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We study the problem of analytic continuation of a power series across an open arc on the boundary of

the circle of convergence. The answer is given in terms of a meromorphic function of a special form

that interpolates the coefficients of the series. We find the conditions for the sum of the series to extend

analytically to a neigbourhood of the arc, to a sector defined by the arc, or to the whole complex plane

except some arc on the convergence disk.
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Introduction

The problem of analytic continuation and finding singular points of a function has a rich and

long history. It has been studied by many prominent mathematicians such as Carlson, Polya,

Hadamard, and others (see, for example, [1]). There are different approaches to studying such

problems. In this paper we consider the question of continuation of a power series across the

boundary of its circle of convergence. First, we recall some definitions and results.

Consider a power series

f(z) =

∞
∑

n=0

fnz
n (1)

in z ∈ C, whose domain of convergence is the unit disk D1 := {z ∈ C : |z| < 1}.

The Cauchy-Hadamard theorem yields that

lim
n→∞

n
√

|fn| = 1. (2)

We say that a function ϕ interpolates the coefficients of the series (1), if

ϕ(n) = fn for all n ∈ N. (3)

Recall (see, e.g. [2]) that the indicator function hϕ(θ) for an entire function ϕ is defined as the

upper limit

hϕ(θ) = lim
r→∞

ln |ϕ(reiθ)|

r
, θ ∈ R.

Let ∆σ be the sector {z = reiθ ∈ C : |θ| 6 σ}, σ ∈ [0, π). By γσ,ρ we denote the open arc

∂Dρ \ ∆σ.
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There are at least three types of questions of analytic continuation of (1) across the arc γσ.

The first one asks about the conditions for continuation to the whole complex plane except

∂D1 \ ∆σ. The answer is given by Polya’s theorem.

Theorem (Polya [3]). The series (1) extends analytically to C, possibly except the arc ∂D1 \γσ,
if and only if there exists an entire function of exponential type ϕ(ζ) interpolating the coefficients
fn such that

hϕ(θ) 6 σ| sin θ| for |θ| 6 π.

Two other questions concern continuation to the sector C \ ∆σ defined by the arc γσ =

∂D1\∆σ, or to a neighbourhood of this arc. Both of them are answered by Arakelian’s theorems.

Theorem (Arakelian [4, 5]). The sum of the series (1) extends analytically to the sector C\∆σ

if and only if there is an entire function ϕ of exponential type interpolating the coefficients of the
series fn whose indicator function hϕ(θ) satisfies the condition

hϕ(θ) 6 σ| sin θ| for |θ| <
π

2
. (4)

The continuation property of f(z) to a neighbourhood of the arc γσ was studied in [6] (see

also [7]). In this case we refer to γσ as an arc of regularity for the series (1).

Theorem (Arakelian [7]). The open arc γσ = C \∆σ is an arc of regularity of the series (1) if
and only if there is an entire function ϕ of exponential type interpolating the coefficients of the
series fn whose indicator function hϕ(θ) satisfies the conditions: hϕ(0) = 0 and

lim
θ→0

hϕ(θ)

|θ|
6 σ. (5)

The inequality (4) implies (5), and (5) together with (2) and (3) gives hϕ(0) = 0.

Sometimes it can be easier to interpolate coefficients by meromorphic functions instead of

entire ones. Here we consider interpolating functions of the form

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)

∏q
k=1 Γ(ckζ + dk)

, (6)

where φ(ζ) is entire, aj > 0, j = 1, ..., p, and

p
∑

j=1

aj =

q
∑

k=1

ck. (7)

Denote also

l =

q
∑

k=1

|ck| −

p
∑

j=1

aj .

In this paper we find the conditions on a meromorphic interpolating function such that the

conclusions of all theorems formulated above still hold.

Theorem 1. The sum of the series (1) extends analytically to C \ (∂D1 ∩ ∆σ) if there exists
a meromorphic function ψ(ζ) of the form (6) interpolating the coefficient fn such that the entire
function

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ

∏q
k=1 |ck|

ckζ

satisfies

hϕ(θ) +
π

2
l| sin θ| 6 σ| sin θ| for |θ| 6 π.
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Theorem 2. The sum of the series (1) extends analytically to the open sector C \ ∆σ if there
exists a meromorphic function ψ(ζ) of the form (6) interpolating the coefficients fn such that
the entire function

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ

∏q
k+1 |ck|

ckζ

satisfies the conditions

1) hϕ(0) = 0, 2) max
{

hϕ

(

−
π

2

)

+
π

2
l, hϕ

(π

2

)

+
π

2
l
}

6 σ.

