$\sim \sim \sim$

Energy systems and complexes Энергетические системы и комплексы

EDN: UHGXJY

УДК 620.92

Feasibility Study of the Use of Solar Tracking Systems for Various Regions of Russia

Sergei V. Mitrofanov*

Orenburg State University Orenburg, Russian Federation

Received 26.12.2024, received in revised form 08.01.2025, accepted 26.01.2025

Abstract. The article provides an overview of the literature sources devoted to the use of solar trackers in pilot operation. It is shown that the efficiency of using uniaxial and biaxial solar trackers depends on the location of experimental solar stations. The article presents a method for calculating the amount of solar insolation received by a photovoltaic panel, taking into account the sky clarity index. The technique makes it possible to take into account the angle of the surface position of solar photovoltaic panels relative to the horizontal surface of the Earth at any given time (with an accuracy of seconds) throughout the year. A mathematical model is proposed for determining the index and payback period of solar power plants equipped with solar tracking systems with an accuracy of up to a year. A mathematical model has been developed for calculating the power consumption for rotating platforms with solar photovoltaic panels using trackers based on the angle of declination and azimuth of the Sun. The effectiveness of the use of solar tracking systems for various regions of the South, Volga region, Urals, Siberia and the Russian Far East has been evaluated. The calculations were performed taking into account real hourly meteorological data over the past five years (2019–2023). The calculation results showed that the efficiency of the solar tracker throughout Russia is very significant. The increase in electricity generated by a solar station equipped with a two-axis solar tracker ranges from 24 to 40 %. According to the developed methodology based on the example of Technical and economic calculations were carried out in Orenburg, which showed that it is most economically feasible to use uniaxial trackers in this region. Calculations show that the use of single-coordinate azimuthal and dual-coordinate solar tracking systems can reduce the payback period of a solar power plant.

Keywords: solar power plant, tracker, solar insolation, sky clarity index, sun tracking system.

Citation: Mitrofanov S. V. Feasibility Study of the Use of Solar Tracking Systems for Various Regions of Russia. J. Sib. Fed. Univ. Eng. & Technol., 2025, 18(2), 154–168. EDN: UHGXJY

© Siberian Federal University. All rights reserved

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0).

* Corresponding author E-mail address: mitser2002@mail.ru

Технико-экономическое обоснование применения систем слежения за Солнцем для различных регионов России

С.В. Митрофанов

Оренбургский государственный университет Российская Федерация, Оренбург

Аннотация. В статье выполнен обзор литературных источников, посвященных использованию солнечных трекеров в опытной эксплуатации. Показано, что эффективность использования одноосных и двухосных солнечных трекеров зависит от месторасположения экспериментальных солнечных станций. В статье представлена методика расчета объема солнечной инсоляции, принимаемой фотоэлектрической панелью с учетом индекса ясности неба. Методика позволяет учитывать угол положения поверхности солнечных фотоэлектрических панелей относительно горизонтальной поверхности Земли в любой момент времени (с точностью до секунд) в течение всего года. Предложена математическая модель определения индекса и срока окупаемости солнечных электростанций, оснащенных системами слежения за Солнцем с точностью до года. Разработана математическая модель расчета расхода электроэнергии на поворот платформ с солнечными фотоэлектрическими панелями с помощью трекеров по углу склонения и азимута Солнца. Выполнена оценка эффективности применения систем слежения за Солнцем для различных регионов Юга, Поволжья, Урала, Сибири и Дальнего Востока России. Расчеты выполнялись с учетом реальных ежечасных метеорологических данных в течение последних пяти лет (2019–2023 гг.). Результаты расчета показали, что эффективность работы солнечного трекера на всей территории России весьма существенна. Прирост выработанной солнечной станцией, оснащенной двухосевым солнечным трекером, электроэнергии колеблется от 24 до 40 %. По разработанной методике на примере г. Оренбурга были выполнены технико-экономические расчеты, которые показали, что в данном регионе наиболее экономически целесообразно использовать одноосные трекеры. Расчеты показывают, что применение однокоординатных азимутальных, а также двухкоординатных систем слежения за Солнцем позволяет уменьшить срок окупаемости солнечной электростанции.

Ключевые слова: солнечная электростанция, трекер, солнечная инсоляция, индекс ясности неба, система слежения за Солнцем.

Цитирование: Митрофанов С. В. Технико-экономическое обоснование применения систем слежения за Солнцем для различных регионов России / С. В. Митрофанов // Журн. Сиб. федер. ун-та. Техника и технологии, 2025, 18(2). С. 154–168. EDN: UHGXJY

Введение

Повышение эффективности работы солнечных электрических станций (СЭС) является актуальной задачей. Для увеличения объема выработанной электроэнергии мировыми и отечественными учеными намечены два пути развития. Первый – это повышение энергоэффективности СЭС за счет совершенствования технологии прямого фотоэлектрического преобразования. Второй путь – это размещение фотоэлектрических панелей (ФЭП) под оптимальным углом по отношению к Солнцу. Данная работа посвящена развитию второго пути, т.е. совершенствованию систем слежения за Солнцем. Существует несколько положений ФЭП относительно Солнца с учетом времени суток, года и широты размещения СЭС. Простейшим техническим решением является размещение ФЭП под фиксированным углом относительно земной поверхности, равным широте местности. Такое размещение используется при строительстве и вводе в эксплуатацию СЭС и наиболее распространено в России. Оно позволяет получать оптимальный, по мнению многих авторов, с точки зрения эксплуатации среднегодовой объем выработанной электроэнергии. Находят применение и стационарные системы с регулируемыми платформами, которые имеют возможность посезонного регулирования лето-зима-осень-весна. Такие системы регулируются относительно только одной оси – оси склонения Солнца. Регулирование можно осуществлять вручную при наступлении одного из сезонов (всего четыре раза в год). Прирост электроэнергии СЭС, оснащенными такими системами регулирования, не превышает 10 % (в средних широтах). Существуют поворотные системы слежения, которые способны поворачивать ФЭП не только по склонению Солнца, но и по азимуту в зависимости от времени суток. Системы непрерывного слежения за Солнцем широко используются в космических программах, а также на некоторых, уже построенных СЭС. В России, по мнению автора, использование систем слежения (трекеров) за Солнцем сдерживается несколькими причинами. Первая – это отсутствие экономической модели для оценки эффективности установки солнечного трекера на СЭС. Экономическая модель может быть создана с учетом эксплуатационных, технологических и стоимостных характеристик внедряемого в эксплуатацию трекера. Может оказаться, что применение любых систем слежения за Солнцем экономически не оправдано. Вторая – отсутствие готовых отечественных технических решений в серийном или мелкосерийном исполнении для систем трекер-платформа под все виды ФЭП, выпускаемых промышленностью.

