Journal of Siberian Federal University. Mathematics & Physics 2025, 18(1), 51-58

EDN: FVEGFC
VIIK 517.55

On the Aris-Amundson model
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Abstract. The work is devoted to the study of the real roots of the system of transcendental Aris—
Amundson equations. It is shown that the number of real roots is related to the number of real roots of
some entire function (resultant). The number of complex roots is investigated.

Keywords: systems of transcendental equations, resultant, simple root. E E
Citation: A.M. Kytmanov, O.V.Khodos, On the Aris-Amundson model, J. Sib. Fed. :
Univ. Math. Phys., 2025, 18(1), 1-8. EDN: FVEGFC. E
Introduction

Finding the number of real roots of polynomials is a classical algebraic problem. The Hermite
method of quadratic forms, the Sturm method, the Descartes sign rule, and the Byudan—Fourier
theorem are devoted to this problem (see, for example, [1]). Further development of these
methods for polynomials can be found in the work [2] and the monograph [3]. For entire func-
tions, the question of localization of real positive roots was considered in the classical works of
N. G. Chebotarev [4] (pp. 28-56), as well as in the work of [5] (we refer to the collected works of
N. G. Chebotarev, since his original works are hardly accessible).

For systems of equations, the number of real roots was studied in the articles [6-8]. In the
article [9], the number of real roots was related to the number of real roots of the resultant.

The monographs [10,11] consider algebraic and transcendental systems of equations. Systems
of transcendental equations arise, for example, in the study of equations of chemical kinetics [12].
One of the problems that arise there is the problem of the number of real positive roots of a
system of equations in a reaction polyhedron. As an example, the Aris-Amundson system has
been studied.

1. Multiple roots of the resultant

Let us consider one of the models of a continuous perfectly stirred reactor, the so-called
Aris-Amundson model in the dimensionless form (see [12, ch. 2|)

dzx dy
f=f<y)(1—$)—l‘:f1(l',y)7 7:ﬁf(y)u_x)_s(y_l):f2($7y)7 (1)
dr dr
where f(y) = Dae?=1/¥). All constants are positive.
The stationary states of the system (1) are solutions of the stationarity system

fl('r’y)zov f2(x7y):0’ (2)
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which can be written as
Dae? =V (1 — ) —z =0,

BDae" V(1 —2) —s(y —1) = 0.

Denoting Da =b,t =~ (1 — 1/y), we get the system

be!(1 —x) —x =0, ﬂbet(l—m)—svit =0. (3)

Obviously, the system (3) has no roots with zero coordinates.

Earlier in the work [13], the Zeldovich—-Semenov model was studied in a similar way. The
main idea of the study is the application of the multidimensional theory of residues, the study
of power sums of roots and residue integrals (see [10,11]).

Then we get

¢ Bly—t)—st st
pA—t)  Bly—1)

Thus, the entire function of the first order of growth can serve as the resultant of the system (2)

be =0.

F(t) = be'(By — t(B+s)) — st =0.

Let us check it for multiple zeros. We convert it to the form

st
t)=bel — ——— .
- By —t(B+5)
Calculating the derivative, we get
#(0)=bet — 0

(By —t(B+5))*

Obviously, if F(t) = 0 and F'(t) = 0 at some point ¢, then ¢(t) = 0 and ¢’(t) = 0 at this point.
The converse is also true.
Then from the equalities p(t) =0, ¢'(t) = 0 we get

_ By F VB 487 — 4Bys

t1,2 28+ )

s

Substituting these values, for example, into the first equation, we get

booxp [ P1F VB2 -4y —4Bys\ s By F /B2 — 482y —4Bys

2(8 + 5) B+s Byt /B292 —4B8%y — 4Bys

Thus, in equality (4), there is an exponential function on the left, and a power function on
the right. Therefore, they cannot match for almost all parameter values. Then for almost all

parameter values there are no multiple roots of the function ¢(t) (and therefore F(t)).

Proposition 1. For almost all parameter values the function ¢(t) (and therefore F(t)) has no
multiple roots.
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2. The number of real roots of the resultant

Next, we use the following statement (see [14]).

Theorem 1. If the system (2) with real coefficients is such that it has no roots with zero coordi-
nates and all zeros of the resultant F(t) are simple, then the number of real roots of the system
(2) coincides with the number of real roots of the function F(t).

From the system (2) we get 1 —z =1+ f(1 —y), x = —(y — 1). We substitute it into the

s
, B B
first equation

peY(1=1/v) . <1 + %(1 — y)) + %(1 —y)=0.

The resultant looks like

B—sly—1)

y) = beY(1=1/y)
oY) -1

—1,

and we find the number of roots of p(y).
First, we find the intervals of increase and decrease of (y).

