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Abstract. The work is devoted to the study of the real roots of the system of transcendental Aris–
Amundson equations. It is shown that the number of real roots is related to the number of real roots of
some entire function (resultant). The number of complex roots is investigated.
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Introduction
Finding the number of real roots of polynomials is a classical algebraic problem. The Hermite

method of quadratic forms, the Sturm method, the Descartes sign rule, and the Byudan–Fourier
theorem are devoted to this problem (see, for example, [1]). Further development of these
methods for polynomials can be found in the work [2] and the monograph [3]. For entire func-
tions, the question of localization of real positive roots was considered in the classical works of
N.G. Chebotarev [4] (pp. 28–56), as well as in the work of [5] (we refer to the collected works of
N.G. Chebotarev, since his original works are hardly accessible).

For systems of equations, the number of real roots was studied in the articles [6–8]. In the
article [9], the number of real roots was related to the number of real roots of the resultant.

The monographs [10,11] consider algebraic and transcendental systems of equations. Systems
of transcendental equations arise, for example, in the study of equations of chemical kinetics [12].
One of the problems that arise there is the problem of the number of real positive roots of a
system of equations in a reaction polyhedron. As an example, the Aris-Amundson system has
been studied.

1. Multiple roots of the resultant
Let us consider one of the models of a continuous perfectly stirred reactor, the so-called

Aris-Amundson model in the dimensionless form (see [12, ch. 2])

dx

dτ
= f(y)(1− x)− x = f1(x, y),

dy

dτ
= βf(y)(1− x)− s(y − 1) = f2(x, y), (1)

where f(y) = Daeγ(1−1/y). All constants are positive.
The stationary states of the system (1) are solutions of the stationarity system

f1(x, y) = 0, f2(x, y) = 0, (2)
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which can be written as
Daeγ(1−1/y)(1− x)− x = 0,

βDaeγ(1−1/y)(1− x)− s(y − 1) = 0.

Denoting Da = b, t = γ (1− 1/y), we get the system

bet(1− x)− x = 0, βbet(1− x)− s
t

γ − t
= 0. (3)

Obviously, the system (3) has no roots with zero coordinates.
Earlier in the work [13], the Zeldovich–Semenov model was studied in a similar way. The

main idea of the study is the application of the multidimensional theory of residues, the study
of power sums of roots and residue integrals (see [10,11]).

Then we get

bet · β(γ − t)− st

β(1− t)
− st

β(γ − t)
= 0.

Thus, the entire function of the first order of growth can serve as the resultant of the system (2)

F (t) = bet(βγ − t(β + s))− st = 0.

Let us check it for multiple zeros. We convert it to the form

φ(t) = bet − st

βγ − t(β + s)
.

Calculating the derivative, we get

φ′(t) = bet − sβγ

(βγ − t(β + s))2
.

Obviously, if F (t) = 0 and F ′(t) = 0 at some point t, then φ(t) = 0 and φ′(t) = 0 at this point.
The converse is also true.

Then from the equalities φ(t) = 0, φ′(t) = 0 we get

t1,2 =
βγ ∓

√
β2γ2 − 4β2γ − 4βγs

2(β + s)
.

Substituting these values, for example, into the first equation, we get

b · exp

(
βγ ∓

√
β2γ2 − 4β2γ − 4βγs

2(β + s)

)
=

s

β + s
· βγ ∓

√
β2γ2 − 4β2γ − 4βγs

βγ ±
√
β2γ2 − 4β2γ − 4βγs

. (4)

Thus, in equality (4), there is an exponential function on the left, and a power function on
the right. Therefore, they cannot match for almost all parameter values. Then for almost all
parameter values there are no multiple roots of the function φ(t) (and therefore F (t)).

Proposition 1. For almost all parameter values the function φ(t) (and therefore F (t)) has no
multiple roots.
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2. The number of real roots of the resultant
Next, we use the following statement (see [14]).

Theorem 1. If the system (2) with real coefficients is such that it has no roots with zero coordi-
nates and all zeros of the resultant F (t) are simple, then the number of real roots of the system
(2) coincides with the number of real roots of the function F (t).

From the system (2) we get 1 − x = 1 +
s

β
(1 − y), x =

s

β
(y − 1). We substitute it into the

first equation

beγ(1−1/y) ·
(
1 +

s

β
(1− y)

)
+
s

β
(1− y) = 0.

