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Introduction

Extremum problems involving eigenvalues of elliptic boundary-value problems are of great
interest and value. A large number of such problems often arise in optimal structural design
(see [1,2] for more details). For example, in order to widen a resonance-free frequency interval
of some structure it is sufficient to maximize either its first natural frequency or the difference
between the corresponding adjacent frequencies. Omne of the most important characteristics
of a structure is also the critical load under which the structure loses stability. Therefore, it
is interesting to maximize this characteristic of the structure. The frequencies of the natural
oscillations of a structure and the critical load that causes buckling of the structure correspond
to eigenvalues of appropriate boundary-value problems. Thus, there exists a class of extremal
problems for eigenvalue functionals in optimal structural design.

Optimization problems for eigenvalues of elliptic operators have been considered by many
authors (see [1-9]). For surveys on such problems we refer the reader to [1-3]. Such problems,
under the assumption that admissible controls form a weakly compact set of a Sobolev space,
were considered in [2,4]. Let us advance some arguments in favour of consideration of broader
sets of admissible controls for such problems. Firstly, the condition of uniform boundness of the
first-order weak derivatives of functions that belong to Sobolev spaces leads to using additional
techniques, such as those utilizing penalty methods, to implement numerical procedures to derive
optimal solutions to such problems. Secondly, the controls corresponding to such functions
are often unnatural for applications. Finally, classes of admissible controls arising in many
applications whose elements are essentially bounded measurable functions are weak* compact
without any artificial supplementary constraints. Let us illustrate the essence of the second
argument by means of an example. For a thin cylindrical rod clamped at both ends and having
constant flexural rigidity and a given total mass, consider the problem of determining optimal
density distributions which yield the highest possible value of the first natural frequency of the
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rod. It is well known (see [3,5]) that there exists a unique optimal solution to the problem
which is a concrete piecewise constant function. Note that, in general, making of a rod having a
continuous density distribution is complicated.

Some existence results for extremal eigenvalue problems in the case of composite membranes
were presented in [6]. The problem of optimal design of a column against buckling under various
boundary conditions was studied in [7]. Such a problem without any positive lower bound for
design functions in the case of columns clamped at both ends was considered in [8]. The problem
of maximization of the first natural frequency of a clamped thin isotropic plate was investigated
in [9]. In that paper instead of proving existence of an optimal solution to the original problem, a
family of auxiliary regularized optimization problems depending on a parameter was introduced
and existence of an optimal solution to each regularized problem was established. Emphasize
that the problems considered in [5-8] are optimal control problems for which only one coefficient
depends on an appropriate control. Thus, it is of interest to obtain some general existence
criteria for a certain class of extremum problems involving eigenvalues of elliptic operators which
contains as many as possible applied problems, including optimal control problems for which
several coefficients depend on controls.

In this paper, without using any regularization techniques we prove such existence criteria
for extremum problems associated with functionals defined on weak* compact sets.

The structure of the paper is as follows. In Section 1 we formulate some optimization prob-
lems for eigenvalues of elliptic boundary-value problems, including ones in the form of variational
inequalities, present basic assumptions. Some existence criteria are proved in Section 2. The
principal tools of the proofs of the criteria are variational properties of eigenvalues and semicon-
tinuity of integral functionals. Note that the methods used in this paper are quite different from
those used in the above-mentioned studies. Moreover, though the main results are proved for the
linear case, ones can be easily extended to the case of nonlinear eigenvalue problems for elliptic
systems provided that there exists a variational characterization for eigenvalues of such problems.
As it turns out, the approach presented in this paper can be directly applied to many concrete
problems in optimal structural design, including problems in which some natural frequencies of a
structure and the critical load, under which the structure loses stability, are a part of constraints.
In order to demonstrate this, we give some interesting applications in Section 3.