Существует множество способов поворота платформы с ФЭП относительно склонения и азимута. По данным литературных источников, системы регулирования угла наклона имеют несколько вариантов исполнения. В работе [1] рассматриваются стационарные платформы, одноосные и двухосные системы слежения за Солнцем, дана классификация систем слежения. Рассмотрены активные и пассивные системы слежения за Солнцем. Авторами в работе рассмотрены ранее опубликованные труды с экспериментальными данными, полученными с СЭС, оснащенных системами слежения за Солнцем. Показано, что при использовании двухосных систем слежения за Солнцем наблюдается прирост объема вырабатываемой электроэнергии в среднем от 30 до 60 %. Например, в работе [2] (прирост энергии составляет от 33 до 38 %) представлены результаты исследования СЭС малой мощности, установленной в Турции. В работе [3] рассмотрены одноосевая и двухосевая системы слежения за Солнцем. Прирост электроэнергии составил 30,67 % для г. Томска. Для одноосевой системы слежения за Солнцем прирост энергии составил 40-60 % зимой, 5-12 % летом, а для двухосевой системы 12-16 % и 44-67 % соответственно. Авторами в [4] выполнено исследование работы одноосного азимутального трекера с использованием двухсторонних (бифациальных) ФЭП, установленных на крыше зданий, с учетом отсутствия взаимного затенения в городе Реджо-ди-Калабрия, на юге Италии. Экспериментально установлено, что применение такого трекера увеличивает выработку электроэнергии на 22 % с учетом того, что используемые ФЭП в эксперименте были двухсторонними. В работе [5] авторами в г. Джайпур, Раджастан (Индия), была разработана двухкоординатная экспериментальная система слежения за Солнцем. Исследования показали, что такая система слежения позволила увеличить количество вырабатываемой электроэнергии в среднем на 20 %. В г. Эр-Рияд (Саудовская Аравия) авторами [6] разработана одноосная система слежения за Солнцем. При этом платформа вращалась в азимутальном направлении с помощью двигателя постоянного тока, управляемого контроллером и четырьмя фотодатчиками, расположенными на лицевой панели ФЭП. Экспериментально установлено, что выработка электроэнергии увеличилась в среднем на 20 %. В [7] выполнено экспериментальное исследование (Тайланд) для одновременного позиционирования четырех ФЭП с помощью одноосной и двухосной систем слежения. При одноосной системе слежения поворот платформы осуществлялся с помощью шагового двигателя 8 раз за световой день, тогда как при двухосной системе число поворотов составляло 16 раз. Получены данные о потребляемой мощности системой электропривода. При одноосной системе она оказалась равной 4 Вт.ч в день, а при двуосной – 8 Вт ч в день. Объем выработанной электроэнергии по сравнению с СЭС с неподвижными ФЭП при одноосном позиционировании вырос на 16,71 %, при двухосном на 24,97 %. Авторами в [8] было выполнено экспериментальное исследование работы двухкоординатного солнечного трекера. Экспериментальные исследования проводились с 2012 года по настоящее время. Они показали, что применение двухкоординатной системы слежения за Солнцем позволяет увеличить выработку электроэнергии для г. Оренбурга на 30-36 % с учетом затрат электроэнергии на поворот платформы с ФЭП.

В работе [9] выполнено имитационное моделирование в программном обеспечении SolidWorks, TracePro одноосного трекера, с помощью которого ФЭП вращалась вокруг своей вертикальной оси с востока на запад, т.е. по азимуту. По результатам исследований установлено, что для рассматриваемой местности (Малайзии, Тейлорский университет) количество выработанной электроэнергии увеличилось на 30,67 % по сравнению с неподвижной ФЭП. Разработанная авторами [10] конструкция двухосевого солнечного трекера позволила получить расчетное увеличение выработки электроэнергии на 28,7 %. Спроектированная система охлаждения ФЭП позволила увеличить их КПД на 0,38 % на каждый сниженный 1 °С.

По результатам анализа литературных источников, рассматриваемых в [1–10], можно сделать вывод о том, что большой разброс в приросте вырабатываемой электроэнергии связан с географическим местоположением экспериментальных СЭС.

Цель работы – разработать простую и надежную методику расчета эффективности применения того или иного способа регулирования угла наклона ФЭП с учетом региона размещения СЭС и экономических показателей.

Материалы и методы

Для оценки эффективности применения систем слежения за Солнцем учитывается ряд факторов, одним из которых является место расположения предполагаемого строительства СЭС. Прирост электроэнергии в год за счет использования систем слежения за Солнцем будет зависеть от величины солнечной инсоляции (достигающей поверхности ФЭП), угла наклона ФЭП, выходной мощности СЭС, надежности работы трекера и широты местности. Эти показатели для эффективного внедрения трекеров должны рассматриваться совместно с экономическим обоснованием. На рис. 1 приведено произвольное положение ФЭП относительно сторон света, поверхности Земли и Солнца.

