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1. Problem formulation

Let us introduce in the plane simply connected bounded domain Ω and consider a system of
nonlinear partial differential equations in the form

T iλ
αλ +Ri = 0, i = 1, 2,

Tλ3
αλ + kλT

λλ + (Tλµw3αµ)αλ +R3 = 0, (1)

M iλ
αλ − T i3 + Li = 0, i = 1, 2

under the following conditions at the boundary Γ:

w1 = ψ1 = 0, (2)

T 12dα2/ds− T 22dα1/ds = P 2(s), (3)

T 13dα2/ds− T 23dα1/ds+ T 11w3α1dα2/ds− T 22w3α2dα1/ds+

+T 12(w3α2dα2/ds− w3α1dα1/ds) = P 3(s),
(4)

M12dα2/ds−M22dα1/ds = N2(s). (5)

From this point on the index αλ means differentiation with respect to αλ.
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In (1)–(5) the following notations are used:

T ij ≡ T ij(a) = Dijkn
0 γ0kn, M ij ≡M ij(a) = Dijkn

2 γ1kn, a = (w1, w2, w3, ψ1, ψ2),

Dijkn
m =

∫ h
2

−h
2

Bijkn(α3)mdα3, B1111 = B2222 = E/(1− µ2), B1122 = µE/(1− µ2),

B1212 = E/(2(1 + µ)), B1313 = B2323 = Ek2/(2(1 + µ));

(6)

the remainder Bijkn = 0; αj = αj(s)(j = 1, 2) is the equation of the curve Γ, s is the length of
the arc Γ;

γ0jj = wjαj − kjw3 + w2
3αj/2 (j = 1, 2), γ012 = w1α2 + w2α1 + w3α1w3α2 ,

γ1jj = ψjαj (j = 1, 2), γ112 = ψ1α2 + ψ2α1 , (7)

γ0j3 = w3αj + ψj (j = 1, 2), γ033 = γ1k3 ≡ 0, k = 1, 3.

The system (1) together with the boundary conditions (2)–(5) describes the state of equi-
librium of shallow isotropic elastic homogeneous shell with simply supported edges within
the framework of Timoshenko shear model [1]. Here T ij are stresses, M ij are moments;
γkij(i, j = 1, 3, k = 0, 1) are components of deformation of the shell middle surface S0 that
is homeomorphic to Ω; wi(i = 1, 2) and w3 are tangential and normal displacements of the
points of S0; ψi(i = 1, 2) are rotation angles of normal cross-section of S0; a is the vector of gen-
eralized displacements; Rj(j = 1, 3), Lk(k = 1, 2), N2, P 2, P 3 are components of the external
forces acting on the shell; µ = const is the Poisson coefficient, E = const is Young‘s modulus,
k1, k2 = const are principal curvatures; k2 = const is the shear coefficient; h = const is the shell
width; α1, α2 are the Cartesian coordinates of the points in the domain Ω.

We assume summation over repeating Latin indices from 1 to 3 and over Greek indices from
1 to 2 in (1), (6) and in what follows.

System (1) is written in terms of generalized displacements w1, w2, w3, ψ1, ψ2:

w1α1α1 + µ1w1α2α2 + µ2w2α1α2 = f1,

µ1w2α1α1 + w2α2α2 + µ2w1α1α2 = f2,

k2µ1(w3α1α1 + w3α2α2 + ψ1α1 + ψ2α2) + k3w1α1 + k4w2α2 − k5w3+

+k3w
2
3α1/2 + k4w

2
3α2/2 + β2

[
(Tλµw3αλ)αµ +R3

]
= 0,

ψ1α1α1 + µ1ψ1α2α2 + µ2ψ2α1α2 = g1,

µ1ψ2α1α1 + ψ2α2α2 + µ2ψ1α1α2 = g2,

(8)

where

f1 ≡ f1(w3) = k3w3α1 − w3α1w3α1α1 − µ2w3α2w3α1α2 − µ1w3α1w3α2α2 − β2R
1,

f2 ≡ f2(w3) = k4w3α2 − w3α2w3α2α2 − µ2w3α1w3α1α2 − µ1w3α2w3α1α1 − β2R
2,

gj ≡ gj(w3) = k0(w3αj + ψj)− β1L
j , j = 1, 2,

(9)

µ1 = (1− µ)/2, µ2 = (1 + µ)/2, k3 = k1 + µk2, k4 = k2 + µk1, k5 = k21 + k22 + 2µk1k2,

k0 = 6k2(1− µ)/h2, β1 = 12(1− µ2)/(h3E), β2 = (1− µ2)/(Eh).