1. Optimization problems

Let H be a Hilbert space. For the sake of convenience we denote the fact that M is a closed
subspace of H and is equipped with the same scalar product by M < H. Let  be a non-empty
bounded domain in RY, d € N. Next, let s, m and [ be natural numbers such that m <[ < s.
Consider linear spaces W, W and V such that

V<HN(Q), W<H(Q), W<H™Q), CFrQcVcwcWw
Here H’(Q) denotes the Sobolev space equipped with the scalar product
glel

= [e'5} agqg
0z ... 0z,

(y,2); = Z /Q@O‘yﬁazdm, a=(ay,...,aq) € NI, o0

lov|<j
Furthermore, we assume that
the properties of € cause the compactness of the imbedding operator of V' to W. (1)
Next, let U be a non-empty bounded set of L°(Q), i.e.

Yu = (u1,...,up) €EU = —00 < @; < u(z) < t; < +oo ae. in Q.
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We denote the norms on V', W and the standard norm on LP(Q2), 1 < p < oo by ||||v, ||-|lw and
[I]lp, respectively. By ¢ we denote the neutral element of V. Let G = [ [, @;].

i=1
For any u € U, consider two bilinear forms A, : V xV — R and B, : W x W — R, which
are defined as follows:

Ay, z) = Z /Qaag (x,u(x)) 0%y(x) 652(95) dz,

leel,|BI<s

Bur2) = Y [ b (o ul@) 0°y(w) 9%5(a) da.

laf,|Bl<m
Here anp(-,-) and bag(-, ) are functions defined on Q x G such that

(x,f) —> aaﬁ(x,f) QA xG— [dag,&aﬁ], — 00 < g < &ag < 400, Qo = ABa,

(CL’,f) — bag(x,f) QA xG— [6a5,6a5]7 —o00 < Bag < i)ag < +00, bag = bga.

Furthermore, we assume that ang(-,-) and bas(-,-) satisfy the Carathéodory conditions. Recall
that a function f : Q@xG — R is said to satisfy the Carathéodory conditions if f(-, &) is measurable
for each £ € G, and f(z,-) is continuous for a.e. € Q. Since aqng(:,-) and bag(-,-) satisfy the
Carathéodory conditions, we have that for any v € U maps x — anp(z,u(z)), £ — bag(z, u(x))
are measurable and in L>°(Q).

It is pretty straightforward that A,(-,-) and B,(-,-) are symmetric:

Au(yr, 21) = Aul(z1,91), y1,21 €V, Bu(y2; z2) = Bu(22,92),  yo,22 € W. (2)
Moreover, A, (+,-) and By(+, ) are continuous, i.e.
|Au(y1, 20)| < Callyallvizillv, y1,21 €V,

|Bu(y2, 22)| < Clly2llwllz2]lw, Y2, 22 € W.

Here C 4 and Cp are some positive real numbers, not depending on wu.
In the sequel, we assume that there exist c4,cg > 0 and dg > 0 such that

Auy,y) +deBu(y,y) = calylly,  yev,

ue U (4)
Bu(z,2) > cs |23, zeW,
Now, for u € U, consider the following eigenvalue problem:
find (A, ) € R x V\ {0} : Au(y,2) = ABu(y,2), z€V. (5)

Generalized eigenvalue problems for elliptic boundary-value problems often lead to problems of
the form (5) with the properties (1)—(4), and if dg > 0, then the first inequality in (4) is in effect
an abstract Garding inequality. Notice that a solution (A, y) of (5) depends on u. In the sequel,
in order to emphasize this dependence, we simply write (A[u], y[u]).

It is a general fact (see [2]) that under conditions (1)—(4) this problem has a countable set
of eigenvalues such that —dp < Afu] < Agfu] < o0 < Afu] < oony lmyo0 Ak[u] = o0,
each of them being of finite multiplicity. Moreover, a corresponding sequence of eigenfunctions
{yr[u]},cy forms a basis in V, this basis being orthogonal with respect to A,(-,-). Furthermore,
the following useful characterizations for Ag[u] hold (see [10]):

. Au(y,y) _ Ay y)
Aglul = min max Aplul =  max min 2,
V<V, ye\(9) Bu(y,y) sV we\ ) Bu(y.y)
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Notice that, for each u € U, the bilinear form C,(-,-) = Ay (-, ) +dBy(-,-) is a scalar product on
V, which is actually equivalent to (-,-)s. In the sequel, in order to emphasize that in a situation
V is equipped with Cy (-, ), we write V, C,(-,-). Hereinafter |, denotes the operation of taking
orthogonal complements of subsets of V' with respect to C,(-,-).

