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Introduction

Extremum problems involving eigenvalues of elliptic boundary-value problems are of great
interest and value. A large number of such problems often arise in optimal structural design
(see [1, 2] for more details). For example, in order to widen a resonance-free frequency interval
of some structure it is sufficient to maximize either its first natural frequency or the difference
between the corresponding adjacent frequencies. One of the most important characteristics
of a structure is also the critical load under which the structure loses stability. Therefore, it
is interesting to maximize this characteristic of the structure. The frequencies of the natural
oscillations of a structure and the critical load that causes buckling of the structure correspond
to eigenvalues of appropriate boundary-value problems. Thus, there exists a class of extremal
problems for eigenvalue functionals in optimal structural design.

Optimization problems for eigenvalues of elliptic operators have been considered by many
authors (see [1–9]). For surveys on such problems we refer the reader to [1–3]. Such problems,
under the assumption that admissible controls form a weakly compact set of a Sobolev space,
were considered in [2, 4]. Let us advance some arguments in favour of consideration of broader
sets of admissible controls for such problems. Firstly, the condition of uniform boundness of the
first-order weak derivatives of functions that belong to Sobolev spaces leads to using additional
techniques, such as those utilizing penalty methods, to implement numerical procedures to derive
optimal solutions to such problems. Secondly, the controls corresponding to such functions
are often unnatural for applications. Finally, classes of admissible controls arising in many
applications whose elements are essentially bounded measurable functions are weak* compact
without any artificial supplementary constraints. Let us illustrate the essence of the second
argument by means of an example. For a thin cylindrical rod clamped at both ends and having
constant flexural rigidity and a given total mass, consider the problem of determining optimal
density distributions which yield the highest possible value of the first natural frequency of the
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rod. It is well known (see [3, 5]) that there exists a unique optimal solution to the problem
which is a concrete piecewise constant function. Note that, in general, making of a rod having a
continuous density distribution is complicated.

Some existence results for extremal eigenvalue problems in the case of composite membranes
were presented in [6]. The problem of optimal design of a column against buckling under various
boundary conditions was studied in [7]. Such a problem without any positive lower bound for
design functions in the case of columns clamped at both ends was considered in [8]. The problem
of maximization of the first natural frequency of a clamped thin isotropic plate was investigated
in [9]. In that paper instead of proving existence of an optimal solution to the original problem, a
family of auxiliary regularized optimization problems depending on a parameter was introduced
and existence of an optimal solution to each regularized problem was established. Emphasize
that the problems considered in [5–8] are optimal control problems for which only one coefficient
depends on an appropriate control. Thus, it is of interest to obtain some general existence
criteria for a certain class of extremum problems involving eigenvalues of elliptic operators which
contains as many as possible applied problems, including optimal control problems for which
several coefficients depend on controls.

In this paper, without using any regularization techniques we prove such existence criteria
for extremum problems associated with functionals defined on weak* compact sets.

The structure of the paper is as follows. In Section 1 we formulate some optimization prob-
lems for eigenvalues of elliptic boundary-value problems, including ones in the form of variational
inequalities, present basic assumptions. Some existence criteria are proved in Section 2. The
principal tools of the proofs of the criteria are variational properties of eigenvalues and semicon-
tinuity of integral functionals. Note that the methods used in this paper are quite different from
those used in the above-mentioned studies. Moreover, though the main results are proved for the
linear case, ones can be easily extended to the case of nonlinear eigenvalue problems for elliptic
systems provided that there exists a variational characterization for eigenvalues of such problems.
As it turns out, the approach presented in this paper can be directly applied to many concrete
problems in optimal structural design, including problems in which some natural frequencies of a
structure and the critical load, under which the structure loses stability, are a part of constraints.
In order to demonstrate this, we give some interesting applications in Section 3.