The resultant looks like

φ(y) = beγ(1−1/y) · β − s(y − 1)

s(y − 1)
− 1,

and we find the number of roots of φ(y).
First, we find the intervals of increase and decrease of φ(y).

φ′(y) =
beγ(1−1/y)

s
· −(γs+ β)y2 + γ(β + 2s)y − γ(β + s)

y2(y − 1)2
.

The derivative φ′(y) = 0 if and only if

−(γs+ β)y2 + γ(β + 2s)y − γ(β + s) = 0.

Solving the resulting quadratic equation, we find the discriminant

D = γ2β2 − 4γβ2 − 4γβs.

Solutions to the quadratic equation are

y1,2 =
γ(β + 2s)∓

√
γ2β2 − 4γβ2 − 4γβs

2(sγ + β)
.

If D > 0, that is, γβ − 4(β + s) > 0, then

ψ(y) = −(γs+ β)y2 + γ(β + 2s)y − γ(β + s)

has two real roots y1 < y2.
Since the graph of the function ψ(y) is a parabola with branches down, then ψ(y) < 0 on the

interval (−∞; y1) ∪ (y2;∞) and ψ(y) > 0 in the interval (y1; y2).
If D = 0, that is, γβ − 4(β + s) = 0, then ψ(y) has one real root y0 and ψ(y) < 0 on the

interval (−∞; y0) ∪ (y0;∞).
If D < 0, that is, γβ − 4(β + s) < 0, then ψ(y) has no real roots and ψ(y) < 0 on the entire

real line.
Let us show that if D > 0, then the roots of ψ(y) lie to the right of 1, that is, 1 < y1 6 y2.

Note beforehand that if D > 0, then γ > 4.

Indeed, D > 0 is equivalent to the inequality γ > 4+
4s

β
, which implies that γ > 4 (β, s > 0).

Assume that y1 =
γ(β + 2s)−

√
D

2(sγ + β)
> 1. This inequality is equivalent to β(γ − 2) >

√
D.

Since γ > 4, the left and right sides of the last inequality are non-negative, which means it is
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equivalent to β2(γ − 2)2 > γ2β2 − 4γβ2 − 4γβs. Simplifying it, we get the equivalent condition
4β(β + γs) > 0, which is always true, since β, γ, s > 0. Thus, our assumption that y1 > 1 is
correct. That is, for D > 0, the condition 1 < y1 6 y2 is satisfied.

It follows from the above that if D > 0, that is, γ2β2 − 4γβ2 − 4γβs > 0, then φ′(y) has two
real roots 1 < y1 < y2 and φ′(y) < 0 on the set (−∞; 0)∪ (0; 1)∪ (1; y1)∪ (y2; +∞), φ′(y) > 0 in
the interval (y1; y2). So φ(y) decreases on the set (−∞; 0) ∪ (0; 1) ∪ (1; y1) ∪ (y2; +∞) and φ′(y)
increases in the interval (y1; y2).

It also follows from the above that if D > 0, that is, γ2β2 − 4γβ2 − 4γβs > 0, then φ′(y)
has two real roots 1 < y1 < y2 and φ′(y) < 0 on the set (−∞; 0) ∪ (0; 1) ∪ (1; y1) ∪ (y2; +∞),
φ′(y) > 0 in the interval (y1; y2). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y1)∪(y2; +∞)
and φ′(y) increases in the interval (y1; y2).

If D = γ2β2 − 4γβ2 − 4γβs = 0, then φ′(y) has one real root y0 > 1 and φ′(y) < 0 on the set
(−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞).
If D = γ2β2 − 4γβ2 − 4γβs = 0, then φ′(y) has one real root y0 > 1 and φ′(y) < 0 on the set
(−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞). So φ(y) decreases on the set (−∞; 0)∪(0; 1)∪(1; y0)∪(y0; +∞).

If D = γ2β2 − 4γβ2 − 4γβs < 0, then φ′(y) has no real roots and φ′(y) < 0 over the entire
domain of φ′(y), which means φ(y) decreases over the entire domain of definition of φ(y).