Theorem 3. The open arc γσ = ∂D1 \∆σ is an arc of regularity for the series (1) if there exists
a meromorphic function ψ(ζ) of the form (6) interpolating the coefficients fn such that the entire
function

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ

∏q
k+1 |ck|

ckζ

satisfies the conditions

1) hϕ(0) = 0, 2) lim
θ→0

hϕ(θ)

|θ|
+
π

2
l 6 σ.

1. Proof of Theorem 2

To begin with, we prove theorem 2 in the case when all ck are positive, i.e. l = 0. Then the

statement is the following.

The sum of the series (1) extends analytically to the open sector C \ ∆σ if there exists

a meromorphic function ψ(ζ) of the form (6) interpolating the coefficients fn such that the

indicator function of

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ

∏q
k+1 ck

ckζ
(8)

satisfies the conditions

1) hϕ(0) = 0, 2) max
{

hϕ

(

−
π

2

)

, hϕ

(π

2

)}

6 σ. (9)

The indicator of an entire function of exponential type has the following property [7]: if

hϕ(0) = 0 then for α ∈ (0, π)

hϕ(θ) 6 cα| sin θ| for all |θ| 6 α,

cα =
1

sinα
max{hϕ(α), hϕ(−α)}.

Let ϕ be an entire function of the form (8) satisfying the conditions (9). Show that the series

(1) extends to the open sector C \ ∆σ. It follows from the definition of an indicator that

|ϕ(reiθ)| 6 ehϕ(θ)r+o(r) for θ ∈ R,

where o(r) is infinitesimally small compared to r as r → ∞.

Taking into account the property of indicator function stated above, we get

|ϕ(reiθ)| 6 eσ| sin θ|r+o(r) for |θ| 6
π

2
.
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Since ϕ(ζ) has the form (8), we obtain the inequality

|φ(reiθ)|

∏p
j=1 |a

ajreiθ

j |
∏q

k=1 |c
ckreiθ

k |
6 eσ| sin θ|r+o(r) for |θ| 6

π

2
,

which in terms of ζ = ξ + iη is written as

|φ(ζ)| 6

(

∏p
j=1 |a

ajζ
j |

∏q
k=1 |c

ckζ
k |

)−1

eσ|η|+o(|ζ|) for ζ ∈ ∆π
2
. (10)

We need the following estimate.

Lemma 1. For all ζ ∈ ∆π
2

∣

∣

∣

∣

∣

∏p
j=1 Γ(ajζ + bj)

∏q
k=1 Γ(ckζ + dk)

∣

∣

∣

∣

∣

6

∏p
j=1 |a

ajζ
j |

∏q
k=1 |c

ckζ
k |

eo(|ζ|). (11)

Proof. It is easy to see that for |ζ| → ∞ one has

|aζ|aξ

(

1 −
|b|

|aζ|

)|aζ|

e−aη arg(ζ)
6 |aζ + b|aζ

6 |aζ|aξ(1 +
|b|

|aζ|
)|aζ|e−aη arg(ζ).

This fact together with Stirling’s formula gives

∏p
j=1 |Γ(ajζ + bj)|

∏q
k=1 |Γ(ckζ + dk)|

∼

∏p
j=1 |(ajζ + bj)

(ajζ+bj)e−(ajζ+bj)(2π(ajζ + bj))
1

2 |
∏q

k=1 |(ckζ + dk)(ckζ+dk)e−(ckζ+dk)(2π(ckζ + dk))
1

2 |
6

6

∏p
j=1 |ajζ|

ajξ(1 +
|bj |
|ajζ| )

|ajζ|e−ajη arg(ζ)|(ajζ + bj)
bje−(ajζ+bj)(2π(ajζ + bj))

