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Analytic Continuation of Power Series by Means
of Interpolating the Coefficients by Meromorphic Functions
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We study the problem of analytic continuation of a power series across an open arc on the boundary of
the circle of convergence. The answer is given in terms of a meromorphic function of a special form
that interpolates the coefficients of the series. We find the conditions for the sum of the series to extend
analytically to a neigbourhood of the arc, to a sector defined by the arc, or to the whole complex plane

except some arc on the convergence disk.
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Introduction

The problem of analytic continuation and finding singular points of a function has a rich and
long history. It has been studied by many prominent mathematicians such as Carlson, Polya,
Hadamard, and others (see, for example, [1]). There are different approaches to studying such
problems. In this paper we consider the question of continuation of a power series across the
boundary of its circle of convergence. First, we recall some definitions and results.

Consider a power series

F2) =3 fz” (1)
n=0

in z € C, whose domain of convergence is the unit disk Dy := {z € C: |z]| < 1}.
The Cauchy-Hadamard theorem yields that

H@O"an\:l- (2)

We say that a function ¢ interpolates the coefficients of the series (1), if
o(n) = f, for all neN. (3)

Recall (see, e.g. [2]) that the indicator function h, (@) for an entire function ¢ is defined as the
upper limit
| i0
ho(0) = T LDl g

rT—00 T
Let A, be the sector {z = re?’ € C: |0] < o}, o € [0,7). By 7, we denote the open arc
0D, \ A,.
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There are at least three types of questions of analytic continuation of (1) across the arc ~,.
The first one asks about the conditions for continuation to the whole complex plane except
0D1 \ A,. The answer is given by Polya’s theorem.

Theorem (Polya [3]). The series (1) extends analytically to C, possibly except the arc 0Dy \ 7,
if and only if there exists an entire function of exponential type ©({) interpolating the coefficients
fn such that

hy(8) < olsind| for |0] < .

Two other questions concern continuation to the sector C \ A, defined by the arc v, =
0Dy \ A, or to a neighbourhood of this arc. Both of them are answered by Arakelian’s theorems.
Theorem (Arakelian [4, 5|). The sum of the series (1) extends analytically to the sector C\A,

if and only if there is an entire function ¢ of exponential type interpolating the coefficients of the
series f, whose indicator function h,(0) satisfies the condition
7r

hy(0) < olsinf| for |0] < 5 (4)

The continuation property of f(z) to a neighbourhood of the arc 7, was studied in [6] (see
also [7]). In this case we refer to -, as an arc of regularity for the series (1).

Theorem (Arakelian [7]). The open arc v, = C\ A, is an arc of regularity of the series (1) if
and only if there is an entire function ¢ of exponential type interpolating the coefficients of the
series f, whose indicator function h,(0) satisfies the conditions: h,(0) =0 and

Tm he(6)
6—0 |9|
The inequality (4) implies (5), and (5) together with (2) and (3) gives h,(0) = 0.

Sometimes it can be easier to interpolate coefficients by meromorphic functions instead of

< o. (5)

entire ones. Here we consider interpolating functions of the form

T Tlag¢ +by)

where ¢(() is entire, a; >0, j=1,...,p, and

Zaj = ch. (7)
j=1 k=1

(6)

Denote also . .
1=l Yoy
k=1 =1

In this paper we find the conditions on a meromorphic interpolating function such that the
conclusions of all theorems formulated above still hold.

Theorem 1. The sum of the series (1) extends analytically to C\ (0D N A,) if there exists
a meromorphic function ¥ (C) of the form (6) interpolating the coefficient f,, such that the entire

function
P _ajC
. j=1%j
e(C) =)=z
j [Ck]
satisfies

ho(6) + gu sinf| < o|sind| for |0 <.
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Theorem 2. The sum of the series (1) extends analytically to the open sector C\ A, if there
exists a meromorphic function ¥(C) of the form (6) interpolating the coefficients f, such that

the entire function
P

0(¢) = d(¢Q) =L

HZ+1 |Ck|0kc

ajaJ'C

satisfies the conditions

1) he(0) =0, 2) max{h, (—g) + by (g) + gz} <o

Theorem 3. The open arc v, = 0D1\ A, is an arc of regqularity for the series (1) if there exists
a meromorphic function () of the form (6) interpolating the coefficients f,, such that the entire

function
P

0(¢) = o(¢Q) =L

HZ+1 |Ck|0k<

.a;¢
a;%

satisfies the conditions

1. Proof of Theorem 2

To begin with, we prove theorem 2 in the case when all ¢ are positive, i.e. [ = 0. Then the
statement is the following.

