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Abstract. The inverse problem of determining two dimensional kernel in the integro-differential heat
equation is considered in this paper. The kernel depends on the time variable ¢ and space variable
x. Assuming that kernel function is given, the direct initial-boundary value problem with Neumann
conditions on the boundary of a rectangular domain is studied for this equation. Using the Green’s
function, the direct problem is reduced to integral equation of the Volterra-type of the second kind.
Then, using the method of successive approximation, the existence of a unique solution of this equation
is proved. The direct problem solution on the plane y = 0 is used as an overdetermination condition
for inverse problem. This problem is replaced by an equivalent auxiliary problem which is more suitable
for further study. Then the last problem is reduced to the system of integral equations of the second
order with respect to unknown functions. Applying the fixed point theorem to this system in the class
of continuous in time functions with values in the Holder spaces with exponential weight norms, the
main result of the paper is proved. It consists of the global existence and uniqueness theorem for inverse
problem solution.
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1. Introduction and preliminaries

The integro-differential equations with an integral term of convolution type are used in the
mathematical modeling of biological phenomena and engineering sciences when it is necessary
to take into consideration the history of the processes. In these integro-differential equations
the convolution kernel accounts for memory influences. The key point when considering memory
effects is that the kernel cannot be considered a known function because there is no way to mea-
sure it directly. Kernel can be reconstructed by additional measurements of physical field taken
on a suitable subset of the body. Thus, an inverse problem has to be solved. The constitutive
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relations for a linear non-homogeneous heat propagation and diffusion processes in medium with
memory contain a time- and space-dependent kernel functions in the integral of time convolution
type [1,2]. The memory effect phenomenon is governed by hyperbolic and parabolic integro—
differential equations with time dependent memory kernel when the medium is homogeneous
and time-space dependent memory kernel when the medium is heterogeneous. The kernel deter-
mination problems in one-dimensional heat conduction equations are widely encountered where
memory kernel depends only on time variable. For example, in [3-13] (see also references therein)
these problems were studied on the basis of the fixed point argument, and the local/global in
time existence and uniqueness of inverse problems were derived. The numerical solutions for this
problems were considered and efficient computational algorithms were constructed [14-17].

In this paper, the inverse problems of determining kernels of an integral convolution-type
term in the integro-differential heat equation are studied with the use of the solution of the
initial-boundary value problem in a rectangular domain given on the boundary y = 0. Unlike
existing works, here the unknown kernel depends on both time and spatial coordinates. Consider
the problem of determining functions u(x,y,t) and k(z,t) from the following equations:

t
Ut — Au = / k(l‘,t - T)U(.’L‘,y,T)dT + f($7yat)7 ($7y7t) € DT7 (1)
0
u |t:0: Qa(xay)a (Z, y) € Ea (2)
Uy |z=0= Uy |:c:1: Oa Uy |y:0: Uy |y:1: 07 (l',y) € 0D x [OvT]v (3)
u |y=o= h(z,t), (z,t) € [0,1] x [0,T], (4)
02 0?
where A = 32 + E) is the Laplace operator, Dy = D x (0,T], D = {(z,y) : = € (0,1), y €
€z Y

(0,1)}, T > 0is an arbitrary fixed number. In the theory of inverse problems for differential equa-
tions, initial-boundary value problem (1)—(3) of determining function u(z,y,t) with Neumann
boundary conditions is called the direct problem. Function u(z,y,t) € Cgé (D7) N C’i:g (Dr) is
regular solution of the direct problem if it satisfies equalities (1)—(3).

Regular solution of (1)—(4) presupposes the fulfilment of the following conditions

@I(Ovy) = QDI(Ly) = Oa (Py($,0) = ‘Py(xa 1) = 07 (P(ZE,O) = h(l‘,O)

Let us introduce the class H' (D) of Hélder continuous functions on D with I € (0,1). The
space H™*! (D) (m is a nonnegative integer) and norms | - |', | - |™*! are defined in [18, pp. 16—
27].The class of j times continuous differentiable with respect to ¢ variable on the segment
[0, T] with values in H' (D) functions is denoted by C9 (H'(D), [0, T]). For a fixed ¢, the
norm of function g(z,y, t) in the H' (D) is denoted by |g|' (). The norm of function g(z,y,t) in
C’ (H' (D), [0, T)) is defined by the equality