) = b0V —(ys + B)y® + (B +2s)y — (B + 5)
P s y*(y — 1) '

The derivative ¢’(y) = 0 if and only if
—(vs+ B + (B +2s)y —v(B+s) = 0.
Solving the resulting quadratic equation, we find the discriminant
D =~*3% — 495> — 4yBs.
Solutions to the quadratic equation are

_ (B+28) F /1262 — 4982 — 4yBs
2(sv+ ) '

Y1,2

If D > 0, that is, 78 — 4(8 + s) > 0, then

Y(y) = —(vs+ B)y* +v(B+2s)y —v(B+s)

has two real roots y; < yso.

Since the graph of the function (y) is a parabola with branches down, then ¢ (y) < 0 on the
interval (—oo;y1) U (y2;00) and 9(y) > 0 in the interval (y1;y2).

If D =0, that is, 78 — 4(8 + s) = 0, then 9 (y) has one real root yo and 1(y) < 0 on the
interval (—o0;y0) U (yo; 00).

If D <0, that is, v8 — 4(8 + s) < 0, then ¥(y) has no real roots and (y) < 0 on the entire
real line.

Let us show that if D > 0, then the roots of ¢(y) lie to the right of 1, that is, 1 < y1 < ya.
Note beforehand that if D > 0, then v > 4. A

S

B
> 1. This inequality is equivalent to S(y — 2) > /D.

Indeed, D > 0 is equivalent to the inequality v > 4 4+ —, which implies that v > 4 (8,s > 0).

~(8+2s) — VD

2(sy +P)
Since v > 4, the left and right sides of the last inequality are non-negative, which means it is

Assume that y; =
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equivalent to B82(y — 2)? > 4232 — 4v3% — 4Bs. Simplifying it, we get the equivalent condition
48(8 + vs) > 0, which is always true, since 3,7,s > 0. Thus, our assumption that y; > 1 is
correct. That is, for D > 0, the condition 1 < y; < yso is satisfied.

It follows from the above that if D > 0, that is, 7232 — 4v3% — 4y8s > 0, then ¢’ (y) has two
real roots 1 < y1 < y2 and ¢’'(y) < 0 on the set (—oo;0) U (0;1) U (1;41) U (y2; +00), ¢’ (y) > 0 in
the interval (y1;y2). So ¢(y) decreases on the set (—o0;0) U (0;1) U (1;91) U (y2; +00) and ¢'(y)
increases in the interval (yi1;y2).

It also follows from the above that if D > 0, that is, y23% — 4v3% — 4v8s > 0, then ¢'(y)
has two real roots 1 < y; < y2 and ¢'(y) < 0 on the set (—o00;0) U (0;1) U (1;91) U (y2; +00),
¢'(y) > 0 in the interval (y1;y2). So ¢(y) decreases on the set (—oo;0)U(0; 1)U (1;y1) U (ye; +00)
and ¢'(y) increases in the interval (y1;y2).

If D =~v232 —4vy3% —4vBs = 0, then ¢'(y) has one real root 3o > 1 and ¢’(y) < 0 on the set
(—00; 0)U(0; 1)U(1; y0)U(yo; +00). So ¢(y) decreases on the set (—oo; 0)U(0; 1)U(1; yo)U(yo; +00).
If D =~23% —4v3% — 4v8s = 0, then ¢(y) has one real root yo > 1 and ¢'(y) < 0 on the set
(=005 0)U(0; 1)U(1; o) U(yo; +00). So ¢(y) decreases on the set (—o0; 0)U(0; 1)U(1;y0)U(yo; +00).

If D =+23% - 4y3? — 4yBs < 0, then ¢'(y) has no real roots and ¢’(y) < 0 over the entire
domain of ¢'(y), which means ¢(y) decreases over the entire domain of definition of ¢(y).

For a more accurate understanding of the behavior of the function ¢(y), we find the limits

of p(y) at oo and at the break points: lim ¢(y) = —be? — 1 < 0, 1iglo<p(y) = —0o0,
Yy——00 y—0—
: _ : _ . _ . g
A oe(y) = -1, lm o(y)=-co, lim ¢(y)=-+oo, lm o(y)=-be?-1<0
Now we find the number of roots of the function ¢(y).
1. If
D >0,
p(y1) <0,
QD(yQ) >0,

or more precisely

Y?B% — 4B — 4yfBs > 0,
P - yzr- oy e 232 _ 2 _ _
b AT i B+ /7?82 — 478 — dyBs — 2(5 + )

be —-1<0,
2s

ew+x/W ' vB — \/72,82 — 47622 —4yBs —2(B+ s) 10,
s

then ¢(y) has three real roots 1 < Y] < Y3 < V3.
For example, if b = 0.04, v = 10, 8 = 1, s = 1, we get the discriminant D = 20 > 0,

15— /5 15+/5
Y = 171\[ ~ 1.16035745659093 > 1, yo = %[ ~ 1.5669152706818 > y1, (1) ~