Now let K C V be a non-trivial closed convex cone with a vertex at ¢. For v € U, consider
the following extremum problem:

i Gl glal) € 2 x K\ {9} + pafu] — Auler2) _ ol o)

min
zeK\{9} B,(z, 2) w (y[u]

It is well known (see [11]) that under conditions (1)—(4) there exists a solution to (6). More
precisely, the set of elements y[u] minimizing the functional in (6) has the form /C, \ {¥}, where
K. C K is a closed convex cone with a vertex at ¥. Furthermore, pifu] and y[u] are the
least positive eigenvalue and its non-trivial solution, respectively, of the following variational
inequality:

(n,y) eRx K\ {09} : Ay(y,z—vy) 2 puBu(y,z—vy), VzeK. (7)

On the other part, if p[u] and y[u] are the least positive eigenvalue and its associated eigenfunc-
tion of (7), then (6) holds.

Let U be a non-empty weak* compact subset of U. In this paper, we are primarily interested
in the following eigenvalue optimization problems:

find 0 e : Ag[0] = sup Aglu], (8)
ueU

findveld : Afo] = 11615 Ar[ul, 9)

find w €U : py[w] = sup piul, (10)
ueU

findweld : mw] = irelgl,ul[u]. (11)

In the following section, we specify conditions imposed on aqg(+, ), bag(-, -) under which these
problems are solvable.

2. Main results

Since U is weak* compact, it is sufficient to establish the semicontinuity of \x[-] and p4[-] in
the weak* topology on U to prove the existence of solutions to problems (8)—(11). Since L'(Q)
is separable, the weak* topology on L°°(2) is metrizable whenever one is restricted to bounded
sets. Taking into account this and the fact that U is bounded in L$°(€2), it sufficies to ascertain
the sequential weak* semicontinuity of the functionals under study on U.

The following conventions will be useful in the sequel. Define O to be the set of all maps
(z,8) — f(x,€) : © x G — R such that the following conditions hold true:

1) (z,8) — f(z,€) is bounded for a.e. (x,&) € 2 x G,
ii) f satisfies the Carathéodory conditions, and
iii) f(x,:):G — R is convex for a.e. x € ).
Next, define Q_ = {f: —f € Q+}, Qo = Q4+ N Q_. Also, an element f € Qy is said to be in

Q. C Qq if and only if f(x,-) : G — R is constant for a.e. x € Q. Let 6 denote a map from Q x G
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to R such that 0(z,&) = 0 for a.e. (z,§) € Q x G. Finally, we say that f € Q% C Q if and only
if the map
(z,6,m) = f(z,)n* : AxGxR =R (12)

is convex in (&, 7n) for almost every = € €.
Before proving the main results we need a preliminary lemma.

Lemma 2.1. Let F: L(Q) x L2(Q) x L*(2) — R be the map given by

Fluyz) = [ f@u@) @) s(a) da.
Then the following implications hold:
f€ Qo u"u in L),
(a)

= limg, o0 F(u™,y", 2") = F(u,y, 2),
Yyt =y, 2" =z in LA(Q) } - ( ) ( )

= hmn%oo ]:(un,yn7zn) = .7:(’11/7:1/72)7

) feQ., u*2uin L (Q),
Yyt =y, 2" — 2 in LZ(Q)

(¢c) F€Qy4, u'>uwin LX(Q), y"—y in L*(Q) = liminf F(u",y",y") > F(u,y,y),

n—oo

(d) f€QL, u">uin LX(Q), y"—y in L*(Q) = liminf F(u",y",y") > F(u,y,y).
n—oQ

Proof. Parts (a) and (b) are trivial. The proof of (c) is rather similar to the proof of the well-

known Tonelli’s theorem [12].