J l

ol =3 max |28
' = tel0, 7] ot

(t)-

2. Study of direct problem

The solution of problem (1)—(3) is equivalent to the following Volterra type integral equation
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u(z,y,t) //Gwyﬁm) fndﬁdn+///Gwyfn»t—T)f(fm 7)d§dndr+

t 1 1 T
+/ / / G(z,y,&n,t — T)/ k(T — a)u(€,n, a)dadédndr, (5)
0o Jo Jo 0
where G(z,y,§,n,t) is the Green function and it is defined as
G(z,y,&m,t)=1+4 Z e~ Amnt cos Tna cos TMy cos TN oS TME, Apn = TV M2 + n2.
m,n=1

Lemma 2.1. Suppose that p(z,y) € HY(D), f(x,y,t) € C(HI(D), [O,T]) and k(xz,t) €
C’(Hl([O, 1), [0, T]) Then there is a unique solution of integral equation (5) such that u(x,y,t) €
o (H”?(D),[O,TD .

Proof. To prove this Lemma, the method of successive approximations is used. At the first step,
the following sequences of functions is constructed

Lol t 1l
O(x’y’t)://G(”“"’y’f’“)“’(f’”)dfd%/o/0/OG<w,y,£,n,t—r)f(f,n,r)dgdndr,
(6)
(e ///G”“’t_”/ B(E,T = a)ui 1 (€, 0)dadgdndr, i = 1,2, ...

For brevity, introduce the following notations

woo =o'y fo=IIFIL ko= Ikl

Let us estimate modules of functions w;(x,y,t). Using the Green’s function property

11
[ [G(z,y,€& n,t)dédn = 1,0ne can obtain from (6) for (z,y,t) € Dr that
00

‘uomy, ‘/ / G(z,y, & m,t)p(, )dfdn
‘///G“’fﬂ% 7)f (&, )dfdndT

wi(x,y,t ‘/ / / G(z,y,¢&, T],t—T)/ k(T — a)ui—1(&,n, a)dadédndr

< oo + fot,

l
<

2i+1
k0<g000 +fom)»i:1a2w~~

o0

Let us define functional series > w;(x,y,t). Using values obtained above, this series can be
i=0

estimated as follows

> Ju

1=0

T27,'+1 o

ui(z,y,t ’ Zko<<ﬂ00 +f0
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oo
Since the last number series converges, series > u;(x,y,t) converges uniformly and absolutely.
i=0
Obviously, under conditions of the Lemma the inclusion wg(z,y,t) € Cgtl (Dr) is satisfied.
Consequently, all u;(z,y,t) have this property, i.e., u;(z,y,t) € Cgé (D), i=1,2,.... Then,
o0
according to the general theory of linear integral equations of Volterra type, . w;(z,y,t) is a
i=0
regular solution of direct problem (1)—(3).
Let us show that equation (5) has a unique solution. For this, let us assume the opposite,
that is, integral equation (5) has two different solutions u!(z,y,t) and u?(z,y,t) with the same

data:

Yz, y,t) //nyfm) €nd§dn+///Gwyémt—T)f(ém T)d&dndr+

+/0 /0 /0 G(z,y,{,n,tfr)/o k(¢ T — a)u(€,n, a)dadédndr, i = 1,2.

The difference of these functions is defined by Z(x,y,t) = ul(z,y,t) — u?(x,y,t):

2wyt / / / Gla,y, &n b — T)/ k(&7 — ) Z(€,n, @)dadgdndr. )

Let us denote the modular supremum of function Z(z,y,t) on (x,y) € D for each t € [0,T] as

Z(t) = sup ’Z z,y,t)|, te€]0,T].

(z,y)eD

It follows from integral equation (7) that

Z(t) < koT /t Z(7)dr.

According to the Gronuolla-Bellman inequality, the last integral inequality has only Z t)=0
solution. It means that Z(z,y,t) = 0 or u'(z,y,t) = u?(x,y,t) in domain Dy. The lemma is
proved. O

3. Auxiliary problem

Suppose that functions in problem (1)—(4) are sufficiently smooth. The degree of smoothness
for each function will be determined later.
The following assertion is true.