System (8) is a system of second order partial differential equations. It is linear with respect to
tangential displacements w1, w2, rotation angles ψ1, ψ2 and it is a nonlinear system with respect
to deflection w3.
Problem A. Find a solution to system (8) under boundary conditions (2)–(5).
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Solvability of the system of nonlinear differential equations that describes shell equilibrium
in the framework of the Kirchhoff-Love model has been well studied [2–5]. The questions of
the existence of solutions of nonlinear problems in the framework of more general shell models,
not based on the Kirchhoff-Love hypotheses, are in the well-known Volovich list of unresolved
problems of the mathematical theory of shells [2]. These questions have not been clarified yet.
There are a number of works devoted to the solvability of nonlinear problems in the framework
of the Timoshenko displacement model [6–10]. The method used in these studies is based on
the integral representations of the desired solution of system (8) that contain arbitrary holo-
morphic functions. These representations are constructed with the use of general solutions to
the inhomogeneous Cauchy-Riemann equation. Holomorphic functions are defined so that the
desired solution of system of differential equations (8) satisfies given boundary conditions. At
the present time, existence theorems of solutions of nonlinear problems for Timoshenko-type
shell with rigidly clamped edges [6, 7] and with free edges [8, 9] are obtained. Method developed
in [6–9] was applied to system (8) with boundary conditions w1 = w3 = ψ1 = 0 that describe
the state of equilibrium of Timoshenko-type shell with simply supported edges [10]. The study
presented in this paper develops results obtained in [10]. The more complicated case of bound-
ary conditions w1 = ψ1 = 0 is considered. These conditions describe elastic bearing against
transverse deflection.

Consider boundary-value problem A in a generalized formulation. Let the following conditions
hold true:

a) Ω is a simply connected domain with the boundary Γ ∈ C1
β (see, for example, [11, p. 23]);

b) external forces Rj(j = 1, 3), Lk(k = 1, 2) ∈ Lp(Ω), N
2, P 2, P 3 ∈ Cβ(Γ); in what follows

p > 2, 0 < β < 1.

Definition 1. The vector of generalized displacements a = (w1, w2, w3, ψ1, ψ2) ∈W
(2)
p (Ω), p > 2,

is a generalized solution to the problem A if the vector satisfies almost everywhere the equations
of system (8) and it satisfies boundary conditions (2)–(5) in pointwise fashion.

Here W (2)
p (Ω) is a Sobolev space. Let us note that due to embedding theorems for Sobolev

spaces W (2)
p (Ω) with p > 2, the generalized solution a belongs to C1

α(Ω). In what follos α =
(p− 2)/p.

2. Solution to problem A with respect to tangential
displacements and angles of rotation

Let us consider the first two equations in (8) and initially assume that w3 is fixed. In terms
of the complex function ω = w1α1 +w2α2 + iµ1(w2α1 −w1α2) these equations can be represented
in the form

ωz = f, (10)

where f = (f1 + if2)/2, ωz = (ωα1 + iωα2)/2, z = α1 + iα2.
Equation (10) is an inhomogeneous Cauchy–Riemann equation. It has general solution [11]:

ω(z) = Φ1(z) + Tf(z), T f = − 1

π

∫∫
Ω

f(ζ)

ζ − z
dξdη, ζ = ξ + iη, (11)

where Φ1(z) is an arbitrary holomorphic function that belongs to the space Cα(Ω).
It is well-known [11, pp. 41, 53] that Tf is a completely continuous operator which acts in

Lp(Ω), p > 2, Ck
α(Ω). It maps these spaces into Cα(Ω) and Ck+1

α (Ω), respectively. Besides,
there exist the generalized derivatives [11, pp. 33–34, 53–67]

∂Tf

∂z
= f,

∂Tf

∂z
≡ Sf = − 1

π

∫∫
Ω

f(ζ)

(ζ − z)2
dξdη, (12)

– 133 –



Marat G.Ahmadiev, Samat N.Timergaliev, Lilya S.Kharasova Solvability of One Boundary-value . . .

where the integral exists in the principal value sense of Cauchy (almost everywhere when f ∈
Lp(Ω), p > 1) and Sf is a linear bounded operator in Lp(Ω), C

k
α(Ω).

With the function ω0(z) = w2 + iw1, relation (11) can be also rewritten in the form of an
inhomogeneous Cauchy–Riemann equation

ω0z = i(d1ω + d2ω) ≡ id[ω], dj = (µ1 + (−1)j)/(4µ1), j = 1, 2, (13)

The general solution of this equation is

ω0(z) = Φ2(z) + iTd[Φ1 + Tf ](z), (14)

where Φ2 is an arbitrary holomorphic function of the class C1
α(Ω).

Thus, for fixed w3 the general solution of the two first equations (8) is of the form (14)
and contains two arbitrary holomorphic functions Φj(z), j = 1, 2. We define these functions so
that tangential displacements w1 and w2 will satisfy boundary conditions (2), (3). First, we find
Φ2(z) from the condition w1 = 0 on Γ. We have a Rimann-Hilbert problem with the boundary
condition Re[iΦ2(t)] = ReTd[ω](t), t ∈ Γ for the holomorphic function Φ2(z). Second, we assume
that domain Ω is the unit disk: |z| 6 1. Then the solution of the Riemann-Hilbert problem has
the form [12]

Φ2(z) = − 1

2π

∫
Γ

ReTd [Φ1 + Tf ] (t)
t+ z

t− z

dt

t
+ c0, z ∈ Ω, (15)

where c0 is a arbitrary real constant.
We define the holomorphic function Φ1(z) with the use of boundary condition (3). Let us

represent this condition in terms of displacements:

µ1(w1α2 + w2α1)(t)dα2/ds− (µw1α1 + w2α2)(t)dα1/ds = φ(w3)(t), (16)

t = t(s) = α1(s) + iα2(s) ∈ Γ,

where

φ(t) ≡ φ(w3)(t) = β2P
2(s) +

[
(µw2

3α1 + w2
3α2)/2− µk1w3 − k2w3

]
dα1/ds−

−µ1w3α1w3α2dα2/ds.
(17)

We substitute relations for the tangential displacements w1, w2 from (14) into (16). Taking
into account (10), (11) and (14), we obtain

wjαj = Re{Φ1(z) + Tf(z)}/2− (−1)jIm{Φ′
2(z) + iSd[Φ1 + Tf ](z)}, j = 1, 2, (18)

w1α2 + w2α1 = 2Re{Φ′
2(z) + iSd[Φ1 + Tf ](z)}.

