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1. Problem formulation

Let us introduce in the plane simply connected bounded domain 2 and consider a system of
nonlinear partial differential equations in the form

TA+R =0, i=1,2,
T3 + kT + (TMwgan ) or + R® =0, (1)
MX-T?®+L'=0, i=1,2

under the following conditions at the boundary I':

T'2do?/ds — T*dat /ds = P%(s), (3)

T3da?/ds — T?*dalt Jds + T wsg1da? /ds — T??wsa2dat /ds+
+T12 (w3a2da? /ds — wsaidat /ds) = P3(s),

M"'Yda?/ds — M*da'/ds = N*(s). (5)

A

From this point on the index o* means differentiation with respect to a.
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In (1)—(5) the following notations are used:

kn>

T = Tijga) = Df)jk"'yo M = M¥(a) = Déﬂmwin, a = (wy,ws,ws, 1, vs),
3

D%kn — / Bijkn(Oég)meéB, Bllll — 32222 — E/(l _ /~L2)7 B1122 — /,,LE/(l _ ,UZ), (6)

>

)

B2 = EB/(2(1+ p)), B3 =B» = Ek?/(2(1+ p));

the remainder BY*" = 0; o/ = o?(s)(j = 1,2) is the equation of the curve I, s is the length of
the arc T

fy;-)j = Wjqi — kjws +w3,i /2 (G=1,2), 7y =wia2 + Waat + W3a1wW342,

Y = Yjar (1=1,2), 7y = Yraz + ¥, (7)

7;)3:w3aj +1/)] (.]:172)7 7??3:71%3507 k:ﬁ

The system (1) together with the boundary conditions (2)—(5) describes the state of equi-
librium of shallow isotropic elastic homogeneous shell with simply supported edges within
the framework of Timoshenko shear model [1]. Here T% are stresses, M are moments;
fyfj (i, = 1,3, k = 0,1) are components of deformation of the shell middle surface Sy that
is homeomorphic to Q; w;(i = 1,2) and w3 are tangential and normal displacements of the
points of Sp; ¥;(i = 1,2) are rotation angles of normal cross-section of Sp; a is the vector of gen-
eralized displacements; R’ (j = 1,3), LF(k = 1,2), N2, P2, P3 are components of the external
forces acting on the shell; p = const is the Poisson coefficient, E = const is Young‘s modulus,
k1, ks = const are principal curvatures; k2 = const is the shear coefficient; h = const is the shell
width; o', o? are the Cartesian coordinates of the points in the domain €.

We assume summation over repeating Latin indices from 1 to 3 and over Greek indices from
1to 2 in (1), (6) and in what follows.

System (1) is written in terms of generalized displacements wq, wa, ws, 11, Po:

Wialal + 1 Wia202 + H2Waala2 = [f1,
MW2atal + W2a2a2 + f2Wiata2 = f2,
k211 (03101 + Wsaza2 + P1at + P2a2) + kzwiar + kawgee — ksws+
—|—k3w§a1/2 + k4w§a2/2 + B2 [(TA“wgax)au + R3] =0,
Y1atar + 1P1a2a2 + H2P20102 = 91,
P1P2a1ar + V20202 + H2P1a1a2 = G2,
where
f1 = fi(ws) = k3wsar — Wsq1Waa1a1 — H2W3a2Wiala2 — H1W3a1W3a2a2 — P2 R,
f2 = fa(w3) = kawsaz — W3a2W30202 — H2W3a1 W3a1a2 — H1W3a2W3a1a1 — BaR?, 9)

g; = gj(w?)) = ko(U)gaj +w]) - ﬂlLJaJ = 1727

H1 = (1 — /.L)/Q, Uo = (1 +M>/2, ks = k1 + pko, kg = ko + pki, ks = k‘% + k’% + 2uk1 ks,
ko = 6k*(1 — p)/h?, B1 = 12(1 — p*)/(K°E), B2 = (1 — p*)/(Eh).

System (8) is a system of second order partial differential equations. It is linear with respect to
tangential displacements w1, ws, rotation angles 11,2 and it is a nonlinear system with respect
to deflection ws.