Приведем обозначения углов, определяющих положение ФЭП в пространстве, применяющихся в формулах ниже (рис. 1):

Рис. 1. Положение фотоэлектрической солнечной панели в пространстве Fig. 1. The position of the photovoltaic solar panel in space

 β – угол наклона ФЭП относительно поверхности Земли; θ_z – зенитный угол положения Солнца; α_s – угол склонения Солнца; θ – угол между перпендикуляром P_v к поверхности ФЭП и лучами Солнца (при ориентации ФЭП строго на Солнце он равен нулю); γ_s – азимутальный угол; γ – угол между азимутальным направлением ФЭП и направлением на юг (при ориентации ФЭП строго на Солнце он равен азимутальному углу γ_s). Все вышеперечисленные углы можно определить по известным формулам [11] для любого момента времени.

Ниже приведены основные расчетные величины, которые используются для оценки эффективности работы СЭС с системой слежения за Солнцем.

Энергия, вырабатываемая за год СЭС, определяется по формуле [12]:

$$E_{pv} = 0,9 \cdot n_{\phi^{jn}} \cdot \frac{P_{HOM}}{G_{HOM}} \sum_{n=1}^{365} \left(G_{\beta,n} \cdot \left(1 - \sigma \left(T_{cp,n} - T_{st} \right) \right) \right), \tag{1}$$

где $n_{\phi \ni n}$ – число ФЭП в составе СЭС; P_{nom} – номинальная мощность одной ФЭП; G_{nom} – номинальная солнечная инсоляция, принимается 1000 Вт/м²; n – номер дня, начиная с 1 января (изменяется от 1 до 365); $G_{\beta, n}$ – объем солнечной инсоляции в течение светового дня, принимаемый ФЭП, расположенной под углом β ; σ – температурный коэффициент; $T_{cp, n}$ – рабочая температура ФЭП в течение дня; T_{st} – стандартная рабочая температура, принимается равной 25 °С.

При отсутствии системы слежения за Солнцем значение солнечной инсоляции, получаемой ФЭП в течение светового дня, зависит только от погодных условий. При наличии системы слежения за Солнцем солнечная инсоляция еще зависит и от изменяющегося угла наклона β ФЭП. Рабочая температура ФЭП в течение суток изменяется и может быть определена по формуле [13]:

$$T_{cp,n} = T_a + \frac{G_{\beta,n}}{800} (T_{an} - 20) \left(1 - \frac{\eta_c}{\tau_\alpha} \right),$$
(2)
- 158 -

где *T_a* – температура окружающего воздуха, °C; *T_{an}* – номинальная рабочая температура при солнечной инсоляции 800 Вт/м²; *η_c* – коэффициент полезного действия ФЭП, о.е.; *τ_a* – коэффициент пропускания солнечного света через материал, который покрывает фотоэлементы ФЭП (обычно это закаленное стекло), принимается равным 0,9 [14].

Рабочая температура ФЭП будет влиять на значение солнечной инсоляции согласно формулам (1) и (2). Объем солнечной инсоляции, полученной наклонной ФЭП в течение светового дня, определяется по формуле [15]:

$$G_{\beta,n} = G_{b\beta,n} + G_{d\beta,n} + G_{\rho\beta,n},\tag{3}$$

где $G_{b\beta,n}$ – объем прямой солнечной инсоляции, полученной в течение светового дня наклонной поверхностью ФЭП; $G_{d\beta,n}$ – объем рассеянной солнечной инсоляции, полученной в течение светового дня наклонной поверхностью ФЭП; $G_{\rho\beta,n}$ – объем отраженной солнечной инсоляции, полученной в течение светового дня наклонной ФЭП; $G_{\rho\beta,n}$ – объем отраженной солнечной инсоляции, полученной в течение светового дня наклонной ФЭП.

Объем прямой солнечной инсоляции, полученной наклонной ФЭП в течение светового дня, определяется по формуле:

$$G_{b\beta,n} = 1353 \cdot \left(1 + 0,033 \cdot \cos\left(\frac{360 \cdot n}{365}\right)\right) (1 - k(k_t)) kt \cos\theta , \qquad (4)$$

где k_t – индекс ясности неба, изменяющийся в течение светового дня; $k(k_t)$ – зависимость между рассеянным солнечным излучением, падающим на горизонтальную поверхность и полным солнечным излучением, падающим на горизонтальную поверхность.

Вид функции $k(k_t)$ зависит от географического месторасположения ФЭП. Существует множество математических моделей, описывающих эту функцию. Подробное исследование этой функции представлено авторами в работах [16], [17].

По результатам теоретических и экспериментальных исследований, проведенных ранее автором [18], в настоящей работе математическая модель для описания функции $k(k_t)$ определяется по формуле:

$$k(k_t) = \begin{cases} k(k_t) = 1 - 0,248k_t, \ e c \pi u \ k_t < 0,3 \\ k(k_t) = 1,45 - 1,67k_t, \ e c \pi u \ 0,3 < k_t \le 0,78. \\ k(k_t) = 0,147k_t, \ e c \pi u \ 0,78 < k_t \le 1 \end{cases}$$
(5)

Угол между перпендикуляром к поверхности ФЭП и лучами Солнца определяется по формуле [19]:

$$\theta = a\cos\left(\cos\left(\theta_{z}\right)\cos\left(\beta\right) + \sin\left(\theta_{z}\right)\sin\left(\beta\right)\cos\left(\gamma_{s} - \gamma\right)\right).$$
(6)

Объем рассеянной солнечной инсоляции, полученной в течение светового дня наклонной ФЭП, с учетом [20], определяется по формуле:

$$G_{d\beta,n} = 1353 \cdot \left(1 + 0,033 \cdot \cos\left(\frac{360 \cdot n}{365}\right)\right) k(k_t) kt \cos\theta_z\left(\frac{3 + \cos\left(2\beta\right)}{4}\right). \tag{7}$$

Объем отраженной солнечной инсоляции, полученной в течение светового дня наклонной поверхностью ФЭП, с учетом [19], определяется по формуле:

$$G_{\rho\beta,n} = 1353 \cdot \left(1 + 0,033 \cdot \cos\left(\frac{360 \cdot n}{365}\right)\right) kt\rho \cos\theta_z \left(\frac{1 - \cos(\beta)}{2}\right),\tag{8}$$

где *р* – альбедо поверхности Земли.