The sum of the series (1) extends analytically to the open sector C\ A, if there exists
a meromorphic function (() of the form (6) interpolating the coefficients f, such that the

indicator function of
p a,jaj ¢

0(C) == (C) o

q
Hk+1 c¢

(®)
satisfies the conditions
1) hy(0) =0,  2) max{hg, (—g) hy (g)} <o. (9)

The indicator of an entire function of exponential type has the following property [7]: if
hy(0) = 0 then for o € (0,7)

hy(0) < cqlsin|  for all 0] < «,

Co = ! max{hy(a), hy(—a)}.

sin o
Let ¢ be an entire function of the form (8) satisfying the conditions (9). Show that the series
(1) extends to the open sector C\ A,. It follows from the definition of an indicator that

lo(re®)| < elhe@r+eln) for 9 e R,

where o(r) is infinitesimally small compared to r as r — oo.
Taking into account the property of indicator function stated above, we get

|S0(7,,ei9)| < ea\sin9|r+o(r) for |9| < g
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Since ¢(¢) has the form (8), we obtain the inequality

| G.JT’60|
1 <ea\sin9\r+or for |9‘ I
2’

i0
[p(re’ )|W <

which in terms of ¢ = & + in is written as

a;¢
a
00 < (L=l <| T for ¢ € A, (10)
_p leg™® ’
We need the following estimate.
Lemma 1. Forall ¢ € Az
o]

[T, T(a;¢ + b))
[Th—i T(erC + di)

eol<h- (11)

~
Hk:l |Czk<|

Proof. Tt is easy to see that for |(| — oo one has
| <|a£ ( |b‘ >aC| —anarg(¢) | §_|_b|ac < | <|a5(1 + |b| )\GC\ —anarg(¢)
a -— e < la <la ) e :
|ad] |ad]
This fact together with Stirling’s formula gives
D1 (i€ + by) @t )e(@¢0) (2m (a;¢ + b))

[N

i1 T (az¢ + by) |

17—, IT(erC +dy)| 9 |(erC + di)(exlrdm) e=(excde) (27 (¢ + diy))

Nl

<
|

Hf gl (1 + ||a7J||)|°”C‘€7a”7arg M(a;¢ +bj)% e (@3¢ (27 (a;C + b))
Hk L lerCleré (1 — Cll)ckce exnarg(Q)] (cpC + dy, ) e=(ekCHde) (27 (e + dy))

P a;¢
< [ la; <| S-S o)
[Ti—y lei**l
b a —a,;nar . b 1
Mo (U i) e ™0 I ¢ + byl e b lma, ¢+ bl
TTiy (1 + fhyersemennars(© [0 |epC + dyldred 2m(ciC + di)| 2

In view of (7), this inequality after some simplifications turns into

[N

SIS

| ~X

‘e—c@?:l ai =7y e |

M\»—l

oot | sl
[T e+ )| TIE 1]
where A, B and C' are some constants.
Since |AC + B|C = el [4¢+BI apq
In|A¢ + B|¢ —0

I¢[—o00 1q

we get |AC 4 B|¢ = (<D as ¢ — oo, i.e. the lemma’s statement. O

It follows form (10) and (11) that for a meromorphic function ¢(¢) defined by (6) we have
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[W(Q)| < e?lreleD for ¢ e Ax. (12)

Consider the following function

pre

627”'{ -1

9(¢, 2) =

of two complex variables ( = £ +in, z = x + iy. It is meromorphic in ¢ € C and holomorphic in

Denote D* := UpezDq/4(m).
Notice that there exists a constant ¢ > 0 such that

em(Inl—n)

2™ — 1] > —— for (e C\ D*.
From this we get the estimate
19(¢, 2)| < cetloglzl—(m=lm—arg z])inl
for € C\ D* and z € C\ R,. Using (12) for ( € Az \ D* and z € C\ Ry, we see that
1 (O)|]g(¢, 2)| < ceb 108 |z| = (r—o—|r—arg z|) [n|+o([C]) (13)
For ¢ € (Az \ D*) and z € C\ Ay there is the following bound
[W(O)||g(C, 2)| < ceblos lzI=dlmi+olich),

Consider the integral

I = / $(Q)g(¢, 2)dc,

G m

over the oriented boundary of G, that consists of the segments (see Fig. 1)

m+1/2

[2] a-—+m

—m—1/2

Fig. 1.
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[ 1 1
F,ln: _a—i(m+2),a+i<m+2)],
2 [ . 1 ) 1
Iy, =la+1 m+§ ,a+m+14 m—i—i ,

s _ , 1 : 1
Iy, =la+m+i m+§ ,a+m—1 m+§ ,

1 1
rd = {a+mi<m+2),ai(m+2>}

1
h - <a<-.
where 7 <a <
The integral I, is the sum of four integrals I}, 12, I3, I% over T'L,

For ( € Az \ D* u z € C\ A, there hold the following estimates

, 02,13 T respectively.