Problem A. Find a solution to system (8) under boundary conditions (2)—(5).
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Solvability of the system of nonlinear differential equations that describes shell equilibrium
in the framework of the Kirchhoff-Love model has been well studied [2-5]. The questions of
the existence of solutions of nonlinear problems in the framework of more general shell models,
not based on the Kirchhoff-Love hypotheses, are in the well-known Volovich list of unresolved
problems of the mathematical theory of shells [2]. These questions have not been clarified yet.
There are a number of works devoted to the solvability of nonlinear problems in the framework
of the Timoshenko displacement model [6-10]. The method used in these studies is based on
the integral representations of the desired solution of system (8) that contain arbitrary holo-
morphic functions. These representations are constructed with the use of general solutions to
the inhomogeneous Cauchy-Riemann equation. Holomorphic functions are defined so that the
desired solution of system of differential equations (8) satisfies given boundary conditions. At
the present time, existence theorems of solutions of nonlinear problems for Timoshenko-type
shell with rigidly clamped edges [6, 7] and with free edges [8, 9] are obtained. Method developed
in [6-9] was applied to system (8) with boundary conditions w; = ws = 11 = 0 that describe
the state of equilibrium of Timoshenko-type shell with simply supported edges [10]. The study
presented in this paper develops results obtained in [10]. The more complicated case of bound-
ary conditions w; = %7 = 0 is considered. These conditions describe elastic bearing against
transverse deflection.

Consider boundary-value problem A in a generalized formulation. Let the following conditions
hold true:

a) Q is a simply connected domain with the boundary I' € Cé (see, for example, [11, p. 23]);

b) external forces R/(j = 1,3), LF(k = 1,2) € L,(Q), N2, P2 P3 € Cs(I'); in what follows
p>2 0<pB<1.

Definition 1. The vector of generalized displacements a = (w1, ws, ws, 1, 1h2) € VVI@(Q)7 p> 2
is a generalized solution to the problem A if the vector satisfies almost everywhere the equations
of system (8) and it satisfies boundary conditions (2)-(5) in pointwise fashion.

Here W1§2)(Q) is a Sobolev space. Let us note that due to embedding theorems for Sobolev
spaces W,SQ)(Q) with p > 2, the generalized solution a belongs to C}(Q). In what follos a =

(p—2)/p.

2. Solution to problem A with respect to tangential
displacements and angles of rotation

Let us consider the first two equations in (8) and initially assume that ws is fixed. In terms
of the complex function w = wya1 + Wauz + i1 (Wan1 — Wi42) these equations can be represented
in the form

wz = f, (10)
where f = (f1 +if2)/2, ws = (War +iwa2)/2, 2z = al +ia?.

Equation (10) is an inhomogeneous Cauchy-Riemann equation. It has general solution [11]:

o) =)+ 77, 77 == [[ K acan, ¢ =g (1)

where ®(z) is an arbitrary holomorphic function that belongs to the space Cy ().

It is well-known [11, pp. 41, 53| that T'f is a completely continuous operator which acts in
L,(Q), p > 2, C¥(Q). It maps these spaces into C,(Q) and C*+1(Q), respectively. Besides,
there exist the generalized derivatives [11, pp. 33-34,53-67]

oT 8T
n Zlesr=2 / / ddean (12)
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where the integral exists in the principal value sense of Cauchy (almost everywhere when f €
L,(Q),p > 1) and Sf is a linear bounded operator in L,(Q2), C*(Q).

With the function wg(z) = ws + fwq, relation (11) can be also rewritten in the form of an
inhomogeneous Cauchy—Riemann equation

woz = i(diw + dow) = idw], dj = (1 + (=1)7)/(4m), j = 1,2, (13)
The general solution of this equation is
wo(2) = Oa(z) +iTd[®1 + T f](2), (14)

where ®, is an arbitrary holomorphic function of the class C}(Q).

Thus, for fixed ws the general solution of the two first equations (8) is of the form (14)
and contains two arbitrary holomorphic functions ®;(z),j = 1,2. We define these functions so
that tangential displacements w; and wq will satisfy boundary conditions (2), (3). First, we find
®5(2) from the condition wy = 0 on I'. We have a Rimann-Hilbert problem with the boundary
condition Re[i®3(t)] = ReTd[w](t), t € T for the holomorphic function ®2(z). Second, we assume
that domain € is the unit disk: |z| < 1. Then the solution of the Riemann-Hilbert problem has
the form [12]

By(2) = —— [ ReTd[®y + Tf] (1) 2%

L zeQ, 15
o Jr —ag T ? (15)

where ¢ is a arbitrary real constant.
We define the holomorphic function ®4(z) with the use of boundary condition (3). Let us
represent this condition in terms of displacements:

,Ul(wlu2 + w2a1)(t)da2/ds - (}U'wlal + w2a2)(t)da1/d5 = @(w3)(t)v (16)
t=1t(s) = a'(s) +ia’(s) €T,
where