Hence, boundary conditions (16) take the form

Re{tΦ′
2(t)}+Re{itSd[Φ1]

+(t)} − µ3dα
1/ds ReΦ1(t) = φ(t)/(1− µ) + h1f(t), t ∈ Γ, (19)

where
h1f(t) = Im{tSd[Tf ]+(t)}+ µ3dα

1/ds ReTf(t), µ3 = (1 + µ)/(2(1− µ)); (20)

the symbol Ψ+(t) means the limit of the function Ψ(z) as z → t ∈ Γ from the interior of the
domain Ω.

Let us transform relation (19). Representing holomorphic in the domain Ω function Φ1(z) by
the Cauchy integral and using (4.7), (8.8а) from [11], we have

Sd[Φ1]
+(t) = d1t

2
[Φ1(t)− Φ1(0)], (21)
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where constant d1 is defined in (13).
Further, we differentiate relation (15) with respect to z and use (13), (11) for d[Φ1], Td[Φ1].

Rearranging the order of integration in the repeated integrals and applying the Cauchy theorem
and formula, we have

Φ′
2(z) = (−i){d1Φ1(0) + d2Φ1(z) + 2SΓ(ReTd[Tf ])(z)}, z ∈ Ω, (22)

SΓf(z) ≡
∂TΓf(z)

∂z
=

1

2πi

∫
Γ

f(τ)

(τ − z)2
dτ.

In the limit z → Γ taken in (22) from the interior of the domain Ω, we find

Φ′
2(t) = (−i){d1Φ1(0) + d2Φ1(t) + 2(SΓ(ReTd[Tf ]))

+(t)}, t ∈ Γ, (23)

where constants dk are defined in (13).
Now we substitute (21) and (23) in (19). Then we obtain the Riemann-Hilbert problem for

function Φ1(z) in Ω with the boundary condition

Re[itΦ1(t)] = h[f ;φ](t), t ∈ Γ, (24)

where
h[f ;φ](t) = (µ− 1)[h1f(t) + 2Re{it(SΓ(ReTd[Tf ]))

+(t)}]− φ(t); (25)

operators h1f, SΓg are defined in (20), (22).
The index of problem (23) equals −1. Therefore, the solution of this problem is [12]

Φ1(z) = − 1

π

∫
Γ

h[f ;φ](t)

t− z

dt

t
≡ Φ1[f ;φ](z), (26)

and the solvability condition ∫
Γ

h[f ;φ](t)

t
dt = 0 (27)

of problem (24) should be fulfilled.
We substitute expression (26) into (15) and (22) to obtain

Φ2(z) = − 1

2π

∫
Γ

(ReTd[Φ1[f ;φ]](t) + ReTd[Tf ](t))
t+ z

t− z

dt

t
+ c0 ≡ Φ2[f ;φ](z) + c0,

Φ′
2(t) = (−i){d1Φ1[f ;φ](0) + d2Φ1[f ;φ](z) + 2SΓ(ReTd[Tf ])(z)} ≡ Φ′

2[f ;φ](z), z ∈ Ω.

(28)

Consider tangential displacements w1 and w2 that satisfy the first two equations (8) and
conditions (2), (3). Upon substituting (26), (28) into (14) and assuming that condition (27) is
true, we obtain

ω0(z) = H0w3 + c0,

H0w3 ≡ H0[f(w3);φ(w3)] = Φ2[f ;φ](z) + iTd[Φ1[f ;φ] + Tf ](z).
(29)

Let us obtain integral representations for the derivatives of w1 and w2 (up to second order
inclusively). Using (11) and (18), we find

wjαj = Re {Φ1[f ;φ] + Tf} /2− (−1)jIm {Φ′
2[f ;φ] + iSd[Φ1[f ;φ] + Tf ]} ≡

≡ Hjj [f(w3);φ(w3)] ≡ Hjjw3,

wjαk = Re{Φ′
2[f ;φ] + iSd [Φ1[f ;φ] + Tf ]}+ (−1)jIm{Φ1[f ;φ] + Tf}/(2µ1) ≡

≡ Hjk[f(w3);φ(w3)] ≡ Hjkw3, j, k = 1, 2;

(30)
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f ≡ f(w3), φ ≡ φ(w3) are defined in (9), (17).
Upon differentiating relation (13) with respect to z, z, we obtain

ω0zz = i
{
d1(Φ

′
1[f ;φ] + Sf) + d2f(w3)

}
≡ P1[f(w3);φ(w3)] ≡ P1w3, (31)

ω0zz = i
{
d1f(w3) + d2(Φ′

1[f ;φ] + Sf)
}
≡ P2[f(w3);φ(w3)] ≡ P2w3.