1. Optimization problems
Let H be a Hilbert space. For the sake of convenience we denote the fact that M is a closed

subspace of H and is equipped with the same scalar product by M 6 H. Let Ω be a non-empty
bounded domain in Rd, d ∈ N. Next, let s, m and l be natural numbers such that m 6 l < s.
Consider linear spaces W , W and V such that

V 6 Hs(Ω), W 6 H l(Ω), W 6 Hm(Ω), C∞
0 (Ω̄) ⊂ V ⊂ W ⊂ W.

Here Hj(Ω) denotes the Sobolev space equipped with the scalar product

⟨y, z⟩j =
∑
|α|≤j

∫
Ω

∂αy ∂αz dx, α = (α1, . . . , αd) ∈ Nd
0, ∂α =

∂|α|

∂xα1
1 . . . ∂xαd

d

.

Furthermore, we assume that

the properties of Ω cause the compactness of the imbedding operator of V to W. (1)

Next, let U be a non-empty bounded set of L∞
r (Ω), i.e.

∀u = (u1, . . . , ur) ∈ U ⇒ −∞ < ǔi 6 u(x) 6 ûi < +∞ a.e. in Ω.
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We denote the norms on V , W and the standard norm on Lp(Ω), 1 6 p 6 ∞ by ∥·∥V , ∥·∥W and

∥·∥p, respectively. By ϑ we denote the neutral element of V . Let G =
r∏

i=1

[ǔi, ûi].

For any u ∈ U , consider two bilinear forms Au : V × V → R and Bu : W ×W → R, which
are defined as follows:

Au(y, z) =
∑

|α|,|β|6s

∫
Ω

aαβ (x, u(x)) ∂
αy(x) ∂βz(x) dx,

Bu(y, z) =
∑

|α|,|β|6m

∫
Ω

bαβ (x, u(x)) ∂
αy(x) ∂βz(x) dx.

Here aαβ(·, ·) and bαβ(·, ·) are functions defined on Ω× G such that

(x, ξ) 7→ aαβ(x, ξ) : Ω× G → [ǎαβ , âαβ ], −∞ < ǎαβ 6 âαβ < +∞, aαβ = aβα,

(x, ξ) 7→ bαβ(x, ξ) : Ω× G → [b̌αβ , b̂αβ ], −∞ < b̌αβ 6 b̂αβ < +∞, bαβ = bβα.

Furthermore, we assume that aαβ(·, ·) and bαβ(·, ·) satisfy the Carathéodory conditions. Recall
that a function f : Ω×G → R is said to satisfy the Carathéodory conditions if f(·, ξ) is measurable
for each ξ ∈ G, and f(x, ·) is continuous for a.e. x ∈ Ω. Since aαβ(·, ·) and bαβ(·, ·) satisfy the
Carathéodory conditions, we have that for any u ∈ U maps x 7→ aαβ(x, u(x)), x 7→ bαβ(x, u(x))
are measurable and in L∞(Ω).

It is pretty straightforward that Au(·, ·) and Bu(·, ·) are symmetric:

Au(y1, z1) = Au(z1, y1), y1, z1 ∈ V, Bu(y2, z2) = Bu(z2, y2), y2, z2 ∈ W. (2)

Moreover, Au(·, ·) and Bu(·, ·) are continuous, i.e.

|Au(y1, z1)| 6 CA ∥y1∥V ∥z1∥V , y1, z1 ∈ V,

|Bu(y2, z2)| 6 CB ∥y2∥W ∥z2∥W , y2, z2 ∈ W.
(3)

Here CA and CB are some positive real numbers, not depending on u.
In the sequel, we assume that there exist cA, cB > 0 and dB > 0 such that

Au(y, y) + dB Bu(y, y) > cA ∥y∥2V , y ∈ V,

Bu(z, z) > cB ∥z∥2W , z ∈ W,
u ∈ U. (4)

Now, for u ∈ U , consider the following eigenvalue problem:

find (λ, y) ∈ R× V \ {ϑ} : Au(y, z) = λBu(y, z), z ∈ V. (5)

Generalized eigenvalue problems for elliptic boundary-value problems often lead to problems of
the form (5) with the properties (1)–(4), and if dB > 0, then the first inequality in (4) is in effect
an abstract G̊arding inequality. Notice that a solution (λ, y) of (5) depends on u. In the sequel,
in order to emphasize this dependence, we simply write (λ[u], y[u]).

