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Abstract. Equations of elasticity in a plane dynamic case are considered in this paper. The system
of equations is replaced by system of first-order differential equations with the same solution. The
solution-equivalent system is group fibration of the original system of equations. It is a combination of
the resolving and automorphic systems. Special classes of conservation laws are found for the resolving
system of equations. These laws allow one to find the solution of the original equations in the form of
surface integrals over the boundary of an elastic body.
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Introduction

Equations of linear elasticity theory were presented in the works of A.Cauchy, L. Navier,
B. Saint–Venant and others as early as in the 19 century. Since then, attempts have been made
to build solutions of the initial and boundary value problems. General solutions for equations of
elasticity theory in a dynamic were built by G. Lame, P. F. Papkovich, H. Neuber, M. Yakovak,
N. I. Ostrosablin and some others [1–3]. But according to the words of S. L. Sobolev " . . . the
knowledge of general solutions, with rare exception, gives nothing for solving important particular
problems, . . . , because we get, while solving these particular problems, a system of so complex
functional relations for arbitrary functions that their finding is practically impossible [4]". To
solve the elasticity theory problems a greate variety of contemporary mathematical methods are
used. Thus, methods of group analysis of differential equations were used [5–8 and the references
therein]. The theory of symmetries allowes one to build vast classes of invariant and partially-
invariant solutions which describe stress-strain state of elastic medium.
Symmetries, by virtue of their locality, are not appropriate for solving initial and boundary value
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problems. Here, conservation laws are more suitable for solving boundary value problems [9, 10
and the references therein]. In fact, conservation laws were used for solving linear equations
by B. Riemann and V. Volterra [11]. It is known [12] that equations of elasticity theory can be
presented with the use of group fibration in the form of a combination of two solution-equivalent
systems of first-order differential equations: resolving system and automorphic system. This fact
turned out to be very useful for constructing conservation laws and solving Cauchy problems
with their use.
In this article the conservation laws are built for the resolving system of differential equations
of elasticity theory which gave an opportunity to solve Cauchy problem for this system in the
form of surface integrals over the boundary of an elastic body. Further, Cauchy problem for the
automorphic system is solved. This allows one to build the solution of the initial problem for
the equations of elasticity theory in a dynamic case.

1. Preliminaries

Let us consider the equations of elasticity in a plane case

w1
tt = (λ+ 2µ)w1

xx + µw1
yy + (λ+ µ)w2

xy,

w2
tt = (λ+ 2µ)w2

yy + µw1
xx + (λ+ µ)w1

xy,
(1)

where λ, µ are Lame constants, w1, w2 are components of displacement vector, density is equal
to one. On the plane t = 0, the Cauchy problem is set

w1|t=9 = f1(x, y), w2|t=9 = f2(x, y).

w1
t |t=9 = g1(x, y), w2

t |t=9 = g2(x, y).
(2)

If functions f i, gi are continuous together with their derivatives on the plane t = 0 then all
derivatives of functions w1, w2 in any direction are known on this plane. It is known that system
of equations (1) is of hyperbolic type and it has characteristic surfaces defined as ω(t, x, y) = 0

which satisfy the following equation [10]

[(λ+ 2µ)(ω2
x + ω2

y)− ω2
t ][µ(ω

2
x + ω2

y)− ω2
t ] = 0. (3)

It is known [4, 5] that system of equations (1) allows a group of point symmetries generated by
operators

X1 = ∂x, X2 = ∂y, X0 = ∂t,

Z = y∂x − x∂y + w2∂w1 − w1∂w2 ,

P0 = w1∂w1 + w2∂w2 , Pw = h1∂w1 + h2∂w2 , R = x∂x + y∂y + t∂t,

(4)

where h1, h2 — arbitrary solution of equations (1). The presence of operator Pw = h1∂w1 +h2∂w2

allows one to perform group fibration of system of equations (1) [4, 11], that is, to present
it in the form of automorphic and resolving systems of equations. Let us consider operator
Pw = hx∂w1 + hy∂w2 , where h is arbitrary harmonic function. Invariants of operator Pw are
t, x, y.
Let us extend operator Pw on the first-order derivatives [4]

pw
1

= h∂w1 + h∂w2 + hx(∂w1
x
− ∂w2

y
) + hy(∂w1

y
+ ∂w2

x
).
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Differential invariants of the extended operator are

w1
t , w

2
t , w

1
x + w2

y, w
2
x − w1

y.