P(t) = p(ws)(t) = BoP%(s) + [(pw? 1 + w2,5)/2 — pkyws — kows] da' /ds—

17
— Wz Wag2da? /ds. (17)

We substitute relations for the tangential displacements wy,ws from (14) into (16). Taking
into account (10), (11) and (14), we obtain

wjar = Re{®@1(2) + Tf(2)}/2 = (1) Im{®)(2) +iSd[®1 + Tf)(2)}, j=1,2,  (18)
Win2 + Wogr = 2Re{®)(2) +iSd[®1 + T f](2)}
Hence, boundary conditions (16) take the form
Re{t®,(t)} + Re{itSd[®1]T(t)} — uzda'/ds Re®,(t) = p(t)/(1 —p) + ho f(t), t €T, (19)

where
hif(t) = Im{tSd[T f]* (1)} + pada’ /ds ReT f(t), pz = (1 + p)/(2(1 — p)); (20)

the symbol U*(¢) means the limit of the function ¥(z) as z — ¢ € T’ from the interior of the
domain €.

Let us transform relation (19). Representing holomorphic in the domain € function ®4(z) by
the Cauchy integral and using (4.7), (8.8a) from [11], we have

Sd[®,]F (1) = T [®1(t) — @1(0)], (21)
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where constant d; is defined in (13).

Further, we differentiate relation (15) with respect to z and use (13), (11) for d[®4], Td[®4].
Rearranging the order of integration in the repeated integrals and applying the Cauchy theorem
and formula, we have

®L(2) = (—1){d1P1(0) + da®1(2) + 2Sr (ReTd[T f])(2)}, z € 9, (22)
_0Trf(») _ 1 f(r)
Srflz) = dz  2mi /F (1 — 2)2

In the limit z — T taken in (22) from the interior of the domain Q, we find

O5(t) = (—i){d1®1(0) + d2®1(t) + 2(Sr(ReTd[Tf]))* (1)}, t €T, (23)

where constants dj, are defined in (13).
Now we substitute (21) and (23) in (19). Then we obtain the Riemann-Hilbert problem for
function ®1(z) in Q with the boundary condition

Re[it®,(t)] = h[f; ¢](¥), te€T, (24)
where
hlf;l(t) = (= D[ f(t) + 2Re{it (St (ReTd[T f]))* (1) }] — o(t); (25)

operators hy f, Srg are defined in (20), (22).
The index of problem (23) equals —1. Therefore, the solution of this problem is [12]

w5 =1 [ HLAOL g1 g0, (26)
and the solvability condition
[HEA g o
r

of problem (24) should be fulfilled.
We substitute expression (26) into (15) and (22) to obtain

©2(2) = 5 [ (RTAIS: )0) + RTATAON T + o= wlfgl) b o

05 (t) = (=0){d1®1[f; 0](0) + d2®1[f; ¢)(2) + 250 (ReTd[T f])(2)} = ®5[f; ¢l(2), 2 € Q.

Consider tangential displacements wy and wsy that satisfy the first two equations (8) and
conditions (2), (3). Upon substituting (26), (28) into (14) and assuming that condition (27) is
true, we obtain

UJO(Z) = Hoﬂ)g + co,

29
Hows = Holf(ws); p(ws)] = o[ f;¢)(2) +iTd[®:1[f; ] + Tf)(2)- 2

Let us obtain integral representations for the derivatives of w; and ws (up to second order
inclusively). Using (11) and (18), we find

Wjai = Re{®1[f; 0] + Tf} /2 — (=1)/Im {®[f; ] 4+ iSd[®:1[f; ] + T f]} =
= Hjj[f(ws3); o(ws)] = Hjjws,

wiak = Re{®[f; @] +iSd[®1[f; ] + Tf1} + (1) Im{®:1[f; 0] + T}/ (2m) =
= Hjrlf(ws); p(ws)] = Hjpws, j,k=1,2;

(30)
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f = f(ws), ¢ = p(ws) are defined in (9), (17).
Upon differentiating relation (13) with respect to z,z, we obtain

wozs = i {1 (@[F: ) + ) + daflws) | = Pilf(ws); p(ws)] = Prus, (31)

wozz = i {df (ws) + da (@[T ] + S) | = Palf(ws): o(ws)] = Pows.
Using formula (8.20) from [11], we obtain
Sd[®1 + Tf)(2) = Te(d®r +T]/12)(2) + T(di[®] + 1] + da])(2). (32)
Now we differentiate (14) two times with respect to z. Taking into account (32), we have
wosz = O[3 + S {dl[fr 0] + TSP} +
+iS{di (P [f; ] + Sf) + daf(w3)} = Ps[f (w3); p(ws)] = Psws.