It is a general fact (see [2]) that under conditions (1)–(4) this problem has a countable set
of eigenvalues such that −dB < λ1[u] 6 λ2[u] 6 . . . 6 λk[u] 6 . . . , limk→∞ λk[u] = ∞,
each of them being of finite multiplicity. Moreover, a corresponding sequence of eigenfunctions
{yk[u]}k∈N forms a basis in V , this basis being orthogonal with respect to Au(·, ·). Furthermore,
the following useful characterizations for λk[u] hold (see [10]):

λk[u] = min
Y6V,

dimY=k

max
y∈Y \{ϑ}

Au(y, y)

Bu(y, y)
, λk[u] = max

Y6V,
codimY=k−1

min
y∈Y \{ϑ}

Au(y, y)

Bu(y, y)
.
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Notice that, for each u ∈ U , the bilinear form Cu(·, ·) = Au(·, ·)+dBBu(·, ·) is a scalar product on
V , which is actually equivalent to ⟨·, ·⟩s. In the sequel, in order to emphasize that in a situation
V is equipped with Cu(·, ·), we write V, Cu(·, ·). Hereinafter ⊥u denotes the operation of taking
orthogonal complements of subsets of V with respect to Cu(·, ·).

Now let K ⊂ V be a non-trivial closed convex cone with a vertex at ϑ. For u ∈ U , consider
the following extremum problem:

find (µ1[u], y[u]) ∈ R×K \ {ϑ} : µ1[u] = min
z∈K\{ϑ}

Au(z, z)

Bu(z, z)
=

Au (y[u], y[u])

Bu (y[u], y[u])
. (6)

It is well known (see [11]) that under conditions (1)–(4) there exists a solution to (6). More
precisely, the set of elements y[u] minimizing the functional in (6) has the form Ku \ {ϑ}, where
Ku ⊂ K is a closed convex cone with a vertex at ϑ. Furthermore, µ1[u] and y[u] are the
least positive eigenvalue and its non-trivial solution, respectively, of the following variational
inequality:

(µ, y) ∈ R×K \ {ϑ} : Au(y, z − y) > µBu(y, z − y), ∀z ∈ K. (7)

On the other part, if µ1[u] and y[u] are the least positive eigenvalue and its associated eigenfunc-
tion of (7), then (6) holds.

Let U be a non-empty weak* compact subset of U . In this paper, we are primarily interested
in the following eigenvalue optimization problems:

find v̂ ∈ U : λk[v̂] = sup
u∈U

λk[u], (8)

find v̌ ∈ U : λk[v̌] = inf
u∈U

λk[u], (9)

find ŵ ∈ U : µ1[ŵ] = sup
u∈U

µ1[u], (10)

find w̌ ∈ U : µ1[w̌] = inf
u∈U

µ1[u]. (11)

In the following section, we specify conditions imposed on aαβ(·, ·), bαβ(·, ·) under which these
problems are solvable.

2. Main results

Since U is weak* compact, it is sufficient to establish the semicontinuity of λk[·] and µ1[·] in
the weak* topology on U to prove the existence of solutions to problems (8)–(11). Since L1(Ω)
is separable, the weak* topology on L∞(Ω) is metrizable whenever one is restricted to bounded
sets. Taking into account this and the fact that U is bounded in L∞

r (Ω), it sufficies to ascertain
the sequential weak* semicontinuity of the functionals under study on U .