Lemma 3.1. Problem (1)-(4) is equivalent to the following auziliary problem for functions
w(z7y7 t)) k(x7 t)"

— Aw = k(2,0 pyy (@) + Frgg(2,9,1) + /Ot k2.t — P)o(z,y,7)dr, (,0,8) € D, (8)
W lt=0= Apyy (7, y) + fyy(2,9,0), (z,9) € D, 9)
W loso= wn [oct= 0, @y [y—o=wy |y—1= 0, D x [0, T, (10)
W [y=0= het(2,1) = hawe (2, 1) — (2, t)p(2,0) — fi(2,0,1)—
_ /Otk(x,t — Yhe(z, 0, 7)dr, (2,8) € [0,1] x [0,T],

where w(x,y,t) = Uyy(z,y,1).

(11)
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Proof. Upon differentiating equations (1)—(4) with respect to ¢ and setting ¥(x, y, t) := us(z, y, 1),
one can obtain the following equivalent problem for functions 9, k

t

Py — AV = k(z, t)(x,y) + fi(z,y,t) +/ k(z,t — 1)z, y,7)dr, (z,y,t) € Dp, (12)
0

U [t=0= Ap(z,y) + f(2,9,0), (v,y)€ D, (13)

19:6 |z:O: ﬁm |ZE:1: 07 ﬁy |y:0: ﬁy |y:1: 07 ((E,y) € 0D x [OvT]v (14)

Y |y=0= h¢(x,t), (x,t) €[0,1] x [0,T]. (15)

Here, it is assumed that
Apa(0,y) + f2(0,y,0) = Apy(1,y) + fo(1,9,0),

A(py(l’,()) + fy(a:,0,0) = A@y(xa 170) + fy(xa 170)a A(,D(.’E,O) = ht($,0)

Hence it follows that if (u, k) is a solution of problem (1)—(4) then (12)—(15) has a solution
(9, k) with the same k. Let us prove the converse. Let (¢, k) satisfy relations (12)—(15) then

t
u(z,y,t) =/ I(z,y, 7)dT + o(z,Y).
0

Let us show that relation (1) holds. It follows from (12)—(15) that

t
ut_Au_/ k(x77-)u(xvyat_7-)d7-_f(xay7t):
0

t t t—r1 t
— Sy, 1) /0 Az, y, 7)dr—Ap(a, y) - /0 K(z,7) /O 3z, y, a)dadr— /0 ke, ) (e, y)dr—
—f(l‘,y,t) = / ﬂT(xayaT)dT—i_A(p(x?y)+f(xay70)_/ Aﬂ(l‘,y,T)dT—A(p(.’E,y)—
0 0
t T t t
— | k(z,7 0, T — a)dadt — k(x,7 dr — (z,y, T)dT — ,y,0) =
/0 (2,7) / (29,7 — a)da / (2, 7)ol 1) / f (@, 7 — F(2,5,0)

— /Ot [197 — A9 — /OT k(z, )z, y, 7 — a)da — k(z, 7)e(x,y) — fT(gj7y’T):| dr = 0.

This completes the proof of equivalence of problems (1)—(4) and (12)—(15).
Now consider the second auxiliary problem. It can be obtained from problem (12)—(15) for
function p(x,y,t) := 9y (z,y,1t):

t
pe — Ap = k(z,t)py (2, y) + fry(z,y,t) + / k(z,t — 7)p(x,y,7)dr, (2,9,t) € Dr, (16)
0

p |t:0: A(py(xay) + fy(xvyvo)ﬂ (xuy) € Dv (17)
Pz |z:O: Pz |z:1: 0, Dy |y:O: Py |y:1: 0, 9D x [O,T}, (18)

Dy ly=0=hu(z,t) — hage(z,t) — k(z,t)p(x,0) — fi(z,0,t)—
—/ k(a,t — T)he(e, 0,7)dr, (2,8) € [0,1] x [0,7].
0
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It is assumed that
A@ﬂcy(oa y) + fzy((),y,o) = A@ﬂcy(lay) + fmy(]-vya 0),

A(pyy(aj, O) + fyy(x7070) = A@yy(xv 1) + fyy(l‘, 1’ 0)7
Agoyy(x,O) + fyy(xvov 0) = htt(‘rvo) - hﬂm’t(xﬂo) - k(;E,O)go(m, 0) - ft($707 0)'

This follows from (12—(15), and it can be proved by complete analogy with the previous case.
Therefore, if problem (12)—(15) has solution (¢, k), then problem (16)—(19) has solution (p, k)
with the same k. Moreover, p(x,y,t) = 9,(z,y,t). Conversely, let (p, k) satisfy relations (16)—

(19).