We use the following designations in (31), (33):

(33)

Bl = - [ ’wdt; Y115 6l(2) = (—i){da®} 13 9)(2) + 2SpReTITA](2)}, (34)

SEReTd[Tf](2) = {d1 f(2) + daSf(2) — S(d1 ST + dof)(2) — So{T(d1 Sf + da f)T }(2)—

T R _ 1 (@)

—Srd[Tf}(Z)/Z - SF{TF(d[T.ﬂ?Q)}(Z)}/Qv T[‘f(z) - 21 rt— de,.

One can express derivatives
Wjgkah = Im{i ~2wo.z 4+ (—1)* 1 (wo2. + wozz)]}, Winla2 = Re[i? ! (wozz — wozz)], J, k=1,2
in terms of wg,z, Wozz, Wosz-

Lemma 1. Let conditions a), b) in Section 1 be fulfilled. Then 1) Pjws(j = 1,3) are nonlinear
bounded operators acting from W]S2)(Q) to L,(Q), 2<p<2/(1—-0); 2) Hjpws(j,k =1,2) are
nonlinear completely continuous operators acting from Wf)(Q) to L,(Q), 2<p<2/(1-p) and
Hyws is nonlinear bounded operator acting from W,EQ) (Q) to Co (), CL(Q). For any wi(j =
1,2) € WIEZ)(Q) the following estimates hold

1Pk — Pyl o 1 Hewd — ol |, e [ Howh — Howdlls @ <

(35)
< (14 [lwglly@ + [wdlly @) llws — willy,e-

Proof. Let us note that f(ws) defined in (9) is nonlinear bounded operator acting from

WIEZ)(Q) to L,(€2), p > 2 and estimate (35) is true. Using formulas (6.10) from [11] and Sokhotski
formulas [12], we obtain

SrReTd[Tf](z) = {d[Tf](2) — T(d1S] + dof)(2) — To{T(dr Sf + do )T }(2)—

—Trd[Tf)(2)/2 — Te{Tr (d[T f]7%)}(2)} /2.

It is known that if condition b) is fulfilled then Trg and Srg are linear bounded operators acting
from C3(T") to C3(?) and to L,(Q) (2 < p < 2/(1 — B3)), respectively [11, pp. 26-27]. Besides,
using formula (6.10) from [11], it can be shown that Srg is a linear bounded operator acting from

(36)
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Wzgl)(Q) to L,(2), p > 2. Taking into account this fact and (32), (34), (36), one can obtain that
Sd[T f](z), ScReTd[T f](z) € W,gl)(Q), p > 2. Taking into account hif in (20) and ¢(ws) in
(17), we obtain from (25) that h[f;¢](t) = —B2P2(s) + h(t). Here P2(s) € C3(T') and h(t) is the
boundary value of the function that belongs to the space W,gl)(ﬂ), p > 2. Therefore, from (34),
(28), (26) we have 1) ®][f(ws3); p(ws)], P4[f(ws); p(ws)] are nonlinear bounded operators acting
from W2(Q) to L,(2),2 < p < 2/(1 — B); 2) &1[f(ws); p(ws)], By[f (ws); p(ws)] are nonlinear
completely continuous operators acting from WZEZ)(Q) to L,(92),2 < p < 2/(1 —f) and they are

nonlinear bounded operators acting from Wf)(Q) to C,(Q) These operators satisfy estimates
(35) (here min(a, 8) = a, when (2 < p < 2/(1—f))). Lemma 1 follows from (29)—(31) and (33).

Let us consider conditions of solvability (27). With (32) and (36) we find Sd[Tf]*(¢t),
SrReTd|T f]*(t). Taking into account expressions for operators hif, Tf, Sf in (20), (11),
(12) and holomorphic function Trg(z), we obtain

i e{it(SrRe +
[0 = - [t eyiata?, [ RLUEREAIITO, . )

Next using f2(ws) in (9), we have

J[ fatwn@rdatao = [ (uude 24 s /2~ bwaydal s

(38)
— W31 W32 da’? /ds}ds — B // R?datda?.
Q

Upon substituting (25), (37), (38) into (27), the condition of solvability take the final form
/ P?(s)ds + z/ R%*datda® =0, (39)
r Q

where P?(s) and R?(al;a?) are the components of external load.