The following conventions will be useful in the sequel. Define Q+ to be the set of all maps
(x, ξ) 7→ f(x, ξ) : Ω× G → R such that the following conditions hold true:

i) (x, ξ) 7→ f(x, ξ) is bounded for a.e. (x, ξ) ∈ Ω× G,

ii) f satisfies the Carathéodory conditions, and

iii) f(x, ·) : G → R is convex for a.e. x ∈ Ω.

Next, define Q− = {f : −f ∈ Q+}, Q0 = Q+ ∩ Q−. Also, an element f ∈ Q0 is said to be in
Qc ⊂ Q0 if and only if f(x, ·) : G → R is constant for a.e. x ∈ Ω. Let θ denote a map from Ω×G
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to R such that θ(x, ξ) = 0 for a.e. (x, ξ) ∈ Ω×G. Finally, we say that f ∈ Q∗
+ ⊂ Q+ if and only

if the map
(x, ξ, η) 7→ f(x, ξ)η2 : Ω× G × R → R (12)

is convex in (ξ, η) for almost every x ∈ Ω.
Before proving the main results we need a preliminary lemma.

Lemma 2.1. Let F : L∞
r (Ω)× L2(Ω)× L2(Ω) → R be the map given by

F(u, y, z) =

∫
Ω

f (x, u(x)) y(x) z(x) dx.

Then the following implications hold:

(a)

{
f ∈ Q0, un ∗

⇀ u in L∞
r (Ω),

yn → y, zn → z in L2(Ω)

}
⇒ limn→∞ F(un, yn, zn) = F(u, y, z),

(b)

{
f ∈ Qc, un ∗

⇀ u in L∞
r (Ω),

yn → y, zn ⇀ z in L2(Ω)

}
⇒ limn→∞ F(un, yn, zn) = F(u, y, z),

(c) f ∈ Q+, un ∗
⇀ u in L∞

r (Ω), yn → y in L2(Ω) ⇒ lim inf
n→∞

F(un, yn, yn) > F(u, y, y),

(d) f ∈ Q∗
+, un ∗

⇀ u in L∞
r (Ω), yn ⇀ y in L2(Ω) ⇒ lim inf

n→∞
F(un, yn, yn) > F(u, y, y).

Proof. Parts (a) and (b) are trivial. The proof of (c) is rather similar to the proof of the well-
known Tonelli’s theorem [12].

Let us prove (d). Firstly, notice that a map of the form (12), where f ∈ Q∗
+, also satisfies the

Carathéodory conditions in the sense that this map is continuous in (ξ, η) for a.e. x ∈ Ω and is
measurable in x for each (ξ, η) ∈ G×R. Secondly, it is easy to show that f(x, ξ)η2 > 0 for almost
all (x, ξ, η) ∈ Ω × G × R. Finally, as weak* convergence in L∞(Ω) implies weak convergence in
L2(Ω), the part (d) directly follows from [13, Theorem 7].

Recall that aαβ = aβα and bαβ = bβα. We use this fact to simplify the formulations of the
theorems of this section.

Theorem 2.1. Let

aαα ∈ Q−, |α| 6 s, aαβ ∈ Q0, α ̸= β, |α| , |β| 6 s,

bαα ∈ Q+, |α| 6 m, bαβ ∈ Q0, α ̸= β, |α| , |β| 6 m.

Then u 7→ λk[u], u 7→ µ1[u] are weak* upper-semicontinuous over U .

Proof. Let us prove the weak* upper-semicontinuity of u 7→ λk[u] over U . Suppose for the sake
of contradiction that this is not true. Then for some k ∈ N there exists a sequence {un} such
that un ∗

⇀ u in U , but lim supn→∞ λk[u
n] > λk[u]. Without any loss of generality it can be

assumed that
lim

n→∞
λk[u

n] > λk[u]. (13)

Let Yk = span {y1[u], . . . , yk[u]}. Define a function z : Rk → Yk by the formula z(c) =∑k
i=1 ciyi[u]. Further, for each n ∈ N, let χn : Rk \ {0} → R be a map given by