Using formula (8.20) from [11], we obtain

Sd[Φ1 + Tf ](z) = TΓ(d[Φ1 + Tf ]/t2)(z) + T (d1[Φ
′
1 + Sf ] + d2f)(z). (32)

Now we differentiate (14) two times with respect to z. Taking into account (32), we have

ω0zz = Φ′′
2 [f ;φ] + iSΓ

{
d[Φ1[f ;φ] + Tf ]t2

}
+

+iS{d1(Φ′
1[f ;φ] + Sf) + d2f(w3)} ≡ P3[f(w3);φ(w3)] ≡ P3w3.

(33)

We use the following designations in (31), (33):

Φ′
1[f ;φ](z) = − 1

π

∫
Γ

h[f ;φ](t)

(t− z)2t
dt; Φ′′

2 [f ;φ](z) = (−i){d2Φ′
1[f ;φ](z) + 2S′

ΓReTd[Tf ](z)}, (34)

S′
ΓReTd[Tf ](z) = {d1f(z) + d2Sf(z)− S(d1Sf + d2f)(z)− SΓ{T (d1Sf + d2f)t

2}(z)−

−SΓd[Tf ](z)/2− SΓ{TΓ(d[Tf ]τ2)}(z)}/2, TΓf(z) =
1

2πi

∫
Γ

f(t)

t− z
dt.

One can express derivatives

wjαkαk = Im{ij−1[2ω0zz + (−1)k−1(ω0zz + ω0zz)]}, wjα1α2 = Re[ij−1(ω0zz − ω0zz)], j, k = 1, 2

in terms of ω0zz, ω0zz, ω0zz.

Lemma 1. Let conditions a), b) in Section 1 be fulfilled. Then 1) Pjw3(j = 1, 3) are nonlinear
bounded operators acting from W

(2)
p (Ω) to Lp(Ω), 2 < p < 2/(1− β); 2) Hjkw3(j, k = 1, 2) are

nonlinear completely continuous operators acting from W
(2)
p (Ω) to Lp(Ω), 2 < p < 2/(1−β) and

H0w3 is nonlinear bounded operator acting from W
(2)
p (Ω) to Cα(Ω), C1

α(Ω). For any wj
3(j =

1, 2) ∈W
(2)
p (Ω) the following estimates hold

∥Pjw
1
3 − Pjw

2
3∥Lp(Ω), ∥Hjkw

1
3 −Hjkw

2
3∥Cα(Ω), ∥H0w

1
3 −H0w

2
3∥C1

α(Ω) 6
6 c(1 + ∥w1

3∥W (2)
p

+ ∥w2
3∥W (2)

p
)∥w1

3 − w2
3∥W (2)

p
.

(35)

Proof. Let us note that f(w3) defined in (9) is nonlinear bounded operator acting from
W

(2)
p (Ω) to Lp(Ω), p > 2 and estimate (35) is true. Using formulas (6.10) from [11] and Sokhotski

formulas [12], we obtain

SΓReTd[Tf ](z) = {d[Tf ](z)− T (d1Sf + d2f)(z)− TΓ{T (d1Sf + d2f)t
2}(z)−

−TΓd[Tf ](z)/2− TΓ{TΓ(d[Tf ]τ2)}(z)}/2.
(36)

It is known that if condition b) is fulfilled then TΓg and SΓg are linear bounded operators acting
from Cβ(Γ) to Cβ(Ω) and to Lp(Ω) (2 < p < 2/(1 − β)), respectively [11, pp. 26–27]. Besides,
using formula (6.10) from [11], it can be shown that SΓg is a linear bounded operator acting from
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W
(1)
p (Ω) to Lp(Ω), p > 2. Taking into account this fact and (32), (34), (36), one can obtain that

Sd[Tf ](z), SΓReTd[Tf ](z) ∈ W
(1)
p (Ω), p > 2. Taking into account h1f in (20) and φ(w3) in

(17), we obtain from (25) that h[f ;φ](t) = −β2P 2(s)+ h̃(t). Here P 2(s) ∈ Cβ(Γ) and h̃(t) is the
boundary value of the function that belongs to the space W (1)

p (Ω), p > 2. Therefore, from (34),
(28), (26) we have 1) Φ′

1[f(w3);φ(w3)],Φ
′′
2 [f(w3);φ(w3)] are nonlinear bounded operators acting

from W
(2)
p (Ω) to Lp(Ω), 2 < p < 2/(1− β); 2) Φ1[f(w3);φ(w3)],Φ

′
2[f(w3);φ(w3)] are nonlinear

completely continuous operators acting from W
(2)
p (Ω) to Lp(Ω), 2 < p < 2/(1− β) and they are

nonlinear bounded operators acting from W
(2)
p (Ω) to Cα(Ω) These operators satisfy estimates

(35) (here min(α, β) = α, when (2 < p < 2/(1− β))). Lemma 1 follows from (29)–(31) and (33).
Let us consider conditions of solvability (27). With (32) and (36) we find Sd[Tf ]+(t),

SΓReTd[Tf ]
+(t). Taking into account expressions for operators h1f, Tf, Sf in (20), (11),