We now turn to functions ¢, (k = 1,2) in the last two equations (8). These functions should
satisfy boundary conditions (2), (5). Taking into account expressions for moments M7* in (6),
we write boundary condition (5) in the form

M1(¢1a2 + ¢2a1)(t)da2/d5 - (:l“ljlal + 1/J2a2)(t)da1/d5 = {5(15)7 @(t) = 61N2(8); (40)

By is defined in (9), N?(s) is the component of the external forces.

Let us note that the structure of left-hand sides in the last two equations (8) coincides with
the structure of left-hand sides in boundary conditions (2) and (40). Relations for tangential
displacements differ only in the right-hand sides. Therefore at fixed right-hand sides for rotation
angles we obtain

Y =1py +ithy = Holg(v); @] + c1, (41)
where
v=uvy+ivi, g(v)=(g1(v)+ig2(v))/2, (42)
Vj = W3qi +¢j, gj(U) = k’OUj - ﬁleaj =12

c1 an arbitrary real constant, operator Hylg(v); @] is defined in (29).
As this takes place, the condition of solvability is

/ hlgi 1) 4y _ .

t
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where h[g; @](t) is given in (25). These conditions can be reduced to the form

/{N2 + [191(041)2 - kg(ozz)z]Pz/Z — k1a1a2T1(a) — azPS}ds + // {L2 + [kl(al)Qf
T Q

(43)
—k2(a?)?R?)2 — k1a'a®RY — o®R*}dat do? +/ P?w3ds + // R*wzdatda® = 0,
r Q

where T (a) = T (a)da? /ds—T*?(a)da! /ds (T (a) are defined in (6)); N2, L2, P* (k = 2,3), R
(j = 1,3) are components of external load.
In a similar way to (30) we obtain the following relations

¢jo¢k :H]k[g7§5]a jak:172a (44)

where operators Hjj, are defined in (30).

Lemma 2. Let conditions a), b) in Section 1 be fulfilled. Then Hjp[g(v); @] (j,k = 1,2) and
Hylg(v); @] are linear completely continuous operators with respect to v that act from Wp(l)(Q)
to Lp(Q), 2 <p < 2/(1 —B) and they are linear continuous operators that act from WIEI)(Q) to

Ca(Q) and to CL(Q), respectively.

Taking into account expressions for g(v) in (42) and indicated above properties of operators
Tf,Sf,Trf,Srf, we obtain from (29), (30) that Lemma 2 is true.

Problem A at fixed ws,v; (j = 1,2) is solvable with respect to tangential displacements and
rotation angles under conditions (39) and (43). Solution of this problem is described in (29)
and (41).

In conclusion of Section 2 we represent relationships (41) and (44) in the form convenient for
further analysis. First of all we obtain relations for ¢ from (40) and for g(v) from (42):

&:$O+&17 g(U):gO+gl(U)? [)EOZBINQ(S)a ()51 =0, (45)

9" = (g +igar)/2, k=0,1, gjo=—-BiL?, gj1 =kov;, j=1,2.

Let us note that ¢’ (v) are homogenous operators of order j with respect to v.
Now if we substitute (45) into (41) and (44), we arrive at the desired representations for
rotation angles and their derivatives

T;Z) = 7/’(“) = 11110 + 7/)1(7}) +c1, wja’“ = wjozk (U) = Q/JjOa’“ + %mk (U)a (46)

q/}n(v) = wQTL(IU) + W}ln(v) = Ho[gn(v)van]v wjnak(v) = H]k[gn(u)vgn]v .77k = 172a n = Oa 1.

It is easy to see that ¢"™(v), ¢+ (v) are homogenous operators of order n with respect to v.

3. Reduction of system (8) to a single equation and
solvability analysis.

Before considering the third equation in (8) we express the deflection w3 and its derivatives
in terms of v;(j = 1,2). Taking into account (42) and (46), we obtain

W3ai = W3qi (V) = W300i + Wa144 (V) — ( — 1)c1, (47)
W300i = —Pj0, W3ias (V) =vj —Pj1(v), j=1,2.
Using (47), we derive
wz = w3(v) = w3 + w31 (v) — o’ + e, (48)
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(041,042) (al,oz2)
wao = _/ Proda’ + ada’, wsi(v) = / [v1 = 11 (v)]da’ + [va — a1 (v)]da®.
(0,0) (0,0)