1

2 |
∏q

k=1 |ckζ|
ckξ(1 − |dk|

|ckζ| )
ckζe−ckη arg(ζ)|(ckζ + dk)dke−(ckζ+dk)(2π(ckζ + dk))

1

2 |
6

6

∏p
j=1 |a

ajζ
j |

∏q
k=1 |c

ckζ
k |

∣

∣

∣
ζζ(

∑p
j=1

aj−
∑ q

k=1
ck)
∣

∣

∣

∣

∣

∣
e−ζ(

∑p
j=1

aj−
∑ q

k=1
ck)
∣

∣

∣
×

×

∏p
j=1 (1 +

|bj |
|ajζ| )

ajξe−ajη arg(ζ)

∏q
k=1 (1 + |dk|

|ckζ| )
ckξe−ckη arg(ζ)

×

∏p
j=1 |ajζ + bj |

bje−bj |2π(ajζ + bj)|
1

2

∏q
k=1 |ckζ + dk|dke−dk |2π(ckζ + dk)|

1

2

.

In view of (7), this inequality after some simplifications turns into

∣

∣

∣

∣

∣

∏p
j=1 Γ(ajζ + bj)

∏q
k=1 Γ(ckζ + dk)

∣

∣

∣

∣

∣

6

∏p
j=1 |a

ajζ
j |

∏q
k=1 |c

ckζ
k |

|Aζ +B|C

where A,B and C are some constants.

Since |Aζ +B|C = eln |Aζ+B|C and

lim
|ζ|→∞

ln |Aζ +B|C

|ζ|
= 0,

we get |Aζ +B|C = eo(|ζ|) as ζ → ∞, i.e. the lemma’s statement. 2

It follows form (10) and (11) that for a meromorphic function ψ(ζ) defined by (6) we have
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|ψ(ζ)| 6 eσ|η|+o(|ζ|) for ζ ∈ ∆π
2
. (12)

Consider the following function

g(ζ, z) =
zζ

e2πiζ − 1

of two complex variables ζ = ξ + iη, z = x+ iy. It is meromorphic in ζ ∈ C and holomorphic in

z ∈ C \ R+.

Denote D∗ := ∪m∈ZD1/4(m).

Notice that there exists a constant c > 0 such that

|e2πiζ − 1| >
eπ(|η|−η)

c
for ζ ∈ C \D∗.

From this we get the estimate

|g(ζ, z)| < ceξ log |z|−(π−|π−arg z|)|η|

for ζ ∈ C \D∗ and z ∈ C \ R+. Using (12) for ζ ∈ ∆π
2
\D∗ and z ∈ C \ R+, we see that

|ψ(ζ)||g(ζ, z)| < ceξ log |z|−(π−σ−|π−arg z|)|η|+o(|ζ|). (13)

For ζ ∈ (∆π
2
\D∗) and z ∈ C \ ∆σ+δ there is the following bound

|ψ(ζ)||g(ζ, z)| < ceξ log |z|−δ|η|+o(|ζ|).

Consider the integral

Im =

∫

∂Gm

ψ(ζ)g(ζ, z)dζ,

over the oriented boundary of Gm that consists of the segments (see Fig. 1)

Fig. 1.
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Γ1
m =

[

a− i

(

m+
1

2

)

, a+ i

(

m+
1

2

)]

,

Γ2
m =

[

a+ i

(

m+
1

2

)

, a+m+ i

(

m+
1

2

)]

,

Γ3
m =

[

a+m+ i

(

m+
1

2

)

, a+m− i

(

m+
1

2

)]

,

Γ4
m =

[

a+m− i

(

m+
1

2

)

, a− i

(

m+
1

2

)]

where
1

4
< a <

3

4
.

The integral Im is the sum of four integrals I1
m, I

2
m, I

3
m, I

4
m over Γ1

m,Γ
2
m,Γ

3
m,Γ

4
m respectively.