Let us prove (d). Firstly, notice that a map of the form (12), where f € Q% , also satisfies the
Carathéodory conditions in the sense that this map is continuous in (§,7) for a.e. = € Q and is
measurable in z for each (&,7) € G x R. Secondly, it is easy to show that f(x,&)n? > 0 for almost
all (z,€,n) € Q x G x R. Finally, as weak™® convergence in L () implies weak convergence in
L?(9), the part (d) directly follows from [13, Theorem 7]. O

Recall that aqg = age and bog = bgs. We use this fact to simplify the formulations of the
theorems of this section.

Theorem 2.1. Let

s, aap € Qo, a# B, |al,|B

| < | <s,
baa S Q+7 |Oé| < m, baﬂ € QO7 « # ﬂ7 ‘Oél ) ‘B|

<
<m.

Then u — Aglu], u — pi[u] are weak* upper-semicontinuous over U.

Proof. Let us prove the weak* upper-semicontinuity of u — Ag[u] over U. Suppose for the sake
of contradiction that this is not true. Then for some k € N there exists a sequence {u™} such
that «” = w in U, but limsup,,_,. A\x[u”] > Ap[u]. Without any loss of generality it can be
assumed that

Hm Ag[u”] > Aglu]. (13)

n—oo

Let Y; = span{yi[u],...,yx[u]}. Define a function z : R¥ — Y; by the formula z(c) =
Zle c;yi[u]. Further, for each n € N, let x,, : R¥\ {0} — R be a map given by
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It is easy to show that x,(-) attains its maximum at some point ¢” of the unit sphere S*~! and
xne") = Aelu]. (14)

Without loss of generality assume that ¢ — ¢* € S¥71. Let 2" = 2(c") and z* = z(c*). Clearly,
2" =2 in V, 2 e Y\ {9} (15)

Taking into account the assumptions of the theorem and (15), we can use Lemma 2.1 to deduce

limsup Ayn (27, 2") < Ay (27, 2%), liminf Byn (2", 2") = By (2", 2"). (16)

n— oo n—oo

Since z* # 9, we can choose a positive number ¢ such that ¢ < B, (2%, 2*). Then for sufficiently
large N(g), we get that

Ayn (27, 2™) < limsup Ay (27, 2") + ¢, A[u™] > lm A\ [u™] —e,
n— oo n— oo
(17)
Bun (2", 2") > liminf Byn (2", 2") — ¢, n > N(e).
n—r oo

In view of (14), (16) and (17), we have that

lim Apfu”] — & < Agfu"] < SulEZ) e

= N(e).
n—o00 Bu(z*’z*) —¢’ n (8)

Since ¢ can be chosen arbitrarily small and z* € Y}, \ {¢#}, we finally obtain that

li "< T <
AT S B

contradicting (13). Hence, u +— Ag[u] is a weak* upper-semicontinuous functional over U. The
preceding arguments can be easily applied to prove the weak* upper-semicontinuity of u +— 1 [u)
over U. O

Let us now turn to establishing the following weak* lower-semicontinuity criterion.

Theorem 2.2. Let

o € Qy, ol <1, aap € Qo,  a# B, laf,|B8 <1,
oo € Q%,  1<la|<s, aap € Do, ol ST<[B] < s,

op = 0, azf, <l |8 <s,
baa € O_, || < m, bag € Qo, a# B, a8l <m.

Then u — Ag[u], u— pyu] are weak® lower-semicontinuous over U.

Proof. Let us prove the weak* lower-semicontinuity of Ag[-]. From the minimax principle, (3), (4)

it follows that there exist two sequences {Xk}keN, { Ak }ken such that A < Arv] < A, Yo € U.