a+m
2= [ 16©a(¢ )| < cemimsd) [ estmisbeetch,
F},’n a
= / ()9 (¢, 2)I|d¢| < celertmmlzlolm) / n,
rs —i(m+3)

a

th= [ 100G, 2lde] < cemdimed) [ esinisteochge

an a+m

We see that for z € Dy \ A, the integrals 12, I3, I} tend to 0 as m — oo.
Thus,

m—00 m—00

G m

fim L= lim [ 0(Qg(¢. A = lim [ 6(Qo(¢.2)e = tim I,
T,

In the domain G,,, the integrand has simple poles in real integer points and finitely many
—v—bs
poles in points ——= € G,, v =0,1,... (recall that a;,b; are parameters in the definition (6)
Y

of ¥(()).

The residue theorem yields

/( 9(C, 2)d¢ = szw)

G m

where P(z) is a polynomial.
Consider the integral

a+100
I= / P(O)g(C, 2)dC.

a—1i00
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For ( =a+inand z € C\ Ay 15 we have
1(O]g(C, 2)| < cean IzI=elmlelic,

It follows from this inequality that the integral I converges absolutely and uniformly on any
compact subset K C C\ A, s, and defines a holomorphic function on the set of interior points
of K. For z € D1\ Ayt

a+1i00

/ P()g(C, 2)dC — / H(Og(C.2)C a5 m — oo,

1 e
ri, a—100

Since I, — I as m — oo, I(z) = f(z) + P(z) for z € D; N K°. This means that f(z) extends
analytically to K°. Because K is an arbitrary compact set in C\ A,ys for any small §, the
function f(z) extends to the open sector C \ A,. Thus, the theorem is proved if all ¢; are
positive.

Prove now the theorem in the case when ¢, may be negative. Without loss of generality we
may assume that only ¢, among c;, is negative, i.e. 5= Ca Then
P F(ajC + bj)

v =90 || s DexC + )T (-3¢ +d)’

P gasC P a.ajc(i)%C
Q)=o) = = p() =2
SD( ) ( )HZ+1 |C}g‘CkC ( ) HZ_I’_]i Ckck(

According to the condition of the theorem

max{i% (—g) + gl7h¢ (g) + gl} < o.

Note that the function ¥ (¢) may be rewritten in the form (6) such that all ¢ are positive

i1 T(a;C+ b)) l l
B j=111a; j 1 . b
»(¢) = o(C) Z;i o dk)r (1 + 2C +d> sin T ( 2( d) )

Consider now the entire function

l
) 3¢

l p_ a4a]< 1\2
B(C) == ¢(C)sin (—24 - d) = 2)
fp1 RS

Its indicator is bounded
1 ) p a_aj'feie (L)%rew 6i7r%rei€ _ efifrérew l
ha(0) = lim = 1In|g(re’?) == 22 o < hp(0) + 75 |sin(0)].
r—oo T 1 Ckckre 7

Thus
T

hs(0) =0, hg (j:§> <o

The function $(¢) satisfies the conditions of (9), hence the sum of the series (1) extends
analytically to the open sector C\ A,. Theorem 2 is proof.
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The proof of Theorem 3 is largely similar to that of Theorem 2. Namely, from condition 2)
of Theorem 3 it follows that for any o > 0 there exists ¢ > 0 such that h,(0) < (o +9)|sin 6| for
|0] < a. Consequently, the bounds (12) and (13) for the modulus of 1 (¢) and ({)g(¢, z) hold
for ¢ € A,. The domains G and G,, become

1
G =Dy UA? and Gm{C§+in€G:£<m+2}

see Fig. 2), ie. 0G,, =T! UT2.
g b m m

(o
\x.

Fig. 2.

The integral I,,, is then the sum I}, and IZ over I'},, and I'Z | and for z € KN DY the integral
I2, — 0 as m — oc.

The integral I over OG converges for ¢ € A,,z € K, (Fig. 3) where K = D\ (A?H_%UD%),

0 sin av
5
- ~
r) h
ks )
‘K . o +25 :
g I !
—:] A i es
\'. ,’/ !
: ,
5, .
Vs
i -
- -
Fig. 3.

The rest of the proof is the same.