Upon substituting expressions (47), (48) into (9), (17) and then the resulting expression into
(29) and (30), we obtain the decomposition of tangential displacements and their derivatives into
linear and nonlinear operators

wo = wo(v) = wor(v) + woa(v) + wp, (49)
Wigk = Wigr (V) = Wj1ak (V) + Wioar (V) + Wik, §=1,2,
where
wo; (V) = wa;(v) +iwi; (v) = Ho[f (v); ¢’ (V)], Wjnar(v) = Hi[f"(v); " (0)],  (50)
wh = wh +iwy = Holf'; '] + co, wjor = Hjulf5¢7], J,k,n=1,2,
() = [f15(0) +if2;(0)]/2, F(v) = karjwsias (V) Fi2(v) = kayjwsoas — 2R/ —
—W3a1 (V)W3a50i (V) = p2Wsas—i (V)wsara2 (V) — p1w3as (V)wsas-iqe-i(v), j=1,2,
= —iciks/2, ©'(v) = —kqwsi(v)dat/ds, @*(v) = BaP?(s) 4+ {—kqwso + p(wsgar +
+ws1a1)?/2 + (w3002 + W1a2)?/2 — €1 (w3002 + W3142) Yda' /ds — p1{wsar (W30a2+
Fws3102) — €1(Wspar 4+ W3102) da/ds, ¢ = (2 /2 + c1ksa® — kycy)da’ /ds,
operators Ho[f;g], Hjxl[f; 9], (j,k =1,2) are defined in (29), (30).

After some cumbersome mathematical treatment one can derive the explicit expression
wy = —crka(a?)? /2 + (caky — c1/2)a® + c1ky /4 + co. (51)

Now we turn to the third equation in (8). Replacing generalized displacements by relations
(46)—(49), we reduce the third equation to the equivalent system with respect to v = vg + vy:

OU/0Z = [Pga1 (V) — P12 (V) +if3(0)]/2 = fo(v), (52)
f3(v) = fs(ws(v)) = —{kswiar (V) + kawaaz (v) — ksws (V) + kzwia: (v)/2 + kywi,e (V) /2+
BTN (01030 (0)] s + 2B (Bar), T (0) = T (a(v) (A, g = 1,2).

Boundary condition (4) is transformed to
vida? /ds — vadat Jds = po(v)(t), t €T, (53)
©o(V)(t) = po(ws(v))(t) = B3[P (s) — T (V)wser (v)da? /ds + T* (v)wsy2 (v)da' /ds—
T (1) (w0 (1) s — wse (v}t /ds)], By = 2(1+ ) /(W E).

So, problem A is now to find solution to equation (52) under boundary condition (53).
Equivalent form of equation (52) is

v=>(z) 4+ Tfo(v)(2), (54)

where ®(z) is an arbitrary holomorphic function of the class C,(Q) and operator T'f is defined
in (11).

We define the holomorphic function ®(z) so that the function v from (54) satisfy (53). We
assume for the time being that po(v), fo(v) in the right-hand sides of (53), (54) are fixed.
Substituting (54) into (53), we obtain the Riemann-Hilbert problem for ®(z) in the unit disk.
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The boundary condition for this problem is Re[(—)t®(¢)] = I(v)(t), t € I'. The solution of this
problem is

5 = o)) - 1 [ (o)) de (55)

s t—z t’

where [(v)(t) should satisfy the condition

l(v)(t ,
/ ( 2( )dt =0, I(v)(t) = @o(v)(t) + Re[itT fo(v)(t)].
r
This condition can be represented in the form
/ (k10T (a) + kpa®P? + PP)ds + / / (k1o 'R + ksa®R2 + R%)dalda? =0,  (56)
r Q

where T (a) is defined in (43), P*(k = 1,2) and R’(j = 1, 3) are components of external load.
Substituting (55) into (54), we obtain the following equation for v € W,Sl)7 p>2

v —O[l(v)] =T fo(v) = 0. (57)

Now we represent equation (57) in a slightly different form. Taking into account relations (46),
(48), (49), (51), we obtain for f3(v), fo(v), I(v) the decompositions into linear and nonlinear
terms:

f3(v) = f31(v) + fa2(v), fo(v) = for(v) + foz(v), I(v) =11 (v) +l2(v), (58)
where
f31(v) = —[kswiar (V) + kawa1a2 (V) — ksws1(v)]/ (K1),
fr2(v) = —[k3wi201 (V) + kawazaz (V) + ko a(W30ar + Wa1ar (V))?/2 — kswzo—
—kac1(wzoaz + w3102 (0)) + B2 (T (V)wzer (V) an + B R+ k3 (1—p?) (c10? = e2)] /(K p1),  (59)
fo1(v) = [¥2101 (V) = Y1102 (V) + if31(V)]/2, fo2(v) = [Pa0ar (V) —P10a2 (V) +ifs2(v)]/2,
li(v) = Re[itT fo1(v)], l2(v) = ¢o(v) + RelitT foz (v)], t € T
Let us introduce the following operators
Kv = ®[l(0)] + Tfor(v), Gv = ®[la(v)] + T for(v). (60)
Then equation (57) takes the form
v—Kv—Gu=0. (61)

Let us consider the solvability of equation (61) in the space Wzgl)(Q), D> 2.