Let k be a natural number, u € U, and 7, : U — R be a map defined as
Ay, y)

= 1 — Z == “ee —
7T/€(U> yGIZr]lcl\I}19} Bv(y,y) ) k Span {197y1 [UL » Yk 1[”]}

Ly

Clearly, Z, <V, codim Z, = k — 1. Assume that there exists a sequence {u"}neN such that

u" Suin U = lim Ag[u"] < Agfu). (18)

n—r oo
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Let z™ be an element in Z;, such that
dp + me(u™) = [Bun (2™, 2™)] 7", Cyn (2™, 2") = 1.

Clearly, ||2"]?- < 0;‘1, Cu(z™, 2™) < c;ll (C4 + dpCp). The imbedding of V' in W being compact,
it can be assumed that

2" = 2% in W, 0%z — 9%z in L*(Q), <ol <s, 2" —=z" in V, Cu(-, ). (19)

Taking into consideration the conditions of the theorem and (19), we can apply Lemma 2.1 to
obtain that

liminf A, (2", 2") > A, (2%, 2%), limsup Byn (2", 2") < By (2%, 2%). (20)

n—00 n— 00
Since
ni2 3 -1 n *
1= > [Cs (M +ds)| . Culzmy) = ey, weE,

we obtain that z* € Z \ {¢}.
Now let € > 0 be given, and choose N () sufficiently large such that

Ayn (2",2") > liminf Ay (27, 2") — ¢, lim sup 7 (u™) > 7 (u") — ¢,
n—oo n—oo
(21)
Bun (2", 2™) < limsup Byn (27, 2") + ¢, n > N(e).
n—oo

By virtue of (20) and (21), we get that

Ay (z%,2%)—e .
———— < lims n .
Bl o) 1o < msupm(ut) +e

Since £ was arbitrary, and z* € Z; \ {9}, it immediately follows that

Buler o) S llﬂbolipﬂk(u ) < nlLH;o)\k[u ]

The preceding inequalities contradict (18). Consequently, u — Mg[u] is a weak* lower-

semicontinuous functional over U. The proof of the weak* lower-semicontinuity of p;[-] is omitted
due to its similarity to the foregoing proof. O

We can combine the preceding results to obtain a criterion for the weak™ continuity of u —
p1[u] over U. However it is reasonable to apply another approach to get a stronger result.

Theorem 2.3. Let anp € Qc, | < |af, anp € Qo, |af,|B] <1, bag € Qo, |a|,|B] < m. Then
w > pyfu] is weak*® continuous on U.

Let v = w in U. Using similar arguments as in [6, Prop. 4.3], we obtain that u[u] <
lim inf pq [u™]. Applying Theorem 2.1, we get that py[u] = lim g [u™].
n—oo n—oo

Though this sketch can be directly applied to the proof of the weak* continuity of Ag[]
provided that the hypotheses of Theorem 2.3 hold, we remark that it is not difficult to obtain
this result from continuity of a finite system of eigenvalues with respect to generalized convergence
of closed operators [14].

Since each lower (upper) semicontinuous functional attains its minimum (maximum) over
a non-empty compact set, we directly obtain existence criteria for (8)—(11) from the previous
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theorems. Note that we can also apply the obtained results to get existence theorems for another
extremum problems. Let us give an example. Assume that U is weak® compact. Let

M,.. A, €R : Vn:{ueU C ] = i, i:l,...,n};ﬁ@. (22)

Suppose that u — A;[u] is weak* upper-semicontinuous on U for each ¢ € {1,...,n}. Then V), is
weak* compact. Now consider the following problem:

min/ﬂf(x,u(x))dx, feoy.

ueEVy,

Using Lemma 2.1, we get that this problem is solvable.
In the following section, we give some concrete applications of the obtained results.

3. Some applications

Throughout this section, all quantities are considered as dimensionless, and we consider that
HZ2(Q) CV < H*>Q), W=W=H\(Q).