(12) and holomorphic function TΓg(z), we obtain∫
Γ

h1f(t)

t
dt = − i

1− µ

∫∫
Ω

f2(w3)(z)dα
1dα2,

∫
Γ

Re{it(SΓReTd[Tf ])
+(t)}

t
dt = 0. (37)

Next using f2(w3) in (9), we have∫∫
Ω

f2(w3)(z)dα
1dα2 =

∫
Γ

{(µw2
3α1/2 + w2

3α2/2− k4w3)dα
1/ds−

−µ1w3α1w3α2dα2/ds}ds− β2

∫∫
Ω

R2dα1dα2.
(38)

Upon substituting (25), (37), (38) into (27), the condition of solvability take the final form∫
Γ

P 2(s)ds+ i

∫
Ω

R2dα1dα2 = 0, (39)

where P 2(s) and R2(α1;α2) are the components of external load.
We now turn to functions ψk (k = 1, 2) in the last two equations (8). These functions should

satisfy boundary conditions (2), (5). Taking into account expressions for moments M jk in (6),
we write boundary condition (5) in the form

µ1(ψ1α2 + ψ2α1)(t)dα2/ds− (µψ1α1 + ψ2α2)(t)dα1/ds = φ̃(t), φ̃(t) = β1N
2(s); (40)

β1 is defined in (9), N2(s) is the component of the external forces.
Let us note that the structure of left-hand sides in the last two equations (8) coincides with

the structure of left-hand sides in boundary conditions (2) and (40). Relations for tangential
displacements differ only in the right-hand sides. Therefore at fixed right-hand sides for rotation
angles we obtain

ψ = ψ2 + iψ1 = H0[g(υ); φ̃] + c1, (41)

where
υ = υ2 + iυ1, g(υ) = (g1(υ) + ig2(υ))/2, (42)

υj = w3αj + ψj , gj(υ) = k0υj − β1L
j , j = 1, 2;

c1 an arbitrary real constant, operator H0[g(υ); φ̃] is defined in (29).
As this takes place, the condition of solvability is∫

Γ

h[g; φ̃](t)

t
dt = 0,
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where h[g; φ̃](t) is given in (25). These conditions can be reduced to the form∫
Γ

{N2 + [k1(α
1)2 − k2(α

2)2]P 2/2− k1α
1α2T 1(a)− α2P 3}ds+

∫∫
Ω

{L2 + [k1(α
1)2−

−k2(α2)2R2/2− k1α
1α2R1 − α2R3}dα1dα2 +

∫
Γ

P 2w3ds+

∫∫
Ω

R2w3dα
1dα2 = 0,

(43)

where T 1(a) = T 11(a)dα2/ds−T 12(a)dα1/ds (T ij(a) are defined in (6)); N2, L2, P k (k = 2, 3), Rj

(j = 1, 3) are components of external load.
In a similar way to (30) we obtain the following relations

ψjαk = Hjk[g; φ̃], j, k = 1, 2, (44)

where operators Hjk are defined in (30).

Lemma 2. Let conditions a), b) in Section 1 be fulfilled. Then Hjk[g(υ); φ̃] (j, k = 1, 2) and
H0[g(υ); φ̃] are linear completely continuous operators with respect to υ that act from W

(1)
p (Ω)

to Lp(Ω), 2 < p < 2/(1− β) and they are linear continuous operators that act from W
(1)
p (Ω) to

Cα(Ω) and to C1
α(Ω), respectively.

Taking into account expressions for g(υ) in (42) and indicated above properties of operators
Tf, Sf, TΓf, SΓf , we obtain from (29), (30) that Lemma 2 is true.

Problem A at fixed w3, υj (j = 1, 2) is solvable with respect to tangential displacements and
rotation angles under conditions (39) and (43). Solution of this problem is described in (29)
and (41).

In conclusion of Section 2 we represent relationships (41) and (44) in the form convenient for
further analysis. First of all we obtain relations for φ̃ from (40) and for g(υ) from (42):

φ̃ = φ̃0 + φ̃1, g(υ) = g0 + g1(υ), φ̃0 = β1N
2(s), φ̃1 = 0, (45)

gk = (g1k + ig2k)/2, k = 0, 1, gj0 = −β1Lj , gj1 = k0υj , j = 1, 2.

Let us note that gj(υ) are homogenous operators of order j with respect to υ.
Now if we substitute (45) into (41) and (44), we arrive at the desired representations for

rotation angles and their derivatives

ψ ≡ ψ(υ) = ψ0 + ψ1(υ) + c1, ψjαk ≡ ψjαk(υ) = ψj0αk + ψj1αk(υ), (46)

ψn(υ) = ψ2n(υ) + iψ1n(υ) = H0[g
n(υ); φ̃n], ψjnαk(υ) = Hjk[g

n(υ); φ̃n], j, k = 1, 2, n = 0, 1.

It is easy to see that ψn(υ), ψjnαk(υ) are homogenous operators of order n with respect to υ.

3. Reduction of system (8) to a single equation and
solvability analysis.

Before considering the third equation in (8) we express the deflection w3 and its derivatives
in terms of υj(j = 1, 2). Taking into account (42) and (46), we obtain

w3αj ≡ w3αj (υ) = w30αj + w31αj (υ)− (j − 1)c1, (47)

w30αj = −ψj0, w31αj (υ) = υj − ψj1(υ), j = 1, 2.