For a more accurate understanding of the behavior of the function φ(y), we find the limits
of φ(y) at ±∞ and at the break points: lim

y→−∞
φ(y) = −beγ − 1 < 0, lim

y→0−0
φ(y) = −∞,

lim
y→0+0

φ(y) = −1, lim
y→1−0

φ(y) = −∞, lim
y→1+0

φ(y) = +∞, lim
y→+∞

φ(y) = −beγ − 1 < 0

Now we find the number of roots of the function φ(y).
1. If  D > 0,

φ(y1) < 0,
φ(y2) > 0,

or more precisely
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ−

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ +
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 < 0,

be
γβ+

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ −
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 > 0,

then φ(y) has three real roots 1 < Y1 < Y2 < Y3.
For example, if b = 0.04, γ = 10, β = 1, s = 1, we get the discriminant D = 20 > 0,

y1 =
15−

√
5

11
≈ 1.16035745659093 > 1, y2 =

15 +
√
5

11
≈ 1.5669152706818 > y1, φ(y1) ≈

−0.16584745271763 < 0, φ(y2) ≈ 0.13869366143044 > 0 and the function φ(y) has three real
roots Y1 ≈ 1.073488201 > 1, Y2 ≈ 1.356686984 > Y1, Y3 ≈ 1.733497054 > Y2 (see Fig. 1).

Another example: for b = 0.001, γ = 10, β = 10, s = 1 we get the discriminant

D = 5600 > 0, y1 = =3−
√
14

2
≈1.129171306>1, y2 = 3 +

√
14

2
≈ 4.870828694 > y1,

φ(y1) ≈ −0.76011792742972 < 0, φ(y2) ≈ 3.4763004785113 > 0 and the function φ(y) has
three real roots Y1 ≈ 1.011153756 > 1, Y2 ≈ 1.812214562 > Y1, Y3 ≈ 9.890609328 > Y2 (see Fig.
2).

2. When the following conditions are met
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ−

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ +
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 = 0
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Fig. 1. φ(y) has 3 real roots

Fig. 2. φ(y) has 3 real roots

(the case when y1 is a multiple real root of φ(y)) or
γ2β2 − 4γβ2 − 4γβs > 0,

be
γβ+

√
γ2β2−4γβ2−4γβs

2(β+s) · γβ −
√
γ2β2 − 4γβ2 − 4γβs− 2(β + s)

2s
− 1 = 0

(the case when y2 is a multiple real root of φ(y)), the function φ(y) has two real roots 1 < Y1 < Y2.
An example when Y1 is a multiple real root (Y1 = y1) is the following: for γ = 10, β = 10,

s = 1, b = =
(4−

√
14) · e

40−10
√

14

−6+
√

14

16 +
√
14

we get the discriminant D = 5600 > 0, y1 = 3 −
√
14

2
≈

1.129171307 > 1, y2 = 3 +

√
14

2
≈ 4.870828694 > y1, φ(y1) = 0, φ(y2) ≈ 17.6604210584 > 0 and

the function φ(y) has two real roots Y1 = y1 = 3−
√
14

2
≈ 1.129171307 > 1, Y2 ≈ 10.73089616 >

Y1 (see Fig. 3).
3. If

γ2β2 − 4γβ2 − 4γβs < 0,

the function φ(y) has one real root Y1 > 1.

Proposition 2. The resultant has no more than 3 real roots, therefore, the system (2) has,
according to Theorem 1, no more than 3 real roots.
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Fig. 3. φ(y) has 2 real roots

3. Complex roots of the system
Recall Hadamard’s theorem for entire functions of finite order of growth (see, for example,

[15]). Expressions E(u, 0) = 1 − u, E(u, p) = (1 − u)eu+
u2

2 +·+up

p , p = 1, 2, . . . are called
approximate multipliers.

If a function f(t) on the complex plane has a finite order of growth ρ and t1, . . . , tn, . . . its
zeros, then there exists an integer p 6 ρ independent of n such that the product

∞∏
n=1

E

(
t

tn
, p

)
(5)

converges for all t if the series converges ∑(
r

rn

)p+1

,

where r1, r2, . . . are the absolute values of the zeros of the function f(t), and this series converges
for all values of r if p+ 1 > ρ.

The product (5) with the smallest of the integers p for which the series converges is called
the canonical product constructed from zeros f(t), and this smallest p is called its genus.