Объем полной солнечной инсоляции, полученной в течение светового дня наклонной ФЭП, с учетом формул (3), (4), (5), (6) и (7), определяется по формуле:

$$G_{\beta,n} = 1353 \cdot \left(1 + 0,033 \cdot \cos\left(\frac{360 \cdot n}{365}\right)\right) kt \times \left(\left(1 - k(k_t)\right)\cos\left(\theta\right) + \cos\left(\theta_z\right) \left(k(k_t)\left(\frac{3 + \cos\left(2\beta\right)}{4}\right) + \rho\left(\frac{1 - \cos\left(\beta\right)}{2}\right)\right)\right).$$
(9)

Прирост выработки электроэнергии в течение светового дня станциями, оснащенными платформами с системой слежения за Солнцем, по отношению к станциям с неподвижными платформами, выражается в процентах:

$$\Delta E_{pv} = \frac{\left(E_{pv\rho} - \left(E_{pvc} + E_{\rho}\right)\right)}{E_{pvc}} \cdot 100, \qquad (10)$$

где $E_{pv\beta}$ – энергия, вырабатываемая СЭС с системой слежения; E_{pvc} – энергия, вырабатываемая СЭС без системы слежения; E_{β} – энергия, затрачиваемая на поворот платформы с системой слежения.

Энергия, затрачиваемая двигателем трекера на поворот платформы с ФЭП:

$$E_{\beta} = P_1 \cdot t_{a,s}, \tag{11}$$

где P_l – потребляемая мощность двигателя, приводящего в движение платформу, t – общее время работы двигателя в течение суток; $t_{a,s}$ – время работы трекеров по азимуту или склонению Солнца.

Для определения времени работы двигателей трекеров по азимуту или склонению можно воспользоваться формулой:

$$t_{a,s} = n_{a,s} \cdot \Delta t_{a,s},\tag{12}$$

где $n_{a,s}$ – число включений двигателей трекеров по азимуту или склонению в сутки, $\Delta t_{a,s}$ – время работы двигателей по азимуту или склонению за одно включение.

Угол, на который поворачивается платформа с ФЭП при одном включении двигателя трекера по азимуту, определяется по формуле, рад:

$$\Delta \gamma_a = \frac{\gamma_{s\max} - \gamma_{s\min}}{n_a},\tag{13}$$

где γ_{smin} – минимальный азимутальный угол положения Солнца (восход); γ_{smax} – максимальный азимутальный угол положения Солнца (закат);

Угол, на который поворачивается платформа с ФЭП при одном включении двигателя трекера по склонению, определяется по формуле, рад:

$$\Delta \gamma_s = \frac{2 \cdot \left(\theta_{z\max} - \theta_{z\min}\right)}{n_s},\tag{14}$$

- 160 -

где θ_{zmin} – минимальный зенитный угол Солнца (солнечный полдень); θ_{zmax} – максимальный зенитный угол Солнца (восход, закат).

Наибольшее затруднение вызывает расчет времени работы двигателя трекера Δt для поворота платформы с ФЭП на угол $\Delta \gamma_{a, s}$. Время работы двигателя трекера для поворота платформы на угол $\Delta \gamma_{a, s}$ в общем случае можно представить в виде функции:

$$\Delta t_{a,s} = c_{a,s} \cdot f\left(\Delta \gamma_{a,s}\right),\tag{15}$$

где $c_{a,s}$ – константа, зависящая от кинематической схемы соединения вала двигателя с осью платформы, конструкции поворотной платформы и ее габаритов; $f(\Delta \gamma_{a,s})$ – некоторая функция, связывающая время работы (скорость вращения) двигателей трекеров со скоростью поворота платформы с ФЭП на угол $\Delta \gamma_{a,s}$.

Срок окупаемости СЭС в общем случае определяется по формуле:

$$PP = \frac{K + C_{mo}}{E_{pv}\Delta E_{pv}C_{2}},\tag{16}$$

где K – капитальные вложения, затраченные на строительство СЭС, руб.; C_{mo} – стоимость ежегодного технического обслуживания, руб.; C_9 – текущий тариф на электроэнергию, руб./кВт·ч.

Формула (16) справедлива, если не учитывать ежегодный рост тарифов на электроэнергию и инфляцию, которые мы наблюдаем в настоящее время. Для учета ежегодного роста тарифов и инфляции автором введено понятие индекса окупаемости строительства СЭС с учетом внедрения системы слежения:

$$\Delta PP = \frac{K + C_{mo} \sum_{i=1}^{PP} \left(1 + \frac{\pi_{e,i}}{100}\right)^{i}}{C_{\Im} \sum_{i=1}^{PP} E_{pvc,i} \Delta E_{pv,i} \left(1 + \frac{\Delta C_{\Im,i}}{100}\right)^{i}},$$
(17)

где $\pi_{e,i}$ – ежегодный ожидаемый уровень инфляции,%; $\Delta C_{3,i}$ – ежегодный рост тарифа на электроэнергию,%.

Подставляя в формулу (17) предполагаемый срок окупаемости СЭС, можно рассчитать индекс окупаемости. Если индекс окупаемости становится равным или меньше единицы, то срок окупаемости достигнут. Недостатком такого подхода является то, что срок окупаемости можно узнать только с точностью до года. Также необходимо знать предполагаемый уровень ежегодной инфляции, уровень роста тарифа на электроэнергию и ежегодный прогноз объема выработанной электроэнергии СЭС. Приняв усредненные значения вышеперечисленных параметров в формуле (17), можно с достаточной для инженерных расчетов точностью определить срок окупаемости строительства СЭС с системой слежения за Солнцем. Предложенная методика позволяет учесть экономические факторы, влияющие на срок окупаемости строительства СЭС.