χn(c) =
Aun(z(c), z(c))

Bun(z(c), z(c))
.
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It is easy to show that χn(·) attains its maximum at some point cn of the unit sphere Sk−1 and

χn(c
n) > λk[u

n]. (14)

Without loss of generality assume that cn → c∗ ∈ Sk−1. Let zn = z(cn) and z∗ = z(c∗). Clearly,

zn → z∗ in V, z∗ ∈ Yk \ {ϑ}. (15)

Taking into account the assumptions of the theorem and (15), we can use Lemma 2.1 to deduce

lim sup
n→∞

Aun(zn, zn) 6 Au(z
∗, z∗), lim inf

n→∞
Bun(zn, zn) > Bu(z

∗, z∗). (16)

Since z∗ ̸= ϑ, we can choose a positive number ε such that ε < Bu(z
∗, z∗). Then for sufficiently

large N(ε), we get that

Aun(zn, zn) < lim sup
n→∞

Aun(zn, zn) + ε, λk[u
n] > lim

n→∞
λk[u

n]− ε,

Bun(zn, zn) > lim inf
n→∞

Bun(zn, zn)− ε, n > N(ε).
(17)

In view of (14), (16) and (17), we have that

lim
n→∞

λk[u
n]− ε < λk[u

n] <
Au(z

∗, z∗) + ε

Bu(z∗, z∗)− ε
, n > N(ε).

Since ε can be chosen arbitrarily small and z∗ ∈ Yk \ {ϑ}, we finally obtain that

lim
n→∞

λk[u
n] 6 Au(z

∗, z∗)

Bu(z∗, z∗)
6 λk[u],

contradicting (13). Hence, u 7→ λk[u] is a weak* upper-semicontinuous functional over U . The
preceding arguments can be easily applied to prove the weak* upper-semicontinuity of u 7→ µ1[u]
over U .

Let us now turn to establishing the following weak* lower-semicontinuity criterion.

Theorem 2.2. Let

aαα ∈ Q+, |α| 6 l, aαβ ∈ Q0, α ̸= β, |α| , |β| 6 l,

aαα ∈ Q∗
+, l < |α| 6 s, aαβ ∈ Qc, |α| 6 l < |β| 6 s,

aαβ = θ, α ̸= β, l < |α| , |β| 6 s,

bαα ∈ Q−, |α| 6 m, bαβ ∈ Q0, α ̸= β, |α| , |β| 6 m.

Then u 7→ λk[u], u 7→ µ1[u] are weak* lower-semicontinuous over U .

Proof. Let us prove the weak* lower-semicontinuity of λk[·]. From the minimax principle, (3), (4)
it follows that there exist two sequences {λ̌k}k∈N, {λ̂k}k∈N such that λ̌k 6 λk[v] 6 λ̂k, ∀v ∈ U .
Let k be a natural number, u ∈ U , and πk : U → R be a map defined as

πk(v) = min
y∈Zk\{ϑ}

Av(y, y)

Bv(y, y)
, Zk = span {ϑ, y1[u], . . . , yk−1[u]}⊥u .

Clearly, Zk 6 V , codimZk = k − 1. Assume that there exists a sequence {un}n∈N such that

un ∗
⇀ u in U ⇒ lim

n→∞
λk[u

n] < λk[u]. (18)
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Let zn be an element in Zk such that

dB + πk(u
n) = [Bun(zn, zn)]

−1
, Cun(zn, zn) = 1.