Using (47), we derive
w3 ≡ w3(υ) = w30 + w31(υ)− c1α

2 + c2, (48)
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w30 = −
∫ (α1,α2)

(0,0)

ψ10dα
1 + ψ20dα

2, w31(υ) =

∫ (α1,α2)

(0,0)

[υ1 − ψ11(υ)]dα
1 + [υ2 − ψ21(υ)]dα

2.

Upon substituting expressions (47), (48) into (9), (17) and then the resulting expression into
(29) and (30), we obtain the decomposition of tangential displacements and their derivatives into
linear and nonlinear operators

ω0 ≡ ω0(υ) = ω01(υ) + ω02(υ) + ω�
0, (49)

wjαk ≡ wjαk(υ) = wj1αk(υ) + wj2αk(υ) + w�
jαk , j = 1, 2,

where

ω0j(υ) = w2j(υ) + iw1j(υ) = H0[f
j(υ);φj(υ)], wjnαk(υ) = Hjk[f

n(υ);φn(υ)], (50)

ω�
0 = w�

2 + iw�
1 = H0[f

�;φ�] + c0, w�
jαk = Hjk[f

�;φ�], j, k, n = 1, 2,

f j(υ) = [f1j(υ) + if2j(υ)]/2, fj1(υ) = k2+jw31αj (υ), fj2(υ) = k2+jw30αj − β2R
j−

−w3αj (υ)w3αjαj (υ)− µ2w3α3−j (υ)w3α1α2(υ)− µ1w3αj (υ)w3α3−jα3−j (υ), j = 1, 2,

f � = −ic1k4/2, φ1(υ) = −k4w31(υ)dα
1/ds, φ2(υ) = β2P

2(s) + {−k4w30 + µ(w30α1+

+w31α1)2/2 + (w30α2 + w31α2)2/2− c1(w30α2 + w31α2)}dα1/ds− µ1{w3α1(w30α2+

+w31α2)− c1(w30α1 + w31α2)}dα2/ds, φ� = (c21/2 + c1k4α
2 − k4c2)dα

1/ds,

operators H0[f ; g], Hjk[f ; g], (j, k = 1, 2) are defined in (29), (30).
After some cumbersome mathematical treatment one can derive the explicit expression

ω�
0 = −c1k4(α2)2/2 + (c2k4 − c21/2)α

2 + c1k4/4 + c0. (51)

Now we turn to the third equation in (8). Replacing generalized displacements by relations
(46)–(49), we reduce the third equation to the equivalent system with respect to υ = υ2 + iυ1:

∂υ/∂z = [ψ2α1(υ)− ψ1α2(υ) + if3(υ)]/2 ≡ f0(υ), (52)

f3(υ) ≡ f3(w3(υ)) = −{k3w1α1(υ) + k4w2α2(υ)− k5w3(υ) + k3w
2
3α1(υ)/2 + k4w

2
3α2(υ)/2+

+β2[T
λµ(υ)w3αλ(υ)]αµ + β2R

3}/(k2µ1), T
λµ(υ) ≡ Tλµ(a(υ)) (λ, µ = 1, 2).

Boundary condition (4) is transformed to

υ1dα
2/ds− υ2dα

1/ds = φ0(υ)(t), t ∈ Γ, (53)

φ0(υ)(t) ≡ φ0(w3(υ))(t) = β3[P
3(s)− T 11(υ)w3α1(υ)dα2/ds+ T 22(υ)w3α2(υ)dα1/ds−

−T 12(υ)(w3α2(υ)dα2/ds− w3α1(υ)dα1/ds)], β3 = 2(1 + µ)/(k2Eh).

So, problem A is now to find solution to equation (52) under boundary condition (53).
Equivalent form of equation (52) is

υ = Φ(z) + Tf0(υ)(z), (54)

where Φ(z) is an arbitrary holomorphic function of the class Cα(Ω) and operator Tf is defined
in (11).

We define the holomorphic function Φ(z) so that the function υ from (54) satisfy (53). We
assume for the time being that φ0(υ), f0(υ) in the right-hand sides of (53), (54) are fixed.
Substituting (54) into (53), we obtain the Riemann-Hilbert problem for Φ(z) in the unit disk.

– 139 –



Marat G.Ahmadiev, Samat N.Timergaliev, Lilya S.Kharasova Solvability of One Boundary-value . . .

The boundary condition for this problem is Re[(−i)tΦ(t)] = l(υ)(t), t ∈ Γ. The solution of this
problem is

Φ(z) ≡ Φ[l(υ)](z) =
1

π

∫
Γ

l(υ)(t)

t− z

dt

t
, (55)

where l(υ)(t) should satisfy the condition∫
Γ

l(υ)(t)

t
dt = 0, l(υ)(t) = φ0(υ)(t) + Re[itTf0(υ)(t)].