As for the proof Theorem 1, it is enough to note that the main estimates (12) and (13)

hold for all ¢ € C. Therfore, by choosing appropriate contours of integrations we prove analytic
continuation of the sum of the series to C\ (0D1 N A,).
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2. Examples

Consider two examples clarifying why interpolation of the coefficients by meromorphic func-
tions, and not entire, may be advantageous.
Example 1. Consider the series

R I(3n+35)3" 0
JG) = n;) T(n+ 1T (=in+1) 9%n 7 (14)

whose domain of convergence is the unit disk. Its coefficients

I(2n+ £)3"

=ty P (—1n+ )23n

are given by the values of a meromorphic function of the form (6), namely,

pio) = 2 LGS (15)
25¢T(C+10(=5¢+3)
In this case the entire function from Theorem 2 is
3¢ (%)%

= =1. 16
A=) (16)

1 2 2 ™ T s ™ ™

Here =1+ 3733 hy(8) =0 and max{hw (—5) - g»hw (5) + g} < 3

According to Theorem 2, the series (14) extends analytically to the open sector C\ Axz.

Note that the series (17) is the normalized series representing a branch of solution to the
algebraic equation y® — zy — 1 = 0. This branch has poles in e —i3m
sector C\ Az [9].

It seems that an entire function interpolating the coefficients cannot be constructed so easily.

and e*3™ and extends to the

Example 2. Consider now the series

i k) AR (17)

) (§"+ 5)27

with the same domain of convergence the unit disk. Its coefficients are

o TG
D+ ) (222 A 2%

They are interpolated by the following entire function

o 24
ATG+HTGHIT(GE-5)

p(z) =

Indeed, in Gauss’s multiplication formula

I'(w)l (w + ;) .T (w + m_l) = m?""(27) "7 [ (mw)
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1
letm:3,w:g+§,then

n 1 n 2 n -
'f=+-=-)T(=4+=)T(=+1)=3
(5r3)r(53)r G+

n 1
Express I' 3 + 3 through the other terms of this identity and substitute it into the expression

for f,, to see that p(n) = f, n € N.
Estimate |p(r)| by using Stirling’s formula

DN =

_n27TF(n +1).

9 257T(2r — Lygin(r2r=L
lo(r)] = |— (TB 23) T( =)
: TPE+I)IGE+D
gr r—1\z (2r Zr_ 1 _(2r_1 r—
Ni?z (27r231)12 (2?7%)3; 36 (23 %) s1n(7r231) 1 e
32 (2m£2) (§+§)§+§ o (5+3) (2n(z +1)) (§+1)3+ G

— 1 o(r)
hg@(o) h |<)0(T)| h H(CT + € ) g O,
T—00 T r—00 T
on the other hand |
ho0) > Tm 2Ol g gt 2o,
n— oo n n—oo

therefore h,(0) = 0.
In order to estimate |p(re’2)| and |p(re~?3)| we use the double-sided estimate for the
Gamma-function (see [8])

cr(lyl + 1) 2e 2V < T(z + iy) < ea(ly| + 1)° 2e 5,

where z € K C R\ {0,—1,-2,...}, K is compact. The constants ¢; and ¢y depend on the choice
of K, y € R. Then

2m
ToG T

p(reF)| < C o
3

(&
a(+) ) (g )

(NI

or

Therefore

(1)<,

It follows from Arakelian’s Theorem [4] that the series (17) extends to the open sector C\ Az .
On the other hand, the coefficients of the series (17) are interpolated by the meromorphic

function
s = 3 Thes)
25¢T(C+ DL (=3¢ +3)
The entire function of Theorem 2 is
3¢ 37s¢
[} = =1
3
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3 3 3 2 3’ 2 3 3
Therefore, by Theorem 2 the series (17) extends to the open sector C\ A 27

and l:1—|—2—1:é, hy(0) =0 and max{hg,(—ﬂ)—%hw<ﬂ-)+2ﬂ}<2ﬁ.
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AnamTYyeckoe NpoJoJI2KEeHNEe CTENEeHHbIX PsJI0B MyTeM
MHTePNoJaInun Ko3dpunueHToB MepoMOopPOHBIMNT
dbyukImsaMn

Anekcangap . MkprusiH

B pabome uccaedyemcs 60npocov, 06 GHANUMUMECKOM NPOOOAAHCEHUU CTNENENHHO020 DAL HePe3 OMKPLIMYI0
dyey Ha eparuye Kpyaa cxodumocmu. Omeem Hwa maxot 80npoc dar 6 MePpMUHAT MEPOMOPPHHOT PYHKUUU
CNEYUAALHO20 8uda, urmepnosupyrowel Koagduyuernmo, pada. Ioayuerv, Yycio8us npu KOMOPwLLT CYMMa
PAOA AHANUMUNECKU NPOJOANCAETNCA 8 HEKOMOPYIO 0KpecmHocms dyau 6 cexmop, onpedeaertbill 0yz01,
80 6CI0 KOMNMACKCHYIO MAOCKOCMb, KPOME HEKOMOpol dyau.

Kmouesvie crosa: cmenernole paovl, GHAANUMUYECKOE NPOJOAHCEHUE, UHMEPTOAUPYOWAL MEPOMOPPHHAA
Pynryua, unduramop GYHKYUA.
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