Clearly, ∥zn∥2V 6 c−1
A , Cu(zn, zn) 6 c−1

A (CA + dBCB). The imbedding of V in W being compact,
it can be assumed that

zn → z∗ in W, ∂αzn ⇀ ∂αz∗ in L2(Ω), l < |α| 6 s, zn ⇀ z∗ in V, Cu(·, ·). (19)

Taking into consideration the conditions of the theorem and (19), we can apply Lemma 2.1 to
obtain that

lim inf
n→∞

Aun(zn, zn) > Au(z
∗, z∗), lim sup

n→∞
Bun(zn, zn) 6 Bu(z

∗, z∗). (20)

Since
∥zn∥2W >

[
CB

(
λ̂k + dB

)]−1

, Cu(zn, y) → Cu(z∗, y), y ∈ V,

we obtain that z∗ ∈ Zk \ {ϑ}.
Now let ε > 0 be given, and choose N(ε) sufficiently large such that

Aun(zn, zn) > lim inf
n→∞

Aun(zn, zn)− ε, lim sup
n→∞

πk(u
n) > πk(u

n)− ε,

Bun(zn, zn) < lim sup
n→∞

Bun(zn, zn) + ε, n > N(ε).
(21)

By virtue of (20) and (21), we get that

Au(z
∗, z∗)− ε

Bu(z∗, z∗) + ε
< lim sup

n→∞
πk(u

n) + ε.

Since ε was arbitrary, and z∗ ∈ Zk \ {ϑ}, it immediately follows that

λk[u] = πk(u) 6
Au(z

∗, z∗)

Bu(z∗, z∗)
6 lim sup

n→∞
πk(u

n) 6 lim
n→∞

λk[u
n].

The preceding inequalities contradict (18). Consequently, u 7→ λk[u] is a weak* lower-
semicontinuous functional over U . The proof of the weak* lower-semicontinuity of µ1[·] is omitted
due to its similarity to the foregoing proof.

We can combine the preceding results to obtain a criterion for the weak* continuity of u 7→
µ1[u] over U . However it is reasonable to apply another approach to get a stronger result.

Theorem 2.3. Let aαβ ∈ Qc, l < |α|, aαβ ∈ Q0, |α| , |β| 6 l, bαβ ∈ Q0, |α| , |β| 6 m. Then
u 7→ µ1[u] is weak* continuous on U .

Let un ∗
⇀ u in U . Using similar arguments as in [6, Prop. 4.3], we obtain that µ1[u] 6

lim inf
n→∞

µ1[u
n]. Applying Theorem 2.1, we get that µ1[u] = lim

n→∞
µ1[u

n].
Though this sketch can be directly applied to the proof of the weak* continuity of λk[·]

provided that the hypotheses of Theorem 2.3 hold, we remark that it is not difficult to obtain
this result from continuity of a finite system of eigenvalues with respect to generalized convergence
of closed operators [14].

Since each lower (upper) semicontinuous functional attains its minimum (maximum) over
a non-empty compact set, we directly obtain existence criteria for (8)–(11) from the previous
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theorems. Note that we can also apply the obtained results to get existence theorems for another
extremum problems. Let us give an example. Assume that U is weak* compact. Let

λ̃1, . . . , λ̃n ∈ R : Vn =
{
u ∈ U : λi[u] > λ̃i, i = 1, . . . , n

}
̸= ∅. (22)

Suppose that u 7→ λi[u] is weak* upper-semicontinuous on U for each i ∈ {1, . . . , n}. Then Vn is
weak* compact. Now consider the following problem:

min
u∈Vn

∫
Ω

f(x, u(x)) dx, f ∈ Q+.

Using Lemma 2.1, we get that this problem is solvable.
In the following section, we give some concrete applications of the obtained results.

3. Some applications

Throughout this section, all quantities are considered as dimensionless, and we consider that
H2

0 (Ω) ⊂ V 6 H2(Ω), W = W = H1(Ω).
Optimal design of columns subjected to buckling. Let Ω = (0, 1), e, u, κ, ρ ∈ L∞(Ω),

and e(x) > e0 > 0, u(x) > u0 > 0, κ(x) > 0, ρ(x) > ρ0 > 0 a.e. in Ω. Define Au : V × V → R
and Bu : V × V → R by

Au(y, z) =

∫ 1

0

(euνy′′z′′ + κyz) dx, Bu(y, z) =

∫ 1

0

y′z′ dx. (23)