Hence it follows that

Yy
I,y t) = / p(, 2, 0)dz + h(x,1),
0

t
— 80— bla Dp(e9) — filet) — [ Kot =)0y, 7)dr =
0
y y
= / pe(x, 2, t)dz + hy(2,t) — / Ap(z, z,t)dz — py(z,0,t) — hyg(z,t)—
0

/k‘xtgoz(x z)dz — k(z,t)p(z,0) /ftza:zt)dz—ft(th)

/ / x,t —71)9,(x, 2 T)deZ*/ k(x,t —1)he(x,0,7)dT
:/0 [0 = Ap — k(2. 0:(2.2) — fis(,2,) — /Otk(x,t—f)ﬁz(x,m)dr} dz—

t
7py(13,07t) + htt(xvt) - htrf(xat) - ft(‘ra Ovt) - k(I,t)tp(fE, 0) - / k(‘rat - T)ht(l’70,7')d7' = O
0

Then the equivalence of problems (12)—(15) and (16)—(19) is proved. In similar way, one can

show that problem (16)—(19) is equivalent to problem (10)—(13) for function w := p,(x,y,t). This
11).

implies the equivalence of problems (1)—(4) and (8)—( The lemma is proved. O

4. Study of inverse problem (8)—(11)

The solution of problem (8)—(10) is equivalent to the following Volterra type integral equation

o) = [ [ 00 (e + flm)acins

+A /(; /0 G(Iyy7£7777t*T)ftyy(é,n,T)dgdnd7—+

t 1 1
+A /(; /0 G(x’y’g’n’t_T)k(f’t_T)@yy(f,n)dédndT—i—

t 1 1 -
+ /0 /0 /0 G(a,y, &t —7) /0 k(€7 — a)w(€, 1, o) dadedndr.
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Let ¢(x,0) # 0, for all z € [0,1]. Using equation (20) and additional conditions (11), one can
obtain the following integral equation with respect to function k(z,t)

ant) =~y (e 1) — e, ) — Fi(2,0.1)] ) / k(@ — 7)hy (2,0, 7)dr—
1 1 1
5 | | ewosns (A@yy(&n) - fyy(é“,n))dﬁdn—
1 t 1 1
- — G(x,0,&,n,t—T1 ,n, T)dédndT— 21
5 || [ eoent =i (21)
t—T)k(&,t — T)pyy (&, n)dEdndT—
1 T
Gla0.6n8=7) [ k(€7 — )l . )dadgdndr.
0
The main result of this work is the following assertion.

>k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okook ok ok ok sk ok ok ok sk ok sk ok ok ok sk ok sk sk ok skook skok sk ok sk ok sk skook skok skok kok skok sk kskokok kokkok

Theorem 4.1. Assume that ¢(z,y) € H** (D), |p(x,0)] > @9 = const > 0, f(z,y,t) €
ct (HH‘2 (D); [O,T]), h(z,t) € C? (Hl+2([0, 1)); [O,T]). In addition, all the above matching con-
ditions with respect to the specified functions are fulfilled. Then for any fired T > 0, there
exists a unique solution of integral equations (20), (21) and w(z,y,t) € C(HH'Q(D); [O,T]),

k(e,t) € C(H1([0,1]);0,7]).
Proof. The system of equation (20), (21) is closed system of integral equations with respect to
functions w(x,y,t) and k(x,t). Let us write this system in the form of a non-linear operator
equation

V= Ay, (22)
where ¢ = (Y1,92,) = (w(z,y,1t), k(z,t))*, * is the symbol of transposition. The operator in
(22) has the form Ay = [(Awl, (Awg};

(A)1 =tou (2, 9, 1) / / / G,y &0t — Vs 6.t — 7)oy (€, m)dEdndr+

(23)
+/o /o /0 G(x,y,f,n,t—T)/O Po(&, 7 — )1 (€, m, a)dadEdndr.
(Arp)2 =thoa(w, 1) 2(.0) / po(x,t — )y (2,0, 7)dT—
1
_m/o /0 /O G(2,0,&m,t — T)a(&,t — T)pyy (€, n)dEdndT— (24)

1 t 1 1 T
M/O/O/OG(:L’,&SJMT)/O Yo(&, 7 — )1 (&, m, ) dadEdndr.