Theorem 2 (Hadamard). If the an entire function f(t) of order ρ has zeros t1, t2, . . . , and
f(0) ̸= 0, then

f(t) = eQ(t)P (t),

where P (t) is the canonical product constructed from zeros f(t), and Q(t) is a polynomial of
degree no higher than ρ.

Consider the resultant
F (t) = bet(βγ − t(β + s))− st.

This is a entire function of the first order of growth.
If it has a finite number of zeros, then according to Hadamard’s theorem it will have the form

F (t) = et · Pm(t),

where Pm(t) is a certain polynomial. From here

et =
st

b(βγ − t(β + s))
· Pm(t),
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which is impossible, since there is a transcendental function on the left, and a rational one on
the right.

Thus, the resultant F (t) has an infinite number of complex roots tk, |tk| → +∞ as k → ∞.
From the system (3), we express x and y in terms of t and get

y =
γ

γ − t
, x =

st

β(γ − t)
.

Then at the points tk we have xk =
stk

β(γ − tk)
, yk =

γ

γ − tk
. Therefore, xk → − s

β
, yk → 0

as k → ∞.

The work was supported by the Russian Science Foundation, project no. 24-21-00023.

References
[1] F.R.Gantmakher, Theory of Matrices, New York, Chelsea Pub. Co., 1959.

[2] M.G.Krein, M.A.Naimark, The Method of Symmetric and Hermitian Forms in the Theory
of the Separation of the Roots of Algebraic Equation, Linear Multilin. Algebra, 10(1981),
no. 4, 265–308.

[3] E.I.Jury, Inners and stability of dynamic systems, New York-London-Sydney-Toronto, Wi-
ley, 1974.

[4] N.G.Chebotarev, Work Collection, Moscow-Leningrad, AN SSSR, Vol. 2, 1949 (in Russian).

[5] A.M.Kytmanov, O.V.Khodos, On localization of the zeros of an entire function of finite
order of growth, Journal Complex Analysis and Operator Theory, 11(2017), 393–416.
DOI:10.1007/s11785-016-0606-8

[6] L.A.Ajzenberg, V.A.Bolotov, A.K.Tsikh, On the solution of systems of nonlinear algebraic
equations using the multidimensional logarithmic residue. On the solvability in radicals, Sov.
Math., Dokl., 21(1980), 645–648.

[7] N.N.Tarkhanov, Calculation of the Poincare index, Izv. Vyssh. Uchebn. Zaved. Mat., (1984),
no. 9, 47–50 (in Russian).

[8] A.M.Kytmanov, On the number of real roots of systems of equations, Soviet Math. (Iz.
VUZ), 35(1991), no. 6, 19–22.

[9] A.M.Kytmanov, O.V.Khodos, On the roots of systems of transcendental equations, Probl.
Anal., 13(2024), no. 1, 37–49. DOI:10.15393/j3.art.2024.14430

[10] V.Bykov, A.Kytmanov, M.Lazman, M.Passare (ed), Elimination Methods in Polynomial
Computer Algebra, Springer science+business media, Dordreht, 1998.

[11] A.M.Kytmanov, Algebraic and trascendental systems of equations and transcendental sys-
tems of equations, Krasnoyarsk, Siberian Federal University, 2019 (in Russian).

[12] V.I.Bykov, S.B.Tsybenova, Nonlinear models of chemical kinetics, Moscow, KRASAND,
2011 (in Russian).

[13] O.V.Khodos, On Some System of Non-algebraic Equation in Cn, J. Sib. Fed. Univ. Math.
Phys., 7(2014), no. 4, 455–465.

– 57 –



Alexander M.Kymanov, Olga V.Khodos On the Aris-Amundson model

[14] A.M.Kytmanov, O.V.Khodos, On the Real Roots of Systems of Transcendental Equations,
J. Sib. Fed. Univ. Math. Phys., 17(2024), no, 3, 328–335. EDN: HKGXLG

[15] A.I.Markushevich, Theory of Functions of a Complex Variable, Vol. 2, Prentice-Hall, 1965.

О модели Ариса-Амундсона
Александр М.Кытманов

Ольга В.Ходос
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Работа посвящена исследованию вещественных корней системы трансцендентных
уравнений Ариса–Амундсона. Показано, что число вещественных корней связано с числом веще-
ственных корней некоторой целой функции (результанта). Исследовано число комплексных корней.

Ключевые слова: системы трансцендентных уравнений, результант, простой корень.
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