Lemma 3. Let conditions a), b) in Section 1 be fulfilled. Then 1) Kv are linear completely
continuous operators in Wzgl) (Q), p>2; 2)Gu are nonlinear bounded operators in W,Sl)(ﬂ), 2<
p < 2/(1— ) and for any v7 € W,gl)(Q) (j = 1,2) which belong to the ball ||UHW(1)(Q) <r, the
following estimate takes place ’

||GU1 - GUQHWISU(Q) < C[qo + (1 + ||w3(0)HW1§2)(Q) + r)(HwS(O)HWéZ)(Q) + r)]Hvl - UQHWI()U(Q)a

2 2
g = > [T"0)lc@ + D Ikarawsar (0) + RNz, 0y, T(0) = T (a(0)),
A,pu=1 A=1
a(0) = (w1(0),w2(0),ws3(0),%1(0),42(0)), w;(0) (j = 1,3), wzax(0), ¥A(0) (A = 1,2) are defined
in (49), (48), (47), (46) at v = 0.
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Lemma 3 follows from (60) and (59), in view of Lemmas 1, 2 and properties of operators

Tof, Saf, Tr f and Srf.
Consider the homogenous equation

v—Kv=0. (62)

Let v € Wél)(ﬂ), 2 < p < 2/(1—B) be nonzero solution of equation (62). In view of (46), (48),
(50), this solution is associated with the generalized displacements wji(v) (j = 1,3), ¥;1(v)
( = 1,2) which satisfy the system of linear homogenous equations

Wiglal T H1W1a2a2 T H2W2ala2 — k3w3a1 = 07

U1Wanlgl + Wan24q2 + UaWigle2 — k4w3a2 =0, (63)
kQMI (w3a1a1 + W3n2q2 + wlal + w2a2) + k3w1a1 + k4w2a2 - k‘5’LU3 = 07

ql)lozlozl + lelOézOL? + /~L21/J2a1a2 - kO(w3a1 + 1/11) - 07

/L1¢2a1a1 + w2a2a2 =+ ,u27/11a10¢2 - kO(w3a2 + ¢2) =0
and homogenous static boundary conditions (2) and (16) with ¢(¢) = 0, boundary conditions
(40) with @(¢) = 0 and boundary conditions (53) with ¢g(t) = 0. We multiply equalities (63)
by wi1, wei, ws1, Y11,%e1, integrate the resulting relations over the domain €2, and add up
the result of integration. Then upon integrating by parts the resulting relation and taking into
account boundary conditions, we obtain v; =0, j = 1,2, i.e.,, v = 0 in 2. Therefore, equation
(62) has only zero solution in W,Sl) (Q), 2 <p<2/(1—p). Thus, there exists the inverse operator

(I — K)~! bounded in W;l)(ﬂ), 2 < p<2/(1-p). It reduces equation (61) to the equivalent
form
v—-Guw=0, Gow=(-K)'Gu. (64)
It follows from the established above properties of the operator Gv that G,v is a nonlinear
bounded operator in ngl)(ﬂ), 2<p<2/(1-p). For any v/ € W,Sl)(ﬂ) (j = 1,2) which belong
to the ball [[v]];,a) <7, in view of Lemma 3, the following estimate holds
P
1 2 1_,2
||G*U -G HWP(I)(Q) < Q*HU -V ||WI£1)(Q)7
where q. = el[(1 = K)oy [0 + (1 + [03(0) o ) + 1) (03(0) o0 + 7))

Let us assume that the radius r of the ball and the external forces exerted on the shell are
such that the following conditions hold

0 <L C0) oy < (1 —a)r, (65)

where G, (0) is given by relations that follow from (53), (59), (60) at v = 0.

Let us note that to fulfill conditions (65) it is enough, for example, to require that the external
load and the radius of the ball are sufficiently small.

Under these conditions we can apply the principle of contracting mappings to equa-
tion (64) [13]. According this principle equation (64) has the unique solution v € Wél)(Q), 2<
p < 2/(1— ) in the ball ||U||W151> < 7. This solution can be represented in the form v = RG..(0),
where R is the resolvent operator G, (v) — G (0).