Апробация и результаты исследования

Приведем основные технические и экономические показатели и сравним по эффективности разные технологии систем слежения за Солнцем. Для оценки работоспособности представленной математической модели были выполнены исследования о целесообразности использования систем слежения за Солнцем, как в одноосном, так и в двухосном исполнении, для различных регионов России. Для примера расчета была выбрана действующая учебнонаучная СЭС, установленная на территории Оренбургского государственного университета. Станция состоит из двух идентичных по характеристикам модулей по 400 Вт каждый. Один модуль имеет неподвижную платформу с ФЭП, расположенную строго по направлению на юг под оптимальным углом, равным широте местности. Второй – с двухкоординатной системой слежения за Солнцем. Платформа с ФЭП поворачивается по азимуту и склонению с помощью двух линейных актуаторов. Каждый двигатель имеет драйвер, который управляется с помощью микроконтроллера, в котором имеются часы реального времени и математическая модель для вычисления положения ФЭП в пространстве в зависимости от даты и времени суток. Каждый модуль подключен к своему сетевому инвертору, имеющему систему сбора данных с интервалом в 5 минут. Технические характеристики экспериментальной СЭС, установленной в г. Оренбурге, представлены в табл. 1.

Почасовой индекс ясности неба k_t и почасовая температура атмосферного воздуха для исследуемых регионов России определялись по сервису NASA [21]. Представленная математическая модель была реализована на ЭВМ с помощью разработанного лично автором программного обеспечения. Расчет выполнялся с интервалом в одну минуту в течение всего года с учетом облачности, учитываемой с помощью индекса ясности неба. Суммарная электроэнергия, выработанная за год экспериментальной солнечной станцией, определялась по формуле (1) с учетом почасового значения рабочей температуры ФЭП, вычисленной по формуле (2). Промежуточные значения индекса ясности неба и температуры атмосферного воздуха определялись с помощью интерполяции. Объем полной солнечной инсоляции, принимаемой наклонной ФЭП, рассчитывался с помощью формулы (9).

Для расчетного эксперимента были выбраны регионы с высокой солнечной инсоляцией. Расчеты выполнялись для городов, находящихся на юге России, на Урале и Дальнем Востоке, в Сибири и Поволжье, в которых предполагается строительство и размещение экспериментальных СЭС. В табл. 2 приведены результаты расчета объема выработки электроэнергии

Таблица 1. Характеристики экспериментальной СЭС

Наименование	Значение	Единица измерения
Номинальная мощность одной солнечной панели	200	Вт
Число солнечных панелей	4	ШТ.
КПД солнечной панели	19,4	%
Рабочая температура солнечной панели	38	°C
Температурный коэффициент солнечной панели	0,249	%/°C
Номинальная мощность трекера по азимуту	60	Вт
Скорость движения штока трекера по азимуту	3	мм/с
Номинальная мощность трекера по склонению	48	Вт
Скорость движения штока трекера по склонению	6	мм/с

Table 1. Characteristics of the experimental SPP

Таблица 2. Результаты расчета выработки электроэнергии экспериментальной СЭС для различных регионов

		Станния с	Стан	uua c	Стан	ция с	Стан	ция с
год новки		неполвижной	й двухкоординатной системой слежения		регулированием платформы по		регулированием	
	год	платформой					платформы по	
lec- crai 9C					азим	иуту	склонению Солнца	
2 20		E_{pv} , кВт·ч	E_{pv} , кВт·ч	$\Delta E_{pv}, \%$	E_{pv} , кВт·ч	$\Delta E_{pv}, \%$	E_{pv} , кВт·ч	$\Delta E_{pv}, \%$
	2019	431,492	539,744	25,09	526,065	21,82	457,95	6,13
и	2020	466,62	592,064	26,88	576,113	23,465	494,375	5,95
Cou	2021	404,25	501,27	24	490,432	21,32	430,35	6,45
	2022	416,135	519,027	24,73	507,056	21,85	441,664	6,14
	2023	415,766	518,881	24,8	506,41	21,8	441,474	6,18
CK	2019	439,632	555,932	26,45	542,943	23,5	466,156	6,03
сий	2020	455,97	584,279	28,14	570,121	25,04	483,015	5,93
boc	2021	402,902	501,865	24,56	491,49	22	428,826	6,43
OBO	2022	418,548	526,363	25,76	516,129	23,31	444,391	6,17
Η Ĥ	2023	413,898	521,424	25,98	509,885	23,19	439,982	6,3
	2019	403,036	515,152	27,82	503,025	24,81	428,961	6,43
a	2020	417,759	531	27,11	518,38	24,09	443,23	6,1
ІИСЛ	2021	390,04	491,024	25,89	480,048	23,08	415,365	6,49
Ē	2022	387,559	492,633	27,11	480,902	24,09	413,519	6,7
	2023	406,049	516,302	27,15	503,33	23,96	431,904	6,37
	2019	393,904	515,071	30,76	499,369	26,77	420,522	6,76
aHb	2020	421,442	549,685	30,43	531,887	26,21	448,872	6,5
)aXi	2021	377,607	488,126	29,27	475,063	25,81	403,191	6,78
AcT	2022	386,127	501,712	29,94	486,985	26,12	412,84	6,92
	2023	395,152	512,121	29,6	495,85	25,48	421,46	6,66
	2019	404,196	525,127	29,92	511,282	26,49	431,86	6,84
рад	2020	412,341	536,758	30,17	522,747	26,78	439,558	6,6
rorj	2021	370,553	472,07	27,4	461,257	24,48	396,184	6,92
Бол	2022	373,797	486,525	30,16	474,785	27,02	401,308	7,36
	2023	377,554	481,27	27,47	469,8	24,43	402,728	6,67
	2019	367,946	494,267	34,33	479,727	30,38	396,102	7,65
OB	2020	370,775	497,031	34,05	481,915	29,98	398,697	7,53
рат	2021	356,472	471,895	32,38	457,85	28,44	383,258	7,51
Ca	2022	357,947	478,382	33,65	464,146	29,67	385,979	7,83
	2023	334,9	437,379	30,6	425,706	27,11	359,221	7,26
	2019	325,512	437,076	34,27	424,507	30,41	352,863	8,4
Самара	2020	340,925	456,868	34	444,105	30,27	368,17	8
	2021	359,826	487,529	35,49	473,47	31,58	388,262	7,9
	2022	322,149	435,579	35,21	423,777	31,55	348,654	8,23
	2023	348,072	466,551	34,04	452,804	30,09	374,847	7,69
JL DI	2019	377,338	504,813	33,78	488,771	29,53	406,638	7,77
lóyF	2020	385,345	519,643	34,85	503,018	30,54	414,492	7,56
рен	2021	412,472	558,079	35,3	540,405	31,02	442,26	7,22
	2022	372,204	496,276	33,34	481,13	29,27	400,26	7,54