—0.16584745271763 < 0, ¢(y2) ~ 0.13869366143044 > 0 and the function ¢(y) has three real
roots Y7 & 1.073488201 > 1, Y5 &~ 1.356686984 > Y7, Y3 ~ 1.733497054 > Y5 (see Fig. 1).
Another example: for b = 0.001, v = 10, 8 = 10, s = 1 we get the discriminant

14 14
D = 5600 > 0, y1 = :3—§%1.129171306>1, Y2 = 3 + g ~ 4.870828694 > y,

p(y1) = —0.76011792742972 < 0, ¢(y2) ~ 3.4763004785113 > 0 and the function ¢(y) has
three real roots Y7 =~ 1.011153756 > 1, Y5 ~ 1.812214562 > Y7, Y5 &~ 9.890609328 > Y, (see Fig.
2).

2. When the following conditions are met

2% = 4yB* — 4yfBs > 0,
= LV ot T VTt LR
S

-1=0
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Fig. 1. ¢(y) has 3 real roots

Fig. 2. ¢(y) has 3 real roots

(the case when y; is a multiple real root of ¢(y)) or

V2B? — 4yB? — 4vyfBs > 0,
4 IRTRR 2 — /77— B? — IBs — 2(6 + 9)
2s

be -1=0
(the case when ys is a multiple real root of p(y)), the function ¢(y) has two real roots 1 < Y7 < Ys.

An example when Y7 is a multiple real root (Y7 = y) is the following: for v = 10, 8 = 10,
40—10v/14

4 —+/14) e -6+via V14
s=1,b== ( )¢ we get the discriminant D = 5600 > 0, y; =3 — — =
16 +v14 2
V14
1.129171307 > 1, yo = 3 + - ~ 4.870828694 > y1, v(y1) = 0, o(y2) = 17.6604210584 > 0 and

14
the function ¢(y) has two real roots Y1 = y; =3 — g ~ 1.129171307 > 1, Y5 =~ 10.73089616 >

Y1 (see Fig. 3).
3. If

VB2 — 4y B? — d4vBs < 0,
the function ¢(y) has one real root Y; > 1.
Proposition 2. The resultant has no more than 3 real roots, therefore, the system (2) has,

according to Theorem 1, no more than 3 real Toots.
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Fig. 3. ¢(y) has 2 real roots

3. Complex roots of the system

Recall Hadamard’s theorem for entire functions of finite order of growth (see, for example,
w2 uP
[15]). Expressions E(u,0) = 1 —u, E(u,p) = (1 —w)e*" 27 % p = 1,2,... are called
approrimate multipliers.

If a function f(t) on the complex plane has a finite order of growth p and ¢1,...,t,,... its
zeros, then there exists an integer p < p independent of n such that the product

it (1)

converges for all ¢ if the series converges

where r1, 79, . .. are the absolute values of the zeros of the function f(t), and this series converges
for all values of r if p+1 > p.

The product (5) with the smallest of the integers p for which the series converges is called
the canonical product constructed from zeros f(t), and this smallest p is called its genus.

Theorem 2 (Hadamard). If the an entire function f(t) of order p has zeros ti, ta, ..., and

f(0) # 0, then

7

f(t) = e P(t),

where P(t) is the canonical product constructed from zeros f(t), and Q(t) is a polynomial of
degree no higher than p.

Consider the resultant
F(t) = be' (By — t(B + 5)) — st.

This is a entire function of the first order of growth.
If it has a finite number of zeros, then according to Hadamard’s theorem it will have the form

F(t) =e'- P,(t),
where P, (t) is a certain polynomial. From here

+ st

e A

€
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which is impossible, since there is a transcendental function on the left, and a rational one on
the right.
Thus, the resultant F'(¢) has an infinite number of complex roots t, |tx| — +0o as k — oo.
From the system (3), we express « and y in terms of ¢ and get

t
5tk v Therefore, x — 2

Byv—t) Tyt 3

Then at the points t; we have zp = ,yr — 0

as k — oo.
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O moaem Apuca-AmMyHICcoOHA

Anekcanap M. KeitTmaHoB
Oapra B. Xogoc

Cubupckuii deiepabHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparms

Awnnorausi. Pabora mocssiieHa MCCIEI0OBAHUIO BEIECTBEHHBIX KOPHEH CHCTEMBI TPaHCIEHIEHTHBIX
ypasaenunii Apuca—Amynyacona. [Tokazano, 4TO 9UC/IO BEMIECTBEHHBIX KOPHEH CBA3aHO C YUCJIOM BeIe-
CTBEHHBIX KOPHEl HEKOTOPOH 11e10#i pyHkuuu (pesynbranTa). Viccie1oBano dncyio KOMILJIEKCHBIX KOPHEH.

KiroueBnbie cJjioBa: cUCTEMBI TPaHCHEHIECHTHBIX ypa,BHeHPII’?‘I7 PE3YyJAbTAHT, HpOCTOﬁ KODPEHb.
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