For ζ ∈ ∆π
2
\D∗ и z ∈ C \ ∆σ+δ there hold the following estimates

I2
m =

∫

Γ2
m

|ψ(ζ)g(ζ, z)||dζ| 6 ce−δ(m+ 1

2
)

a+m
∫

a

eξ ln |z|+o(|ζ|)dξ,

I3
m =

∫

Γ3
m

|ψ(ζ)g(ζ, z)||dζ| 6 ce(a+m) ln |z|+o(m)

i(m+ 1

2
)

∫

−i(m+ 1

2
)

dη,

I4
m =

∫

Γ4
m

|ψ(ζ)g(ζ, z)||dζ| 6 ce−δ(m+ 1

2
)

a
∫

a+m

eξ ln |z|+o(|ζ|)dξ.

We see that for z ∈ D1 \ ∆σ+δ the integrals I2
m, I

3
m, I

4
m tend to 0 as m→ ∞.

Thus,

lim
m→∞

Im = lim
m→∞

∫

∂Gm

ψ(ζ)g(ζ, z)dζ = lim
m→∞

∫

Γ1
m

ψ(ζ)g(ζ, z)dζ = lim
m→∞

I1
m.

In the domain Gm, the integrand has simple poles in real integer points and finitely many

poles in points
−ν − bj

aj
∈ Gm ν = 0, 1, ... (recall that aj , bj are parameters in the definition (6)

of ψ(ζ)).

The residue theorem yields

∫

∂Gm

ϕ(ζ)g(ζ, z)dζ =

m
∑

n=1

ϕ(n)zn + P (z),

where P (z) is a polynomial.

Consider the integral

I =

a+i∞
∫

a−i∞

ϕ(ζ)g(ζ, z)dζ.
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For ζ = a+ iη and z ∈ C \ ∆σ+δ we have

|ϕ(ζ)||g(ζ, z)| < cea ln |z|−δ|η|+o(|ζ|).

It follows from this inequality that the integral I converges absolutely and uniformly on any

compact subset K ⊂ C \ ∆σ+δ, and defines a holomorphic function on the set of interior points

of K. For z ∈ D1 \ ∆σ+δ

∫

Γ1
m

ϕ(ζ)g(ζ, z)dζ →

a+i∞
∫

a−i∞

ϕ(ζ)g(ζ, z)dζ as m→ ∞.

Since Im → I as m → ∞, I(z) = f(z) + P (z) for z ∈ D1 ∩Ko. This means that f(z) extends

analytically to Ko. Because K is an arbitrary compact set in C \ ∆σ+δ for any small δ, the

function f(z) extends to the open sector C \ ∆σ. Thus, the theorem is proved if all ck are

positive.

Prove now the theorem in the case when ck may be negative. Without loss of generality we

may assume that only cq among ck is negative, i.e.
l

2
= −cq. Then

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)

∏q−1
k=1 Γ(ckζ + dk)Γ

(

− l
2ζ + d

) ,

ϕ(ζ) := φ(ζ)

∏p
j=1 aj

ajζ

∏q
k+1 |ck|

ckζ
= φ(ζ)

∏p
j=1 aj

ajζ
(

l
2

)
l
2
ζ

∏q−1
k+1 ck

ckζ
.

According to the condition of the theorem

max
{

hϕ

(

−
π

2

)

+
π

2
l, hϕ

(π

2

)

+
π

2
l
}

6 σ.

Note that the function ψ(ζ) may be rewritten in the form (6) such that all ck are positive

ψ(ζ) = φ(ζ)

∏p
j=1 Γ(ajζ + bj)

∏q−1
k=1 Γ(ckζ + dk)

Γ

(

1 +
l

2
ζ + d

)

sinπ

(

−
l

2
ζ − d

)

.

Consider now the entire function

ϕ̃(ζ) := φ(ζ) sinπ

(

−
l

2
ζ − d

)

∏p
j=1 aj

ajζ
(

l
2

)
l
2
ζ

∏q−1
k+1 ck

ckζ
.

Its indicator is bounded

hϕ̃(θ) = lim
r→∞

1

r
ln

∣

∣

∣

∣

∣

∣

φ(reiθ)

∏p
j=1 aj

ajreiθ ( l
2

)
l
2
reiθ

∏q−1
k+1 ck

ckreiθ

eiπ l
2
reiθ

− e−iπ l
2
reiθ

2i

∣

∣

∣

∣

∣

∣

6 hϕ(θ) + π
l

2
| sin(θ)|.

Thus

hϕ̃(0) = 0, hϕ̃

(

±
π

2

)

6 σ.