Table 2. The results of calculating the power generation of the experimental SPP for different region

Таблица 2 продолжение

Table 2 Continued

		Станция с Станция с		Станция с		Станция с		
го новки		неполвижной	лвухкоорлинатной		регулированием		регулированием	
	год	платформой	системой слежения		платфо	рмы по	платформы по	
fecr Crai					азим	іуту	склонени	ю Солнца
2 20	2022	<i>Е_р</i> , кВт·ч	<i>Е_{рv}</i> , кВт·ч	$\Delta E_{pv}, \%$	E_{pv} , КВТ·Ч	$\Delta E_{pv}, \%$	<i>Е_{рv}</i> , кВт·ч	$\Delta E_{pv}, \%$
	2023	389,09	514,87	32,33	497,97	27,99	417,99	7,43
×	2019	325,574	430,934	32,36	418,101	28,42	352,575	8,29
инс	2020	325,653	438,331	34,6	425,731	30,73	353,658	8,6
Юят	2021	353,809	481,244	36,02	467,253	32,06	382,363	8,1
He	2022	343,452	458,42	33,47	444,102	29,31	371,173	8,1
	2023	347,978	466,607	34,09	452,741	30,11	452,74	7,85
	2019	339,343	455,672	34,28	441,365	30,07	367,335	8,25
ан	2020	339,922	463,444	36,34	449,417	32,21	368,747	8,48
/pra	2021	375,467	517,021	37,7	501,678	33,62	405,33	7,95
<u> </u>	2022	356,527	478,174	34,12	462,768	29,8	385,046	8,0
	2023	367,339	499,676	36,03	484,523	31,9	395,469	7,66
	2019	364,924	485,79	33,12	470,154	28,84	393,761	7,9
	2020	354,658	482,111	35,94	468,041	31,97	383,783	8,21
MCI	2021	377,73	513,97	36,07	497,65	31,75	407,584	7,9
	2022	368,47	498,538	35,3	482,55	30,96	397,28	7,82
	2023	372,972	506,605	35,83	491,205	31,7	401,812	7,73
	2019	371,474	489,204	31,69	473,31	27,41	399,97	7,67
5	2020	352,52	468,192	32,81	454,027	28,8	380,691	7,99
нау	2021	369,734	492,514	33,21	477,416	29,12	398,53	7,79
Bap	2022	396,706	530,338	33,69	512,318	29,14	427,64	7,8
	2023	372,193	495,981	33,26	480,379	29,07	401,235	7,803
	2019	423,663	556,814	31,43	536,588	26,65	454	7,16
	2020	420,127	555,076	32,12	535,301	27,41	450,556	7,24
I3bl	2021	414,109	543,205	31,17	523,541	26,43	443,562	7,11
K _b	2022	448,048	601,546	34,26	578,325	29,08	481,697	7,51
	2023	413,813	546,764	32,13	526,962	27,34	444,918	7,52
	2019	325,325	431,185	32,54	417,308	28,274	352,387	8,32
рск	2020	306,016	402,246	31,45	390,26	27,53	331,376	8,29
КОН	2021	319,607	425,683	33,19	412,742	29,11	346,569	8,436
pac	2022	329,255	438,456	33,17	424,166	28,83	357,11	8,46
X	2023	329,569	440,536	33,67	426,542	29,42	357,012	8,327
	2019	398,832	526,249	31,95	507,051	27,13	428,565	7,46
Иркутск	2020	392,232	513,212	30,84	494,308	26,02	421,929	7,57
	2021	381,888	494,889	29,59	477,123	24,94	409,596	7,26
	2022	406,769	537.358	32.1	517.54	27.23	436.786	7.38
	2023	409.756	538,536	31.43	518,509	26.54	439,509	7,26
	2019	443.491	595.098	34.19	570.87	28.72	477.121	7,58
ита	2020	411.46	545.24	32,51	523.171	27,15	443,403	7,76
Ч ^в	2021	410,901	542,143	31.94	521	26.8	441,564	7.46
	2021	410,901	542,143	31,94	521	26,8	441,564	7,46