Assigning differential invariants to be functions of invariants, one can obtain the automorphic
system

w1
t = u(t, x, y), w2

t = v(t, x, y), θ(t, x, y) = w1
x + w2

y, ω(t, x, y) = w2
x¯w

1
y. (5)

Conditions of compatibility of equations (5) lead to the resolving system

ut = (λ+ 2µ)θx − µωy, vt = (λ+ 2µ)θy + µωx, θt = ux + vy, ωt = vx − uy. (6)

Solution of Lame system of equations (1) is equivalent to solution of systems (5), (6) [5, 6]. Using
initial conditions for equations (1), it is not difficult to obtain initial conditions for the functions
included in equations (5) and (6):

θ|t=0 = ∂xf
1 + ∂yf

2, ω|t=0 = ∂xf
2 − ∂yf

1, u|t=0 = g1, v|t=0 = g2. (7)

2. Problem formulation

Let us find the conservation laws for the resolving system of equations. This allows one to
solve Cauchy problem (7) for equations (6). Further on, using (5), one can solve Cauchy problem
(2) for equations (1).

3. Conservation laws for resolving system

Let us consider system of equations (6) in the form

F1 = ut − (λ+ 2µ)θx + µωy = 0, F2 = vt − (λ+ 2µ)θy − µωx = 0,

F3 = θt − ux − vy = 0, F4 = ωt − vx + uy = 0.
(8)

Definition. Expression of the form

At +Bx + Cy =
4∑

i=1

ρiFi (9)

is called the conservation law for system of equations (8). Here ρi are some linear differential
operators that are simultaneously not identically zero. Vector (A,B,C) is called conserved
current for conservation law (9).
More general definitions of conservation laws can be found in [8, 9 and the references therein].
Let us assume that conserved current is written as

A = α1u+ β1v + γ1θ + δ1ω,

B = α2u+ β2v + γ2θ + δ2ω,

C = α3u+ β3v + γ3θ + δ3ω,

(10)

where αi, βi, γi, δi are smooth functions that depend only on t, x, y.
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Note. System of equations (8) also has other conservation laws by virtue of linearity. However,
for our purposes it is sufficient to have conservation laws with conserved current in form (10).
Let us substitute (10) into (9). Then a first-degree polynomial with respect to derivatives
ut, ux, . . . , ωy and required functions u, v, θ, ω is obtained. Setting coefficients at these variables
equal to zero,one can obtain

α1 = ρ1, α2 = −ρ2, α3 = −ρ4, β1 = ρ2, β2 = −ρ4, β3 = −ρ3,
γ1 = ρ3, γ2 = −(λ+ 2µ)ρ1, γ3 = −(λ+ 2µ)ρ2, δ1 = ρ4, δ2 = −µρ2, δ3 = −µρ1.

(11)

α1
t − γ1x + δ1y = 0, β1

t − δ1x − γ1y = 0,

γ1t − (λ+ 2µ)α1
x − (λ+ 2µ)β1

y = 0,

δ1t − µβ1
x + µα1

y = 0.

(12)

It follows from (10)—(12) that conserved current is written as

A = α1u+ β1v + γ1θ + δ1ω,

B = −γ1u− δ1v − (λ+ 2µ)α1θ − µβ1ω,

C = δ1u− γ1v − (λ+ 2µ)β1θ + µα1ω.