The variation equation describing buckling of a non-homogeneous column lying on an elastic
foundation is (5), where Au(·, ·), Bu(·, ·) are expressed by (23). Here e, ρ are Young’s modulus
and the density of the column material, respectively, κ is the foundation modulus, u corresponds
to the cross-sectional area distribution of the column, the lowest eigenvalue of the boundary-value
problem defined by (5), (23) is usually connected with the critical load that causes buckling of
the column, ν is a positive parameter. For example, the case ν = 1 corresponds to thin-walled
columns, u being an affine function of the cross-sectional area distribution (see [7] for more
details). Here we consider the following boundary conditions: (i) clamped-clamped (V = H2

0 (Ω));
(ii) simply supported (V = {v ∈ H2(Ω) : v(0) = v(1) = 0}); (iii) clamped-simply supported. Now
let

0 < ǔ, û, m̃ < +∞ : U = {u ∈ L∞(Ω) : ǔ 6 u(x) 6 û a.e. in Ω} ̸= ∅,

U =

{
u ∈ U :

∫
Ω

ρ(x)u(x) dx 6 m̃

}
̸= ∅.

(24)

Clearly, all the assumptions of Section 1 hold. Then we can apply the obtained results to
deduce that, for each k ∈ N, the problem (8) defined by 0 < ν 6 1, (5), (23), (24) is solvable.
In [7] S. Cox and M.Overton established existence for the problem (8) defined by (5), (23), k = 1,
e = 1, κ = 0, ν > 0, U = {u ∈ U : ∥u∥1 = 1}. Notice that the case ν > 1 is not covered by the
theorems of this paper. However, their proof is essentially based on symmetry considerations,
the one-dimensionality of the problem, the properties of U , and the fact that there exists a non-
negative eigenfunction associated with the lowest eigenvalue. Meanwhile, there is no need in
any information concerning eigenfunctions to apply the results of Section 2, U can be any weak*
compact set of functions having a common positive lower bound, and the functions e, κ, ρ can be

non-symmetric about x =
1

2
.
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Now let us give an example for the case of variational inequalities. Assume that the column is
clamped on one end and unilaterally supported on another one. In this case, the set of admissible
states is

K = {z ∈ H2(Ω) : z(0) = z′(0) = 0, z(1) > 0}. (25)

Clearly, K is a closed convex cone with a vertex at ϑ. The variational inequality describing
buckling of the column on the elastic foundation is (7), Au(·, ·), Bu(·, ·) and K being defined by
(23), (25). As above, we conclude that the problem (10) determined by 0 < ν 6 1, (7), (23)–(25)
is solvable.

Finally, let us consider the following problem of minimization of the mass of a column with
a lower limit on the critical load:

m[u] =

∫
Ω

ρ(x)u(x) dx → min, u ∈ V1. (26)

Here V1 is given by (22). If 0 < ν 6 1, then u 7→ λ1[u] is weak* upper-semicontinuous over U .
In turn, u 7→ m[u] is weak* continuous over V1. From the above it follows that the problem (26)
defined by (5), (22)–(24) is solvable. It can be verified easily that an analogous result holds for
the case of variational inequalities.

Optimal design of a vibrating three-layered plate. Since regularization techniques used
in [9] do not ensure existence of optimal solutions to the original problem, it is interesting to give
a model for plates for which the results of Section 2 are applicable. Let us consider a model for
three-layered plates ignoring shears in the middle layer. For a more comprehensive treatment of
the model, the reader is referred to [2, 4.3]. Let Ω be a bounded domain of R2 having the cone
property, and U be determined by (24). Define Au : V × V → R and Bu : V × V → R as

Au(y, z) =

∫
Ω

[
A1(u)

∂2y

∂x2
1

∂2z

∂x2
1

+A2(u)
∂2y

∂x2
2

∂2z

∂x2
2

+

+A12(u)