Optimal design of columns subjected to buckling. Let Q = (0,1), e,u, k, p € L>®(),
and e(z) = eg > 0, u(z) = up > 0, k(z) =0, p(z) = po > 0 ae. in Q. Define A, : VxV = R
and B, : V xV — R by

1 1
Ay, z) = / (eu’y"2" + kyz)dz, Bu(y,z)= / y'2 dx. (23)
0 0

The variation equation describing buckling of a non-homogeneous column lying on an elastic
foundation is (5), where A,(-,-), By(-,-) are expressed by (23). Here e, p are Young’s modulus
and the density of the column material, respectively, k is the foundation modulus, v corresponds
to the cross-sectional area distribution of the column, the lowest eigenvalue of the boundary-value
problem defined by (5), (23) is usually connected with the critical load that causes buckling of
the column, v is a positive parameter. For example, the case v = 1 corresponds to thin-walled
columns, u being an affine function of the cross-sectional area distribution (see [7] for more
details). Here we consider the following boundary conditions: (i) clamped-clamped (V = HZ(12));
(ii) simply supported (V = {v € H*(Q) : v(0) = v(1) = 0}); (iii) clamped-simply supported. Now
let
0<a,a,m<+oo : U={uecL>®(Q) : a<u(z) <t ae in Q} #,

U= {u el : /Q px)u(z) dr < ﬁz} + J. 2

Clearly, all the assumptions of Section 1 hold. Then we can apply the obtained results to
deduce that, for each k € N, the problem (8) defined by 0 < v < 1, (5), (23), (24) is solvable.
In [7] S.Cox and M. Overton established existence for the problem (8) defined by (5), (23), k =1,
e=1,k=0,v>0,U ={ueU:|ully =1} Notice that the case v > 1 is not covered by the
theorems of this paper. However, their proof is essentially based on symmetry considerations,
the one-dimensionality of the problem, the properties of U, and the fact that there exists a non-
negative eigenfunction associated with the lowest eigenvalue. Meanwhile, there is no need in
any information concerning eigenfunctions to apply the results of Section 2, U can be any weak*
compact set of functions having a common positive lower bound, and the functions e, x, p can be

1
non-symmetric about x = 5
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Now let us give an example for the case of variational inequalities. Assume that the column is
clamped on one end and unilaterally supported on another one. In this case, the set of admissible
states is

K ={z¢€ H*(Q): 2(0) = 2/(0) = 0, 2(1) > 0}. (25)

Clearly, K is a closed convex cone with a vertex at . The variational inequality describing
buckling of the column on the elastic foundation is (7), Ay(-, ), Bu(+,+) and K being defined by
(23), (25). As above, we conclude that the problem (10) determined by 0 < v < 1, (7), (23)—(25)
is solvable.

Finally, let us consider the following problem of minimization of the mass of a column with
a lower limit on the critical load:

mlu] = /Qp(:c)u(:r) dr — min, u € V). (26)

Here V; is given by (22). If 0 < v < 1, then u +— Aj[u] is weak™® upper-semicontinuous over U.
In turn, u — mlu] is weak™ continuous over V;. From the above it follows that the problem (26)
defined by (5), (22)—(24) is solvable. It can be verified easily that an analogous result holds for
the case of variational inequalities.

Optimal design of a vibrating three-layered plate. Since regularization techniques used
in [9] do not ensure existence of optimal solutions to the original problem, it is interesting to give
a model for plates for which the results of Section 2 are applicable. Let us consider a model for
three-layered plates ignoring shears in the middle layer. For a more comprehensive treatment of
the model, the reader is referred to [2, 4.3]. Let Q be a bounded domain of R? having the cone
property, and U be determined by (24). Define A4, : V xV - Rand B, : V xV — R as

0%y 0%z 0%y 0%z
Au(y, 2) = /Q {A1(U)8ﬁax% + AQ(U)@T:%@—F
0%y 0%z 0%y 0%z %y 0%z
+Aiz(u) (amax + axax> 2 axlaxg} de,  (27)

- Oy 0z Oy 0z
Bu(y, ) —/Q {Bl(“)y”B?(“) (83@1 a1 O a@ﬂ .