(13)

It follows from (12) that (γ1, δ1) is an arbitrary solution of equations of elasticity (1).
Let us find the solution of equations (1) in the form of Lame

γ1 = Φx +Ψy, δ
1 = Φy −Ψx, (14)

where Φ,Ψ are arbitrary solutions of equations

(λ+ 2µ)(Φxx +Φyy)− Φtt = 0, (15)

µ(Ψxx + ψyy)− ψtt = 0. (16)

First, let us find the solution of equations (1) in the form

γ1 = Φx, δ
1 = Φy, (17)

Then it follows from (12) that

α1
t = 0, β1

t = Φtt/(λ+ 2µ).

Further on, it is assumed that

α1 = 0, β1 = Φt/(λ+ 2µ). (18)

Let us find the solution of equation (15) in the form of Kirchhoff

Φ =
1

r
(G1(t− t0 + (

√
λ+ 2µ)−1 r) +G2(t− t0 − (

√
λ+ 2µ)−1 r),

where r =

√
(x− x0)

2
+ (y − y0)

2
, (t0, x0, y0) is some point such that t0 ̸= 0. Let us assume

that
G1 = (t− t0 + (

√
λ+ 2µ)−1 r)1+n, G2 = −(t− t0 − (

√
λ+ 2µ)−1 r)1+n, (19)
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where n ∈ R, n > 1.
Then

γ1 = −x− x0
r3

((t− t0 + (
√
λ+ 2µ)−1r)1+n − (t− t0 − (

√
λ+ 2µ)−1r)1+n)−

− (1 + n)(x− x0)(
√
λ+ 2µ)

−1

r2
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n),

δ1 = −y − y0
r3

((t− t0 + (
√
λ+ 2µ)−1r)1+n − (t− t0 − (

√
λ+ 2µ)−1r)1+n)−

− (1 + n)(y − y0)(
√
λ+ 2µ)

−1

r2
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n),

β1 =
(1 + n)

r(λ+ 2µ)
((t− t0 + (

√
λ+ 2µ)−1r)n + (t− t0 − (

√
λ+ 2µ)−1r)n), α1 = 0.

(20)

Now let us find the solution of equations (1) in the form

γ1 = Ψy, δ1 = −Ψx. (21)

Then from (12) it follows
β1
t = 0, α1

t = Ψtt/µ.

Further on, it is assumed that
β1 = 0, α1 = Ψt/µ. (22)

Let us find the solution of equation (16) in the form of Kirchhoff

Φ =
1

r
(G3(t− t0 + (

√
µ)−1 r) +G4(t− t0 − (

√
µ )−1r).

Let us assume that

G3 = (t− t0 + (
√
µ)−1 r)1+m, G4 = −(t− t0 − (

√
µ )−1r)1+m, (23)

where m ∈ R.
Then

γ1 = −x− x0
r3

((t− t0 + (
√
µ)−1r)1+m − (t− t0 − (

√
µ)−1r)1+m)−

−
(1 +m)(x− x0)(

√
µ)

−1

r2
((t− t0 + (

√
µ)−1r)m + (t− t0 − (

√
µ)−1r)m),

δ1 = −y − y0
r3

((t− t0 + (
√
µ)−1r)1+m − (t− t0 − (

√
µ)−1r)1+m)−

−
(1 +m)(y − y0)

√
µ

r2
((t− t0 +

√
µr)m + (t− t0 −

√
µr)m),

α1 =
(1 +m)

rµ
((t− t0 + (

√
µ)−1r)m + (t− t0 − (

√
µ)−1r)m), β1 = 0.