The function ϕ̃(ζ) satisfies the conditions of (9), hence the sum of the series (1) extends

analytically to the open sector C \ ∆σ. Theorem 2 is proof.
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The proof of Theorem 3 is largely similar to that of Theorem 2. Namely, from condition 2)

of Theorem 3 it follows that for any α > 0 there exists δ > 0 such that hϕ(θ) 6 (σ+ δ)| sin θ| for

|θ| 6 α. Consequently, the bounds (12) and (13) for the modulus of ψ(ζ) and ψ(ζ)g(ζ, z) hold

for ζ ∈ ∆α. The domains G and Gm become

G = D1 ∪ ∆o
α and Gm =

{

ζ = ξ + iη ∈ G : ξ 6 m+
1

2

}

(see Fig. 2), i.e. ∂Gm = Γ1
m ∪ Γ2

m.

Fig. 2.

The integral Im is then the sum I1
m and I2

m over Γ1
m, and Γ2

m, and for z ∈ K∩Do
1 the integral

I2
m → 0 as m→ ∞.

The integral I over ∂G converges for ζ ∈ ∆α, z ∈ K, (Fig. 3) where K = Deε \(∆o
σ+2δ∪D 1

2

),

ε =
δ sinα

2
.

Fig. 3.

The rest of the proof is the same.

As for the proof Theorem 1, it is enough to note that the main estimates (12) and (13)

hold for all ζ ∈ C. Therfore, by choosing appropriate contours of integrations we prove analytic

continuation of the sum of the series to C \ (∂D1 ∩ ∆σ).
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2. Examples

Consider two examples clarifying why interpolation of the coefficients by meromorphic func-

tions, and not entire, may be advantageous.

Example 1. Consider the series

f(z) =
∞
∑

n=0

Γ
(

2
3n+ 1

3

)

3n

Γ(n+ 1)Γ
(

− 1
3n+ 4

3

)

2
2

3
n
zn, (14)

whose domain of convergence is the unit disk. Its coefficients

fn =
Γ( 2

3n+ 1
3 )3n

Γ(n+ 1)Γ(− 1
3n+ 4

3 )2
2

3
n

are given by the values of a meromorphic function of the form (6), namely,

ψ(ζ) =
3ζ

2
2

3
ζ

Γ( 2
3ζ + 1

3 )

Γ(ζ + 1)Γ(− 1
3ζ + 4

3 )
. (15)

In this case the entire function from Theorem 2 is

ϕ(ζ) =
3ζ

2
2

3
ζ

( 2
3 )

2ζ
3

( 1
3 )

−ζ
3

≡ 1. (16)

Here l = 1 +
1

3
−

2

3
=

2

3
, hϕ(θ) = 0 and max

{

hϕ

(

−
π

2

)

−
π

3
, hϕ

(π

2

)

+
π

3

}

6
π

3
.

According to Theorem 2, the series (14) extends analytically to the open sector C \ ∆π
3
.

Note that the series (17) is the normalized series representing a branch of solution to the

algebraic equation y3 − zy − 1 = 0. This branch has poles in e−i 2

3
π and ei 2

3
π and extends to the

sector C \ ∆ 2

3
π [9].

It seems that an entire function interpolating the coefficients cannot be constructed so easily.

Example 2. Consider now the series

f(z) =

∞
∑

n=0

Γ
(

n
3 + 1

3

)

3n

Γ(n+ 1)Γ
(

−2n
3 + 4

3

)

2
2n
3

zn, (17)

with the same domain of convergence the unit disk. Its coefficients are

fn =
Γ
(

n
3 + 1

3

)

3n

Γ(n+ 1)Γ
(

−2n
3 + 4

3

)

2
2n
3

.

They are interpolated by the following entire function

ϕ(z) =
2π

3
1

2

2−
2

3
z

Γ
(

z
3 + 2

3

)

Γ
(

z
3 + 1

)

Γ
(

4
3 − 2z

3

) .

Indeed, in Gauss’s multiplication formula

Γ(w)Γ

(

w +
1

m

)

...Γ

(

w +
m− 1

m

)

= m
1

2
−mw(2π)

m−1

2 Γ(mw)
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let m = 3, w =
n

3
+

1

3
, then

Γ

(

n

3
+

1

3

)

Γ

(

n

3
+

2

3

)

Γ
(n

3
+ 1
)

= 3
−

1

2
−n

2πΓ(n+ 1).