&

Ai(u) = 2 (u+@)lu, i=1,2 Au(u):%(u—i—ﬁ)zu, As(u) = G (u+ @)% u,

1 2 1
Bi(u) =2up +@p, Ba(u)=p (W + i+ 3u3) 5ty By G0, ()

welU, wu(z)+u(x)=c=const, u(x)>0, xel.

Here E;;,G are the elasticity characteristics of the exterior layers, u is the thickness of the
exterior layers, @ is the thickness of the middle layer, p and p are the densities of the material
of the interior and extrerior layers. Then the equation describing free oscillations of the plate is
(5), where A, (+,-), Bu(:,-) are expressed by (27), (28). Let 9 denote the boundary of Q, and
let I'1, Ty be non-empty parts of 92 such that I'y NT's = @. Assume that I'y contains three
points which do not belong to a straight line. For this plate consider the following standard

boundary conditions: i) clamped on T'; (V = {u € H*(Q) : u}rl =0, %’FI = 0}); ii) simply
v

supported on 'y (V = {u € H?(Q) : u’rl = O}); iii) clamped on T'1 and simply supported on Ts.

For another interesting implementations of V', the reader is referred to 2, 4.1.4]. Tt is not difficult
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to establish that there exist ¢4 > 0, dg > 0 such that the first inequality in (4) holds, and all
the assumptions of Section 1 are fulfilled. Thus, one can apply the results of Section 2 to obtain
that, for each k € N, the problem (8) defined by (5), (24), (27), (28) is solvable if 2p > p. Since
the material of the middle layer is usually comparatively light, we can also consider the problem

mlu] = p/ u(z)dr — min, wu € V,,
Q

determined by (5), (22), (24), (27), (28), 2p > p, which is solvable. From the above con-
siderations we conclude that for plates clamped on I'y and unilaterally supported on I';

0
(K = {z € H?(Q): Z|F1 = 3712;‘1“1 =0, 2‘1“2 > 0}) extremum problems analogous to the above

ones are solvable as well.
Clearly, the results of Section 2 can be directly applied to other problems in optimal design.

Further investigations in this direction are actively being carried on.

This work was supported by the RFBR, research project 13-01-00827.
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Kpurepunu cyriecTBoBaHUs B HEKOTOPBIX 3a1a9aX
ONTUMU3AINN, CBI3AHHBIX C COOCTBEHHBIMU 3HAUYEHUSMU
JJINIITUYECKNX OepaTOpPOB

Bacunnii FO. I'onuapos

Jloxaswearomes Kpumepuu cyuwecmso8arus OAL HEKOMOPO20 KAGCCA 34004 ONMUMUSAUUL, CEAZAHHBIT C
CO6CMBEHHBLMYU ZHAUEHUAMU NUHETHVT INAUNMUKECKUT KPALELIT 3000t (6 Mom wucae 6 opme 8apuay-
OHNBLT Hepaserems). IIpumenaemvill Memod no3eossem chopmysuposamvd GHAAOZUNHBIE KPUMEPUL OAA
IKCMPEMAALHOT 30004, CBAZAHHBLT C CODCTNEEHHBIMY 3HAUEHUAMY HEAUHETUHLT Kpaesux 3aday. IIpuso-
0AMCA NPUNOAHCEHUA K ONMUMAADHOMY NPOEKMUPOSAHUIO KOHCMPYKUUT, AEMCA CPABHEHUE NONYUYEHHHLT

pe3yavmamos ¢ u36eCMHbIMU.

Karoueswie caosa: 3a0a4a onmumMu3ayuy, co6CmMEERH020 3HAMERUS, IAAUNMUNECKAA KPAEBAA 3a0a4a, 6a-
DPUAUUOHHOE HEPABEHCME0, MEOPEMA CYULECTNBOBAHUA, ONMUMAADHOE NPOEKMUPOSAHUE KOHCMPYKUUL.

— 47 —