(
∂2y

∂x2
1

∂2z

∂x2
2

+
∂2y

∂x2
2

∂2z

∂x2
1

)
+ 2A3(u)

∂2y

∂x1∂x2

∂2z

∂x1∂x2

]
dx,

Bu(y, z) =

∫
Ω

[
B1(u)yz +B2(u)

(
∂y

∂x1

∂z

∂x1
+

∂y

∂x2

∂z

∂x2

)]
dx,

(27)

where

Ai(u) =
Eii

2
(u+ ũ)

2
u, i = 1, 2, A12(u) =

E12

2
(u+ ũ)

2
u, A3(u) = G (u+ ũ)

2
u,

B1(u) = 2uρ+ ũρ̃, B2(u) = ρ

(
ũu2 +

1

2
ũ2u+

2

3
u3

)
+

1

12
ρ̃ũ3, Eij , G, ρ, ρ̃ > 0,

u ∈ U, u(x) + ũ(x) = c ≡ const, ũ(x) > 0, x ∈ Ω.

(28)

Here Eij , G are the elasticity characteristics of the exterior layers, u is the thickness of the
exterior layers, ũ is the thickness of the middle layer, ρ̃ and ρ are the densities of the material
of the interior and extrerior layers. Then the equation describing free oscillations of the plate is
(5), where Au(·, ·), Bu(·, ·) are expressed by (27), (28). Let ∂Ω denote the boundary of Ω, and
let Γ1,Γ2 be non-empty parts of ∂Ω such that Γ1 ∩ Γ2 = ∅. Assume that Γ1 contains three
points which do not belong to a straight line. For this plate consider the following standard

boundary conditions: i) clamped on Γ1

(
V =

{
u ∈ H2(Ω) : u

∣∣
Γ1

= 0,
∂u

∂ν

∣∣
Γ1

= 0

})
; ii) simply

supported on Γ1

(
V =

{
u ∈ H2(Ω) : u

∣∣
Γ1

= 0
})

; iii) clamped on Γ1 and simply supported on Γ2.
For another interesting implementations of V , the reader is referred to [2, 4.1.4]. It is not difficult
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to establish that there exist cA > 0, dB > 0 such that the first inequality in (4) holds, and all
the assumptions of Section 1 are fulfilled. Thus, one can apply the results of Section 2 to obtain
that, for each k ∈ N, the problem (8) defined by (5), (24), (27), (28) is solvable if 2ρ > ρ̃. Since
the material of the middle layer is usually comparatively light, we can also consider the problem

m[u] = ρ

∫
Ω

u(x) dx → min, u ∈ Vn,

determined by (5), (22), (24), (27), (28), 2ρ > ρ̃, which is solvable. From the above con-
siderations we conclude that for plates clamped on Γ1 and unilaterally supported on Γ2(
K =

{
z ∈ H2(Ω) : z

∣∣
Γ1

=
∂z

∂ν

∣∣
Γ1

= 0, z
∣∣
Γ2

> 0

})
extremum problems analogous to the above

ones are solvable as well.
Clearly, the results of Section 2 can be directly applied to other problems in optimal design.
Further investigations in this direction are actively being carried on.

This work was supported by the RFBR, research project 13-01-00827.
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Критерии существования в некоторых задачах
оптимизации, связанных с собственными значениями
эллиптических операторов

Василий Ю.Гончаров

Доказываются критерии существования для некоторого класса задач оптимизации, связанных с
собственными значениями линейных эллиптических краевых задач (в том числе в форме вариаци-
онных неравенств). Применяемый метод позволяет сформулировать аналогичные критерии для
экстремальных задач, связанных с собственными значениями нелинейных краевых задач. Приво-
дятся приложения к оптимальному проектированию конструкций, дается сравнение полученных
результатов с известными.

Ключевые слова: задача оптимизации собственного значения, эллиптическая краевая задача, ва-
риационное неравенство, теорема существования, оптимальное проектирование конструкций.
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