Таблица 2 продолжение

Table 2 Continued

рол СТО С С СТО		Станция с Станция с неподвижной двухкоординатной платформой системой слежения			Станция с регулированием платформы по азимуту		Станция с регулированием платформы по склонению Солнца	
Me CG		<i>Е_р</i> , кВт∙ч	<i>Е_р</i> , кВт∙ч	$\Delta E_{pv}, \%$	<i>Е_р</i> , кВт∙ч	$\Delta E_{pv}, \%$	<i>Е_р</i> , кВт∙ч	$\Delta E_{pv}, \%$
га	2022	422,587	571,567	35,25	548,39	29,77	455,532	7,8
Чи	2023	440,508	593,35	34,7	569,95	29,39	473,16	7,4
ж	2019	476,415	609,035	27,84	582,202	22,21	510	7,05
цена	2020	474,645	613,143	29,18	586,589	23,59	508,395	7,11
Bell	2021	458,703	592,221	29,11	566,97	23,6	491,689	7,2
Iarc	2022	490,967	640,683	30,49	612,932	24,84	525,978	7,13
Pi Pi	2023	482,861	621,97	28,81	594,9	23,2	517,39	7,15
	2019	439,215	554,024	26,14	528,351	20,294	467,693	6,48
BCK	2020	422,867	540,861	27,9	517,572	22,4	452,56	7,02
) apc	2021	436,57	558,653	27,97	535,534	22,67	467,07	6,99
Xa6	2022	445,932	571,348	28,13	545,885	22,41	477,25	7,02
	2023	458,98	595,121	29,66	566,839	23,5	493,038	7,42
ивосток	2019	433,039	538,834	24,43	513,957	18,69	460,6	6,36
	2020	417,752	519,252	24,3	496	18,73	446,1	6,79
	2021	420,089	525,269	25,038	502,607	19,64	447,274	6,47
Дад	2022	430,149	540,115	25,564	516,155	20	456,869	6,21
	2023	421,778	525,502	24,592	503,029	19,26	447,632	6,13
	2019	369,549	502,387	35,95	487,813	32	398,444	7,82
СК	2020	381,664	524,676	37,471	509,614	33,524	411,497	7,82
КУТ	2021	374,542	510,207	36,221	495,042	32,172	403,646	7,78
8	2022	364,398	501,952	37,75	487	33,645	393,735	8,05
	2023	380,035	531,601	40	516,44	35,89	411,054	8,16
	2019	302,123	395,818	31,01	384,511	27,27	325,598	7,77
Цан	2020	324,683	432,094	33,08	419,687	29,26	350,29	7,89
Магад	2021	317,144	424,737	33,92	412,808	30,164	341,648	7,73
	2022	307,08	407,43	32,68	395,148	28,68	331,524	7,96
	2023	325,202	440,424	35,431	427,556	31,474	351,661	8,136
	2019	338,941	439,218	29,585	425,513	25,54	363,775	7,33
CK	2020	384,514	507,992	32,11	492,1	27,98	412,739	7,34
XOT	2021	375,487	500,982	33,42	486,659	29,61	402,899	7,3
0	2022	342,068	442,901	29,478	429,278	25,495	367,061	7,31
	2023	364,085	486,901	33,73	472,261	29,71	392,203	7,72

экспериментальной СЭС, если бы она была установлена в этих городах. Прирост объема выработанной электроэнергии за счет применения системы слежения за Солнцем определялся по формуле (10) с учетом энергии, затраченной на поворот платформы с ФЭП, найденной по формулам (11)–(15).

Время работы трекера по азимуту	41,48	час/год
Время работы трекера по склонению	3,22	час/год
Годовой расход электроэнергии на питание драйверов двигателей		
трекеров (измеренная величина)	447	Вт
Затраты электроэнергии на поворот платформы в год	2682	Вт
Стоимость строительства станции в ценах 2019 года	25	тыс. руб.
Стоимость трекера, включая поворотную платформу в ценах 2019 года	15	тыс. руб.
Тариф на электроэнергию для предприятий и организаций		
(г. Оренбург в 2019 году)	6,78	руб.
Ежегодный рост тарифа на электроэнергию	5	%
Уровень инфляции	8,5	%
Срок окупаемости СЭС с отсутствием трекера	14	лет
Срок окупаемости СЭС с двухкоординатным трекером	13	лет
Срок окупаемости СЭС с азимутальным трекером	12	лет

Таблица 3. Результаты технико-экономического расчета для экспериментальной СЭС г. Оренбурга Table 3. The results of the technical and economic calculation for the experimental SPP Orenburg

Для оценки экономической целесообразности применения систем слежения за Солнцем с помощью формул (11)–(15) и (17) были выполнены расчеты для экспериментальной СЭС. Результаты расчетов приведены в табл. 3.

В результате технико-экономического расчета установлено, что с учетом роста тарифов и инфляции для г. Оренбурга срок окупаемости СЭС без системы слежения составит 14 лет, с двухкоординатной системой слежения за Солнцем – 13 лет, а с азимутальной системой слежения – 12 лет. Для расчетов принято среднее за пять лет значение объема выработанной электроэнергии.

Выводы

В представленной математической модели для прогнозирования выработки электроэнергии СЭС автором учтены все составляющие солнечного излучения (прямое, рассеянное, отраженное) с учетом индекса ясности неба. Достоверность методики прогнозирования подтверждена экспериментальными исследованиями, проводившимися в течение 2022–2024 годов с помощью двух опытных СЭС, установленных на территории Оренбургского государственного университета г. Оренбурга. Разработана математическая модель для определения индекса и срока окупаемости проекта с учетом инфляции и ежегодного роста тарифов на электроэнергию. Предложена математическая модель для определения расхода электроэнергии линейных актуаторов, поворачивающих платформу с фотоэлектрическими панелями вслед за Солнцем. Определен объем выработки электроэнергии экспериментальной СЭС с различными системами слежения для различных регионов России. Установлено, что применение систем слежения за Солнцем для регионов России с высоким уровнем солнечной инсоляции обеспечивает прирост вырабатываемой электроэнергии от 24 до 40 %. В результате технико-экономического расчета установлено, что для г. Оренбурга экономически целесообразно использовать одноосный трекер по азимуту. Организация массового производства недорогих систем трекер-платформ, предназначенных для систем слежения за Солнцем, позволит значительно снизить срок окупаемости строительства СЭС до экономически оправданных значений.

Список литературы / References

[1] Kumba K., Upender P., Buduma P., Sarkar M., Simon S. P., Gundu V. Solar tracking systems: Advancements, challenges, and future directions. A review. *Energy Reports*, 2024, 12, Solar tracking systems, 3566–3583. doi.org/10.1016/j.egyr.2024.09.038.