This condition can be represented in the form∫
Γ

(k1α
1T 1(a) + k2α

2P 2 + P 3)ds+

∫∫
Ω

(k1α
1R1 + k2α

2R2 +R3)dα1dα2 = 0, (56)

where T 1(a) is defined in (43), P k(k = 1, 2) and Rj(j = 1, 3) are components of external load.
Substituting (55) into (54), we obtain the following equation for υ ∈W

(1)
p , p > 2

υ − Φ[l(υ)]− Tf0(υ) = 0. (57)

Now we represent equation (57) in a slightly different form. Taking into account relations (46),
(48), (49), (51), we obtain for f3(υ), f0(υ), l(υ) the decompositions into linear and nonlinear
terms:

f3(υ) = f31(υ) + f32(υ), f0(υ) = f01(υ) + f02(υ), l(υ) = l1(υ) + l2(υ), (58)

where

f31(υ) = −[k3w11α1(υ) + k4w21α2(υ)− k5w31(υ)]/(k
2µ1),

f32(υ) = −[k3w12α1(υ) + k4w22α2(υ) + k2+λ(w30αλ + w31αλ(υ))2/2− k5w30−

−k4c1(w30α2+w31α2(υ))+β2(T
λµ(υ)w3αλ(υ))αµ+β2R

3+k21(1−µ2)(c1α
2− c2)]/(k

2µ1),

f01(υ) = [ψ21α1(υ)− ψ11α2(υ)+ if31(υ)]/2, f02(υ) = [ψ20α1(υ)−ψ10α2(υ) + if32(υ)]/2,

l1(υ) = Re[itTf01(υ)], l2(υ) = φ0(υ) +Re[itTf02(υ)], t ∈ Γ.

(59)

Let us introduce the following operators

Kυ = Φ[l1(υ)] + Tf01(υ), Gυ = Φ[l2(υ)] + Tf02(υ). (60)

Then equation (57) takes the form

υ −Kυ −Gυ = 0. (61)

Let us consider the solvability of equation (61) in the space W (1)
p (Ω), p > 2.

Lemma 3. Let conditions a), b) in Section 1 be fulfilled. Then 1) Kυ are linear completely
continuous operators in W (1)

p (Ω), p > 2; 2) Gυ are nonlinear bounded operators in W (1)
p (Ω), 2 <

p < 2/(1 − β) and for any υj ∈ W
(1)
p (Ω) (j = 1, 2) which belong to the ball ∥υ∥

W
(1)
p (Ω)

< r, the
following estimate takes place

∥Gυ1 −Gυ2∥
W

(1)
p (Ω)

6 c[q0 + (1 + ∥w3(0)∥W (2)
p (Ω)

+ r)(∥w3(0)∥W (2)
p (Ω)

+ r)]∥υ1 − υ2∥
W

(1)
p (Ω)

,

q0 =

2∑
λ,µ=1

∥Tλµ(0)∥C(Ω) +

2∑
λ=1

∥k2+λw3αλ(0) +Rλ∥Lp(Ω), T
λµ(0) ≡ Tλµ(a(0)),

a(0) = (w1(0), w2(0), w3(0), ψ1(0), ψ2(0)), wj(0) (j = 1, 3), w3αλ(0), ψλ(0) (λ = 1, 2) are defined
in (49), (48), (47), (46) at υ = 0.
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Lemma 3 follows from (60) and (59), in view of Lemmas 1, 2 and properties of operators
TΩf, SΩf, TΓf and SΓf .

Consider the homogenous equation

υ −Kυ = 0. (62)

Let υ ∈W
(1)
p (Ω), 2 < p < 2/(1− β) be nonzero solution of equation (62). In view of (46), (48),

(50), this solution is associated with the generalized displacements wj1(υ) (j = 1, 3), ψj1(υ)
(j = 1, 2) which satisfy the system of linear homogenous equations

w1α1α1 + µ1w1α2α2 + µ2w2α1α2 − k3w3α1 = 0,

µ1w2α1α1 + w2α2α2 + µ2w1α1α2 − k4w3α2 = 0, (63)

k2µ1(w3α1α1 + w3α2α2 + ψ1α1 + ψ2α2) + k3w1α1 + k4w2α2 − k5w3 = 0,

ψ1α1α1 + µ1ψ1α2α2 + µ2ψ2α1α2 − k0(w3α1 + ψ1) = 0,

µ1ψ2α1α1 + ψ2α2α2 + µ2ψ1α1α2 − k0(w3α2 + ψ2) = 0

and homogenous static boundary conditions (2) and (16) with φ(t) = 0, boundary conditions
(40) with φ̃(t) = 0 and boundary conditions (53) with φ0(t) = 0. We multiply equalities (63)
by w11, w21, w31, ψ11, ψ21, integrate the resulting relations over the domain Ω, and add up
the result of integration. Then upon integrating by parts the resulting relation and taking into
account boundary conditions, we obtain υj = 0, j = 1, 2, i.e., υ = 0 in Ω. Therefore, equation
(62) has only zero solution in W (1)

p (Ω), 2 < p < 2/(1−β). Thus, there exists the inverse operator
(I −K)−1 bounded in W

(1)
p (Ω), 2 < p < 2/(1 − β). It reduces equation (61) to the equivalent

form
υ −G∗υ = 0, G∗υ = (I −K)−1Gυ. (64)

It follows from the established above properties of the operator Gυ that G∗υ is a nonlinear
bounded operator in W (1)

p (Ω), 2 < p < 2/(1− β). For any υj ∈W
(1)
p (Ω) (j = 1, 2) which belong

to the ball ||υ||
W

(1)
p

< r, in view of Lemma 3, the following estimate holds

||G∗υ
1 −G∗υ

2||
W

(1)
p (Ω)