Express Γ

(

n

3
+

1

3

)

through the other terms of this identity and substitute it into the expression

for fn, to see that ϕ(n) = fn n ∈ N.

Estimate |ϕ(r)| by using Stirling’s formula

|ϕ(r)| =

∣

∣

∣

∣

∣

2

3
1

2

2
2

3
rΓ( 2r

3 − 1
3 )sin(π 2r−1

3 )

Γ( r
3 + 2

3 )Γ( r
3 + 1)

∣

∣

∣

∣

∣

∼

∼
2

3
1

2

2
2

3
r
(

2π 2r−1
3

)
1

2

(

2r
3 − 1

3

)
2r
3
− 1

3 e−( 2r
3
− 1

3 )

(

2π r+2
3

)
1

2

(

r
3 + 2

3

)
r
3
+ 2

3 e−( r
3
+ 2

3 )

sin
(

π 2r−1
3

)

(

2π( r
3 + 1)

)
1

2

(

r
3 + 1

)
r
3
+1
e−( r

3
+1)

6 Cr + eo(r).

It follows that

hϕ(0) = lim
r→∞

ln |ϕ(r)|

r
6 lim

r→∞

ln(Cr + eo(r))

r
6 0,

on the other hand

hϕ(0) > lim
n→∞

ln |ϕ(n)|

n
= lim

n→∞
ln |fn|

1

n = 0,

therefore hϕ(0) = 0.

In order to estimate |ϕ(rei π
2 )| and |ϕ(re−i π

2 )| we use the double-sided estimate for the

Gamma-function (see [8])

c1(|y| + 1)x− 1

2 e−
π
2
|y|

6 Γ(x+ iy) 6 c2(|y| + 1)x− 1

2 e−
π
2
|y|,

where x ∈ K ⊂ R \ {0,−1,−2, ...}, K is compact. The constants c1 and c2 depend on the choice

of K, y ∈ R. Then

|ϕ(re±i π
2 )| 6 C

e
π
6

re
π
6

re
2π
6

r

c1
(

r
3 + 1

)
2

3
− 1

2 c1
(

r
3 + 1

)1− 1

2 c1
(

2r
3 + 1

)
4

3
− 1

2

,

or

ln |ϕ(re±i π
2 )| 6

2π

3
r + o(r).

Therefore

hϕ

(

±
π

2

)

6
2π

3
.

It follows from Arakelian’s Theorem [4] that the series (17) extends to the open sector C \∆ 2

3
π.

On the other hand, the coefficients of the series (17) are interpolated by the meromorphic

function

ψ(ζ) =
3ζ

2
2

3
ζ

Γ
(

1
3ζ + 1

3

)

Γ(ζ + 1)Γ
(

− 2
3ζ + 4

3

) .

The entire function of Theorem 2 is

Φ(ζ) =
3ζ

2
2

3
ζ

3−
1

3ζ

(

− 2
3

)− 2

3
ζ
≡ 1,
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and l = 1 +
2

3
−

1

3
=

4

3
, hϕ(θ) = 0 and max

{

hϕ

(

−
π

2

)

−
2π

3
, hϕ

(π

2

)

+
2π

3

}

6
2π

3
.

Therefore, by Theorem 2 the series (17) extends to the open sector C \ ∆ 2

3
π.
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Аналитическое продолжение степенных рядов путем
интерполяции коэффициентов мероморфными
функциями

Александр Д. Мкртчян

В работе исследуется вопросы об аналитическом продолжении степенного ряда через открытую

дугу на границе круга сходимости. Ответ на такой вопрос дан в терминах мероморфной функции

специального вида, интерполирующей коэффициенты ряда. Получены условия при которых сумма

ряда аналитически продолжается в некоторую окрестность дуги в сектор, определенный дугой,

во всю комплексную плоскость, кроме некоторой дуги.

Ключевые слова: cтепенные ряды, аналитическое продолжение, интерполирующая мероморфная

функция, индикатор функция.
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