \in M S$. Pairs $\left((a)_{i},(b)_{i}\right)$ we get via

$$
(1)_{i}\left((1)_{i},\left(b a^{-1}\right)_{j}\right)(a)_{i}=\left((a)_{i},(b)_{i}\right) .
$$

Hence $S \times S \subseteq S^{1} M S$ and M is a generating set. Now we prove that M is irreducible. It is sufficient to show that no pairs from M are products of an another pair and elements of S^{1}. Let $\left((1)_{i},(a)_{j}\right)=s^{\prime}\left((1)_{p},(b)_{q}\right) s$ for some $s, s^{\prime} \in S^{1}$, where $i \neq j, p \neq q$. Let $s=(c)_{r}$. Then $\left((1)_{i},(a)_{j}\right)=\left((1)_{p},(b)_{q}\right)(c)_{r}=\left((c)_{p},(b c)_{q}\right)$. Hence $p=i, q=j, c=1$ and $\left((1)_{p},(b)_{q}\right)=$ $\left((1)_{i},(a)_{j}\right)$. It means that M is irreducible, so bdr $S=|M|=t k(k-1)$.

Let $k=1, l \neq 1$. In a similar way one can prove that $\operatorname{bdr} S=t l(l-1)$.
Let $k=1, l=1$. Now $S \simeq G$. Using Lemma 4.1 from [5] we get bdr $G=f$. So bdr $S=f$.
Theorem 5. Let S be a completely (0 -) simple semigroup: $S=\mathcal{M}^{0}(G, I, \Lambda, P)$, where the group G consists of t elements and f conjugacy classes, I and Λ are index sets of k and l and elements correspondingly and P is a sandwich matrix

- Let $k, l>1$. If a row or a column of P has two or more non-zero elements we say that it is good. Consider the following cases.

1. There are no zeros in P. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+2$.
2. There are zeros in P. Moreover, there is a good row and a good column in P. Then $\mathrm{bdr} P=t^{2} k(k-1) l(l-1)$.
3. There is a good row in P, but no good column. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+$ $t k(k-1)$.
4. There is a good column in P, but no good row. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+t l(l-1)$.
5. There are no good rows or columns in P. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+t k(k-$ $1)+t l(l-1)+f$.

- If $k=1, l>1$, then bdr $S=t l(l-1)+2$.
- If $l=1, l>1$ then $\operatorname{bdr} S=t k(k-1)+2$.
- If $k=l=1$, then $\operatorname{bdr} S=f+2$.

Proof. Throughout the following text consider the indices denoted by different symbols to be different.

Let $k, l>1$. Action in the biact ${ }_{S}(S \times S)_{S}$ is defined by the following expressions:

$$
\begin{aligned}
(a)_{i \lambda}\left((x)_{i_{1} \lambda_{1}},(y)_{i_{2} \lambda_{2}}\right) & =\left(\left(a p_{i_{1}} x\right)_{i \lambda_{1}},\left(a p_{i_{2}} y\right)_{i \lambda_{2}}\right), \\
\left((x)_{i_{1} \lambda_{1}},(y)_{i_{2} \lambda_{2}}\right)(b)_{i \lambda} & =\left(\left(x p_{\lambda_{1} i} b\right)_{i_{1} \lambda},\left(y p_{\lambda_{2} i} b\right)_{i_{2} \lambda}\right) .
\end{aligned}
$$

Divide all pairs from $S \times S$ into the following classes:

1. $\left((u)_{j_{1} \mu_{1}},(v)_{j_{2} \mu_{2}}\right)$;
2. $\left((u)_{j \mu_{1}},(v)_{j \mu_{2}}\right)$;
3. $\left((u)_{j_{1} \mu},(v)_{j_{2} \mu}\right)$;
4. $\left((u)_{j \mu},(v)_{j \mu}\right)$;
5. $\left((u)_{j \mu}, 0\right)$;
6. $\left(0,(v)_{j \mu}\right)$;
7. $(0,0)$.

Pairs of the class 1 do not belong to $A=S^{1} \cdot(S \times S) \cdot S^{1}$. So we add them to the generating set. There are $t^{2} k(k-1) l(l-1)$ such pairs.

Consider the class 2. Depending on P we have two cases.

- There is a good row in P. Then pairs of the class 2 are obtainable via left multiplication of the class 1 pairs.
- There are no good rows in P. Then the class 2 pairs are not obtainable from the class 1 pairs. To fix that we add to the generating set the pairs of a kind $\left((1)_{q \lambda_{1}},(y)_{q \lambda_{2}}\right)$, where index q is arbitrary, but fixed. There are $t l(l-1)$ such pairs.

Consider pairs of the class 3. Depending of P we have the following cases.

- There is a good column in P. Pairs of the class 3 are obtainable from the class 1 pairs via right multiplication.
- There is no good columns in P. Then the class 2 pairs are not obtainable from the class 1 pairs. To fix that we add to the generating set the pairs of a kind $\left((1)_{i_{1} \mu},(y)_{i_{2} \mu}\right)$, where index μ is arbitrary, but fixed. There are $t k(k-1)$ such pairs.

Consider pairs of the class 4 . Depending on P we have the following cases.