[2] Rustemli S., İlcihan Z., Sahin G., Van Sark W.G.J.H.M. A novel design and simulation of a mechanical coordinate based photovoltaic solar tracking system. *AIMS Energy*, 2023, 11, 5, 753–773. doi.org/10.3934/energy.2023037.

[3] Обухов С.Г., Плотников И.А. Выбор параметров и анализ эффективности применения систем слежения за Солнцем. Известия Томского политехнического университета университета. Инжиниринг георесурсов, 2018, 329, 10, 95–106. doi.org/10.18799/24131830/2018/10/2 109 [Obukhov S.G., Plotnikov I.A. Selection of parameters and analysis of the effectiveness of solar tracking systems. Proceedings of the Tomsk Polytechnic University of the University. Georesource engineering, 2018, 329, 10, 95–106 (in Rus.)].

[4] Carbone R., Borrello C. A Building-Integrated Bifacial and Transparent PV Generator Operated by an "Under-Glass" Single Axis Solar Tracker. *Energies*, 2023, 16, 17, 6350. doi.org/10.3390/en16176350.

[5] Mamodiya U., Tiwari N. Design and Implementation of Hardware-Implemented Dual-Axis Solar Tracking System for Enhanced Energy Efficiency. *Engineering Proceedings*, 2023, 59, 122. doi. org/10.3390/engproc2023059122.

[6] Alshaabani A. Developing the Design of Single-Axis Sun Sensor Solar Tracking System. *Energies*, 2024, 17, 3442. doi.org/10.3390/en17143442.

[7] Thungsuk N., Tanaram T., Chaithanakulwat A., Savangboon T., Songruk A., Mungkung N., Maneepen T., Arunrungrusmi S., Poonthong W., Kasayapanand N., Nilwhut S., Kinoshita H., Yuji T. Performance Analysis of Solar Tracking Systems by Five-Position Angles with a Single Axis and Dual Axis. *Energies*, 2023, 16, 5869. 16, 5869. doi.org/10.3390/en16165869.

[8] Митрофанов С. В., Байкасенов Д.К. Исследование работы солнечной электростанции с двухосевым солнечным трекером. *iPolytech Journal*, 2023, 27, 4, 737–748. doi.org/10.21285/1814–3520–2023–4–737–748. [Mitrofanov, S. V. Investigation of the operation of a solar power plant with a two-axis solar tracker. *iPolytech Journal*, 2023, 27, 4, 737–748. (in Rus.)]

[9] Bhayat M.H., Vaithilingam C.A., Oruganti K.S.P., Sivasubramanian R., Ardhanari J. Monofacial and Bifacial Photovoltaics Systems with Uniaxial Solar Tracking. *Journal of Physics: Conference Series*, 2023, 2523, 1, 012024. doi.org/10.1088/1742–6596/2523/1/012024.

[10] Zharif H., Santoso D. B., RahmaDewi R. Initial Design of Dual Axis Solar Tracking System with the Addition of Camera and Cooling System. *Jurnal Poli-Teknologi*, 2023, 22, 3, 92–103. doi. org/10.32722/pt.v22i3.5821.

[11] Duffie J.A., Beckman W.A., Worek W.M. *Solar engineering of thermal processes*, New Jersey, John Wiley & Sons, Inc., Hoboken, 2003, 11. 928.

[12] Li X., Gao J., You S., Zheng Y., Zhang Y., Du Q., Xie M., Qin Y. Optimal design and technoeconomic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China. *Energy*, 2022, 123174. doi.org/10.1016/j.energy.2022.123174 [13] Alberizzi J.C., Frigola J.M., Rossi M., Renzi M. Optimal sizing of a Hybrid Renewable Energy System: Importance of data selection with highly variable renewable energy sources. *Energy Conversion and Management*, 2020, Vol. 223, 113303. doi.org/10.1016/j.enconman.2020.113303.

[14] Zhang Y., Ma T., Elia Campana P., Yamaguchi Y., Dai Y. A techno-economic sizing method for grid-connected household photovoltaic battery systems. *Applied Energy*, 2020, 269 (115106). 1–15. doi.org/10.1016/j.apenergy.2020.115106.

[15] Gönül Ö., Duman A. C., Barutçu B., Güler Ö. Techno-economic analysis of PV systems with manually adjustable tilt mechanisms. *Engineering Science and Technology, an International Journal*, 2022, 35, 101116. doi.org/10.1016/j.jestch.2022.101116.

[16] Mousavi Maleki S., Hizam H., Gomes C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. *Energies*, 2017, 10, 1 (134), 1–28. doi:10.3390/en10010134.

[17] Berrizbeitia S.E., Jadraque Gago E., Muneer T. Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis. *Energies*, 2020, 13, 3 (701), 1–23. doi. org/ 10.3390/en13030701.

[18] Митрофанов С. В. Методы определения рассеянного солнечного излучения с целью повышения точности прогнозирования почасовой выработки электроэнергии солнечными электростанциями. Известия Томского политехнического университета университета. Инжиниринг георесурсов, 2024, 335, 10, 120–133. doi.org/ 10.18799/24131830/2024/10/4507. [Mitrofanov, S. V. Methods for determining scattered solar radiation in order to increase the accuracy of forecasting hourly electricity generation by solar power plants. Proceedings of the Tomsk Polytechnic University of the University. *Georesource Engineering*, 2024, 335, 10, 120–133. (in Rus.)].

[19] Bi C., Law A. W.-K. Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance. *Energy*, 2023, 266 (126437), 1–12. doi.org/ doi. org/10.1016/j.energy.2022.126437.

[20] Chandrasekaran J., Kumar S. Hourly diffuse fraction correlation at a tropical location. *Solar Energy*, 1994, 53, 6, 505–510. doi/org/10.1016/0038–092X(94)90130-T.

[21] *POWER*| *Data Access Viewer*. [Electronic resource]. Access mode: https://power.larc.nasa. gov/data-access-viewer (date of application: 25.12.2024).