(24)

4. Solving Cauchy problem for resolving system
of equations

Characteristic cones with the origin at the point (t0, x0, y0) are shown in Fig. 1. The lateral
surface of the outer cone is given by the equation

S1 : (λ+ 2µ)(t− to)
2 − (x− x0)

2 − (y − y0)
2 = 0, (25)
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and the lateral surface of the inner cone is given by the equation

S2 : µ(t− to)
2 − (x− x0)

2 − (y − y0)
2 = 0. (26)

Fig. 1. Characteristic cones

Intersections of cones (25) and (26) with the plane t = 0 are circles S3, S4. Initial conditions
on functions u, v, θ, ω are given inside these circles.
Let us consider domain V1 bounded by surface S1 and by plane t = 0. Then it follows from (9)
that ∫∫∫

V1

(At +Bx + Cy)dxdydt = 0. (27)

Let us consider cylinder Tε of radius (x− x0)
2 + (y − y0)

2 = ε2 inside the outer cone as shown
in Fig. 2.

Fig. 2. Solving the Cauchy problem to find θ(x0, y0, t0)

Functions α1, β1, γ1, δ1 have no peculiarities inside the domain bounded by surface S1, by
cylindrical surface Tε and by plane t = 0. Using the Gauss–Ostrogradskiy formula, one can
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obtain from (27) that∫∫∫
V1\T ε

(At +Bx + Cy)dxdydt =

∫∫
S1

Adxdy +Bdydt+ Cdtdx+

+

∫∫
Tε

Adxdy +Bdydt+ Cdtdx+

∫∫
S3

Adxdy +Bdydt+ Cdtdx = 0.

(28)

By virtue of choosing function Φ the integral
∫∫
S1

Adxdy +Bdydt+ Cdtdx = 0. It is not difficult

to see that the integral
∫∫
S3

Adxdy +Bdydt+ Cdtdx has no peculiarities. That is why, it is

necessary to calculate only the integral∫∫
Tε

Bdydt+ Cdtdx (29)

on the assumption that ε is small. Assume that x − x0 = ε cosϕ, y − y0 = ε sinϕ. Let us
substitute these expressions into (29) and obtain∫∫
Tε

Bdydt+ Cdtdx =

=

t0∫
0

εdt

2π∫
0

(
(−γ1u−δ1v − (λ+2µ)α1θ − µβ1ω) cosϕ− (δ1u− γ1v − (λ+2µ)β1θ +µα1ω) sinϕ

)
dϕ.

Since
γ1 = − 2 cosϕ

ε
√
λ+ 2µ

(2n+ 1)(t− t0)
n + o(ε),

δ1 = − 2 sinϕ

ε
√
λ+ 2µ

(2n+ 1)(t− t0)
n + o(ε),

α1 =
2√

λ+ 2µ
(n+ 1)(t− t0)

n + o(ε), β1 = 0,

it follows that∫∫
Tε

Bdydt+ Cdtdx =

= −(λ+ 2µ)

∫ t0

0

(∫ 2π

0

θ(α1 cosϕ+ β1 sinϕ)dϕ− µ

∫ 2π

0

ω(β1 cosϕ− α1 sinϕ)dϕ

)
dt =

= 2π
√
λ+ 2µ(2n+ 1)

∫ t0

0

(t− t0)
n
θ(x0, y0, t)dt.

The last expression is obtained with ε→ 0.
Finally, it follows from (28) and (29) that

2π
√
λ+ 2µ(2n+ 1)

∫ t0

0

(t− t0)
n
θ(x0, y0, t)dt =

∫∫
S3

Adxdy.

Differentiating the last expression with respect to t0, one can obtain that
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θ(x0, y0, t0) =
1

2π(n+ 1)
√
λ+ 2µ

∂

∂t0

∫∫
S3

Adxdy, (30)

where A = α1u+ β1v + γ1θ + δ1ω,

γ1 = −x− x0
r3

((
r√

λ+ 2µ
− t0

)1+n

−
(
− t0 −

r√
λ+ 2µ

)1+n)
−

− (x− x0)(1 + n)

r2
√
λ+ 2µ

((
r√

λ+ 2µ
− t0

)n

+

(
− t0 −

r√
λ+ 2µ

)n)
,

δ1 = −y − y0
r3

((
r√

λ+ 2µ
− t0

)1+n

−
(
− t0 −

r√
λ+ 2µ

)1+n)
−

− (y − y0)(1 + n)

r2
√
λ+ 2µ

((
r√

λ+ 2µ
− t0

)n

+

(
− t0 −

r√
λ+ 2µ

)n)
,

β1 =
(1 + n)

r(γ + 2µ)