Using v = RG.(0), (46), (48) and (49), we obtain the generalized displacements w; €
WISZ)(Q) (1 =1,3), ¢; € WZEQ)(Q) (j = 1,2), 2 <p < 2/(1—p). Finally we obtain the
generalized solution a = (w1, ws,ws,1,12) of problem A. It can be represented in the form
a = ap + a', where a* = (0,wy, —c1a® 4+ ¢2,0,¢1) (wy is defined in (51)); ag is the vector with
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components wj1 (v) + w;2(v) (= 1,2), wso + ws1(v), ¥jo+¥j1(v) (j = 1,2), that are defined
in (50), (48), (46).
Then we substitute the solution v = vg +iv; = RG,(0) of Eq. (64) into (58), (43). Taking
into account relations
T'(a) = T"(ao)(v) + T" (@) + exlo(v),

lo(v) = {(wspa1 + Wara1 (V))dat /ds — p(wspe2 + W2 (v))da? /ds}/Bs

and calculating integrals that contain 7 (a), we transform the solvability conditions (58), (43)
into the form

/(klalTl(ao) + kaa? P% 4 P?)ds + // (k1o R + k2o R% + R®)dat do’+
r Q

+c1 / kialtly(v)(s)ds + chkf(;ﬂ —1)/B2 =0,
r

/{N2 + [k1(a')? = k2 (a?)?]P?/2 — k10t 0T (ag) — o> P3Yds + // {L? + [k1(ar)?~  (66)
r Q
—k2(a?)?R?/2 — k10t a®R* — o®R*}datda® + / P?wsds + // R*wzdatda’—
r Q
—kic / ala?ly(v)(s)ds — me k(1 — p?)/(282) = 0.
r

Let us note that relation (66) is the system of equations with respect to arbitrary constants
c1 and co. Thus, the solvability conditions (58), (43) depend on constants ¢1, co. Note that at
zero external load ¢; = ¢ = 0.

Therefore, we obtain the generalized solution of problem A, where components w, ws, %1,
1o are defined uniquely and component wy depends on constant cg.

Condition (39) is not only sufficient but also necessary for the solvability of problem A.
Indeed, if a = (w1, wa, w3, ¥1,12) is a generalized solution of problem A then, upon integrating
by parts second equality in (1) over the domain Q and taking into account condition (2), we
come to condition (39).

Thus we have proved the following basic theorem.

Theorem 1. Let conditions a), b) in Section 1 be fulfilled and inequality (65) holds. Then
geometrically nonlinear boundary value problem for elastic shallow Timoshenko-type shell with
simply supported edge is solvable if and only if condition (39) is satisfied. Then the problem has

generalized solution a = (w1, wa, w3, ¥1,12) € WIEQ)(Q), 2<p<2/(1-p). Components wy,ws,
U1, Yo are uniquely defined and component wo depends on constant cg.
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HccnenoBanue pa3permMOCTH OJHOI HeJIMHEMHOI KpaeBoii
3aJa9M A4 cucreMbl AndpepeHIna IbHbIX yPaBHEHUI Teo-
PpUH I10JIOTUX 000JI09eK Tumna THuMoIIeHKO

Mapar I'. AxmajueB
Camatr H. Tumepranuesn

JInousa C. XapacoBa
WNucturyr Habepexkubix Yemnos Kazanckoro ¢dheepaibHOTO YHUBEPCUTETA
Crorombuke, 10A, Habepexxubie Yemubt, 423812

Poccus

Paboma noceauena uccaedo8anul0 paspeusiumocmny CUCeMbl HEAUHETUHBT JuPPHepeHuUAIbHOT YpasHe-
HUT € YACMHBMY NPOU3BOTHBIMU 6MOPO20 NOPAJKG NPU 3A0AHHBLT 2PAHUYHUT Ycaosuaxr. Memod uc-
€cAed0BAHUA 3AKAONAENCA 6 CEeleHUl UCTOOHOT CUCTNEMDL YPABHEHUT K 00HOMY HEAUHETHOMY Onepa-
MOPHOMY YPAGHEHUIO, PA3PEWUMOCTVD KOTOPO20 YCMAHABAUBAEMCA C NOMOUWDIO NPUHUUNG CHCATVDIT
omobpastceru.

Karoueswie caosa: cucmema HEAUHETHBT JuPHepenyuaronblr ypashenull, YpasHeHus PABHOBECUA, UH-
Me2pasbHvie NPEICMaABAEHUSA, TNEOPEME CYULECTNEOBAHUA.
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