- There is a good row and a good column in P. Then pairs of the class 4 are obtainable via two-sided action on the class 1 pairs.
- There is no good row in P, but there is a good column. Then the pairs of the class 4 are obtainable via right-sided action on the class 2 pairs. These pairs we obtain from the generating set.
- There is no good column in P, but there is a good row. Then the pairs of the class 4 are obtainable via the left-sided action on the class 3 pairs. These pairs we obtain from the generating set.
- There are no good rows or columns in P. Fix indices q, μ, pick one representative g_{r} from every conjugacy class of G and add to the generating set f pairs $\left((1)_{q \mu},\left(g_{r}\right)_{q \mu}\right), 1 \leqslant r \leqslant f$. We show how to get an arbitrary pair $\left((u)_{j \nu},(v)_{j \nu}\right)$ from these pairs. Choose $h, a, b \in G$ such that $h^{-1} g_{r} h=v u^{-1}, a=h^{-1} p_{\lambda q}^{-1}, b=p_{\mu i}^{-1} h u$. Then

$$
(a)_{j \lambda}\left((1)_{q \mu},\left(g_{r}\right)_{q \mu}\right)(b)_{i \nu}=\left((u)_{j \nu},(v)_{j \nu}\right) .
$$

Consider class 5 and class 6 pairs. If there are no zeroes in P we have to add two pairs to the generating set: $\left((x)_{j \mu}, 0\right)$ и $\left(0,(x)_{j \mu}\right)$.

The pairs $(0,0)$ are obtainable from any pair.
So we have the following cases.

1. There are no zeroes in P. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+2$.
2. There is a good column and a good row in P. Then bdr $P=t^{2} k(k-1) l(l-1)$.
3. There is a good row in P, but no good column. Then $\operatorname{bdr} P=t^{2} k(k-1) l(l-1)+t k(k-1)$.
4. There is a good column in P, but no good row. Then bdr $P=t^{2} k(k-1) l(l-1)+t l(l-1)$.
5. There are no good rows or columns in P. Then bdr $P=t^{2} k(k-1) l(l-1)+t k(k-1)+$ $t l(l-1)+f$.

Let $l=1, k>1$. Then S is a left group with externally adjoined zero: $S=A \cup\{0\}=$ $\left\{(g)_{i} \mid g \in G, i \in I\right\} \cup\{0\}$, where $|A|=k>1$. By Theorem 4 the act ${ }_{A}(A \times A)_{A}$ is generated by the pairs $\left((1)_{i},(g)_{j}\right)$, where $g \in G, i, j \in I$. To get an irreducible generating set of the act ${ }_{S}(S \times S)_{S}$ we add the pairs $\left(0,(1)_{i_{0}}\right)$ and $\left((1)_{i_{0}}, 0\right)$. Hence bdr $S=t k(k-1)+2$.

Analogously for the case $k=1, l>1$ we get $\operatorname{bdr} S=t l(l-1)+2$.
Let $k=l=1$. Now we need only f pairs $\left(1, g_{r}\right), 1 \leqslant r \leqslant f$ to get pairs (u, v) and two pairs $(1,0)$ and $(0,1)$ to get pairs $(u, 0)$ and $(0, u)$.

References

[1] M.Kilp, U.Knauer, A.V.Mikhalev, Monoids, acts and categories, Berlin, New York, W.de Gruyter, 2000.
[2] B.K.Карташов, Independent systems of generators and the Hopf property for unary algebras, Diskretn. Mat. i Pril. 20(2009), no. 4, 79-84 (in Russian).
[3] E.F.Robertson, N.Ruškuc, M.R.Thomson, On finite generation and other finiteness conditions for wreath products semigroups, Comm. Algebra, 30(2002), no. 8, 3851-3873.
[4] M.R.Thomson, Finiteness Conditions of Wreath Products of Semigroups and Related Properties of Diagonal Acts, PhD thesis, University of St. Andrews, 2001.
[5] P.Gallagher, On the finite and non-finite generation of diagonal acts, Comm. Algebra, 34(2006), no .9, 3123-3137.
[6] P.Gallagher, N.Ruškuc, Finite generation of diagonal acts of some infinite semigroups of transformations and relations, Bull. Austral. Math. Soc., 72(2005), no. 1, 139-146.
[7] T.V.Apraksina, Diagonal acta over semigroups of isotone transformations, Chebysh. sbornik, 12(2011), no. 1. 10-16 (in Russian).
[8] T.V.Apraksina, I.V.Barkov, I.B.Kozhukhov, Diagonal ranks of semigroups, Semigroup Forum, 90(2015), no. 2, 386-400.
[9] I.V.Barkov, R.R.Shakirov, Finite semigroups with minimal diagonal rank, Mat. vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 16(2014), 55-63 (in Russian).
[10] A.H.Clifford, G.B.Preston, Algebraic Theory of Semigroups, Providence, R.I., American Mathematical Soc., 1967.

Бидиагональные ранги вполне (0-)простых полугрупп

Илья В. Барков
Национальный исследовательский университет МИЭТ пл. Шокина, 1, Московская обл., Зеленоград, 124498
\section*{Россия}

[^1]Ключевые слова: полигон над полугруппой, диагональный ранг, вполне (0-) простая полугруппа.

[^0]: *zvord@b64.ru
 © Siberian Federal University. All rights reserved

[^1]: Диагональным биполигоном над полугруппой называется полигон, в котором полугруппа действует с двух сторон на свою декартову степенъ. Бидиагональным рангом полугруппы называется наименъшая мощность порождающего множества ее бидиагонального полигона. В данной работъ мъ вычисляем бидиагоналъные ранги вполне (0-)простых полугрупп.