6 q∗∥υ1 − υ2∥
W

(1)
p (Ω)

,

where q∗ = c∥(I −K)−1∥
W

(1)
p (Ω)

[q0 + (1 + ∥w3(0)∥W (2)
p (Ω)

+ r)(∥w3(0)∥W (2)
p (Ω)

+ r)].
Let us assume that the radius r of the ball and the external forces exerted on the shell are

such that the following conditions hold

q∗ < 1, ∥G∗(0)∥W (1)
p (Ω)

< (1− q∗)r, (65)

where G∗(0) is given by relations that follow from (53), (59), (60) at υ = 0.
Let us note that to fulfill conditions (65) it is enough, for example, to require that the external

load and the radius of the ball are sufficiently small.
Under these conditions we can apply the principle of contracting mappings to equa-

tion (64) [13]. According this principle equation (64) has the unique solution υ ∈ W
(1)
p (Ω), 2 <

p < 2/(1−β) in the ball ||υ||
W

(1)
p

< r. This solution can be represented in the form υ = ℜG∗(0),
where ℜ is the resolvent operator G∗(υ)−G∗(0).

Using υ = ℜG∗(0), (46), (48) and (49), we obtain the generalized displacements wj ∈
W

(2)
p (Ω) (j = 1, 3), ψj ∈ W

(2)
p (Ω) (j = 1, 2), 2 < p < 2/(1 − β). Finally we obtain the

generalized solution a = (w1, w2, w3, ψ1, ψ2) of problem А. It can be represented in the form
a = a0 + a�, where a� = (0, w�

2,−c1α2 + c2, 0, c1) (w�
2 is defined in (51)); a0 is the vector with
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components wj1(υ) + wj2(υ) (j = 1, 2), w30 + w31(υ), ψj0 + ψj1(υ) (j = 1, 2), that are defined
in (50), (48), (46).

Then we substitute the solution υ = υ2 + iυ1 = ℜG∗(0) of Eq. (64) into (58), (43). Taking
into account relations

T 1(a) = T 1(a0)(υ) + T 1(a�) + c1l0(υ),

l0(υ) = {(w30α1 + w31α1(υ))dα1/ds− µ(w30α2 + w31α2(υ))dα2/ds}/β2

and calculating integrals that contain T 1(a�), we transform the solvability conditions (58), (43)
into the form∫

Γ

(k1α
1T 1(a0) + k2α

2P 2 + P 3)ds+

∫∫
Ω

(k1α
1R1 + k2α

2R2 +R3)dα1dα2+

+c1

∫
Γ

k1α
1l0(υ)(s)ds+ πc2k

2
1(µ

2 − 1)/β2 = 0,∫
Γ

{N2 + [k1(α
1)2 − k2(α

2)2]P 2/2− k1α
1α2T 1(a0)− α2P 3}ds+

∫∫
Ω

{L2 + [k1(α
1)2−

−k2(α2)2R2/2− k1α
1α2R1 − α2R3}dα1dα2 +

∫
Γ

P 2w3ds+

∫∫
Ω

R2w3dα
1dα2−

−k1c1
∫
Γ

α1α2l0(υ)(s)ds− πc1k
2
1(1− µ2)/(2β2) = 0.

(66)

Let us note that relation (66) is the system of equations with respect to arbitrary constants
c1 and c2. Thus, the solvability conditions (58), (43) depend on constants c1, c2. Note that at
zero external load c1 = c2 = 0.

Therefore, we obtain the generalized solution of problem A, where components w1, w3, ψ1,
ψ2 are defined uniquely and component w2 depends on constant c0.

Condition (39) is not only sufficient but also necessary for the solvability of problem А.
Indeed, if a = (w1, w2, w3, ψ1, ψ2) is a generalized solution of problem А then, upon integrating
by parts second equality in (1) over the domain Ω and taking into account condition (2), we
come to condition (39).

Thus we have proved the following basic theorem.

Theorem 1. Let conditions a), b) in Section 1 be fulfilled and inequality (65) holds. Then
geometrically nonlinear boundary value problem for elastic shallow Timoshenko-type shell with
simply supported edge is solvable if and only if condition (39) is satisfied. Then the problem has
generalized solution a = (w1, w2, w3, ψ1, ψ2) ∈W

(2)
p (Ω), 2 < p < 2/(1−β). Components w1, w3,

ψ1, ψ2 are uniquely defined and component w2 depends on constant c0.
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Исследование разрешимости одной нелинейной краевой
задачи для системы дифференциальных уравнений тео-
рии пологих оболочек типа Тимошенко

Марат Г.Ахмадиев
Самат Н. Тимергалиев

Лилия С. Харасова
Институт Набережных Челнов Казанского федерального университета

Сююмбике, 10A, Набережные Челны, 423812
Россия

Работа посвящена исследованию разрешимости системы нелинейных дифференциальных уравне-
ний с частными производными второго порядка при заданных граничных условиях. Метод ис-
следования заключается в сведении исходной системы уравнений к одному нелинейному опера-
торному уравнению, разрешимость которого устанавливается с помощью принципа сжатых
отображений.

Ключевые слова: система нелинейных дифференциальных уравнений, уравнения равновесия, ин-
тегральные представления, теорема существования.
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