((
r√

λ+ 2µ
− t0

)n

−
(
− t0 −

r√
λ+ 2µ

)n)
, α1 = 0.

Now let us perform the same procedure for the inner cone but for solutions (20), (21) and obtain

ω(x0, y0, t0) =
1

2π(n+ 1)
√
µ

∂

∂t0

∫∫
S3

Adxdy, (31)

where A = α1u+ β1v + γ1θ + δ1ω,

α1 = −y − y0
r3

((
r
√
µ
− t0

)1+m

−
(
− t0 −

r
√
µ

)1+m)
−

− (y − y0)(1 +m)

r2
√
µ

((
r
√
µ
− t0

)m

+

(
− t0 −

r
√
µ

)m

),

β1 = −x− x0
r3

((
r
√
µ
− t0

)1+m

−
(
− t0 −

r
√
µ

)1+m)
−

− (y − y0)(1 +m)

r2
√
µ

((
r
√
µ
− t0

)m

+

(
− t0 −

r
√
µ

)m)
,

γ1 =
(1 +m)

r

((
r
√
µ
− t0

)m

−
(
− t0 −

r
√
µ

)m)
, δ1 = 0.

Now, taking into account (30)–(31) and initial conditions (2)

ut = (λ+ 2µ)θx − µωy, vt = (λ+ 2µ)θy + µωx

, one can obtain from (6) that

w1
t = u =

∫ t

0

((γ + 2µ)θx − µωy)dt+ g1(x, y), w2
t = v =

∫ t

0

((γ + 2µ)θy + µωx)dt+ g2(x, y).

Taking into account (5) and initial conditions (2), one can finally find that

w1 =

∫ t

0

udt =

∫ t

o

(∫ t

0

((γ + 2µ)θx − µωy)dt

)
dt+ g1(x, y)t+ f1(x, y),

w2 =

∫ t

0

vdt =

∫ t

o

(∫ t

0

((λ+ 2µ)θy + µωx)dt

)
dt+ g2(x, y)t+ f2(x, y).

(32)
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Relations (32) provide the solution of Cauchy problem for system of equations (1).

Note. The method of solving Cauchy problem stated in this paper can be used with some
modifications to solve three-dimensional dynamic problems for equations of elasticity. This will
be performed in the following works.

This paper was carried out by the team of the scientific laboratory “Smart Materials and
Structures” within the state assignment of the Ministry of Science and Higher Education of the
Russian Federation for the implementation of the project "Development of multifunctional smart
materials and structures based on modified polymer composite materials capable to function in
extreme conditions" (Project no. FEFE-2020-0015).
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Решение задачи Коши для уравнений упругости
в плоском динамическом случае

Сергей И.Сенашов
Ирина Л.Савостьянова

Сибирский государственный университет науки и технологий имени академика М.Ф.Решетнева
Красноярск, Российская Федерация

Ольга Н. Черепанова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Рассмотрены уравнения упругости в плоском динамическом случае. Эта система
заменена равносильной системой дифференциальных уравнений первого порядка. Равносильная
система есть групповое расслоение исходной системы уравнений, она является объединением раз-
решающей и автоморфных систем. Для разрешающей системы уравнений найдены специальные
классы законов сохранения, которые позволили найти решение исходных уравнений в виде поверх-
ностных интегралов по границе упругого тела.

Ключевые слова: уравнения упругости в плоском динамическом случае, задача Коши, законы
сохранения, точные решения
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