The following designations are used in equations (23), (24)

Yo1(z,y,t / / G(z,y,&,m, )(Asow(ﬁ n) + fuy (&, n))d€d77+
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/// (2,9,&m,t = 7) fryy (&, m, 7)dEdndr,

Yooz, t) = [htt(x t) = B (2,) — ft(a:,(),t)}—

,0)
o(x, O / / (2,0,&,m, )(ASDyy(fa n) — fyy(fan))dfdnf

m /0 /0 /0 G(z,0,&m,t = 7) fryy (& m, 7)dEdndr.

Let C, (H' (D), [0, T]) be the Banach space of continuous with respect to t variable on the

segment [0, T'] with values in H' (D) functions with the family of weighted norms || - ||, o > 0
l —ot l -

= m il i =1,2. 25

%15 (‘?}é] e” 7 il (25)

Obviously, C, with o = 0 is the usual space of continuous in ¢ on [0, 7] with values in H' (D)
functions with the ordinary norm (see Introduction). In what follows it is denoted by || - ||*.
Because

el < llelly < N1l (26)
norms || - || and || - ||' are equivalent for any t € [0, T]. Parameter o will be defined later.
Consider space C, with ¢ > 0. Let us introduce the ball S, (3, ||1ol|') := {¢ : |2 — ¥o||L <

llv0]|'} of radius |1/ centred at the point 1)y, where vector function 1y has components 1y,
i = 1,2 and ¢! = max o[ Obviously, the estimate [+, < [+ [ < 2[é|* holds for
=1,

a function 1 € S, (o, |to||!). Let ¥ € Sy (o, |[1bo]|'). Let us prove that operator A is contracting
operator on set ¥ € S, (3, ||10]|') for an appropriately chosen o > 0. First let us show that if
o > 0 is chosen appropriately then operator A maps ball S, (10, [|¢0]|') into the same ball, i.e.,

A € S5 (Yo, [[vo]l")-

Indeed, using relations (20), (21) for the norm of differences and denoting ¢; = |p|'*4,

ho := |h|!"*2 for (x,t) € [0,1] x [0,T], one can obtain
// / G(w,y,&m,t = 7)x

xe*% (&t —T1)e 7"y, (€,n)dédndT+

(AY)1 — Yol = max ‘((Aw)l _%1)‘ ot ¢ max

te0,t]

t prl 1 T 1
+/ / / G(.’E, Y, 67 77715 - T) / e_U(T_a)¢2(§7 T—= a)e—a(a)wl (67 m, a)e_a(t_‘r)dadgdnd’r <
0J0 JO
T 1
||1/)2||U<P1* + 2||1/)2||fr||1/11\|ffg < 2|0l (1 + 4||1/10HZT)E,
l
1(4%)s — Yoall, = max [((A9)2 — o) = < o (Il ko~ + Iallbpn ~+
t€[0,T]

T _ 1
2t 9]l = | < 2loll'eg’ [ho + o1+ 40T -

Let 0 > 0y, where

oo = 2max{e1 + 4[|o|'T, ho + @1 + 4llvo||'T}.

Then operator A maps Sy (1o, |[1o]|') into itself, i.e., A € Sy (2o, |[1bo]|").
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Let us show the fulfilment of the second property of construction map for operator A.
First, one should note that inequalities for (! = (1/)9), wél)) € Sy (vo, [I'woll"), P2 =

2 2
( g )7 ; )7) € SO’ (wO? ||¢0Hl) .
l l
U — 0] = (o = )02 2 (0 - o)

)

<2l - w<2>(lmax (\wi” l

l l
1) <l - v

holds. Then one can obtain

l

J(cae)® = (A @) = max [((4)® ~ (40)@)[ e <
o t€[0,T]

<o | [ [ ] ctment-neet (e - - e n)x

t€[0,T]

t 1 1 T
xe oy, (eginar+ [ [ [ Gaent—n) [ (06 r - ax
0o Jo JO 0
l
xe @Y (€ ma) = 6 (67— )P (€, a)e 70 ) dadgdndr| <
1 T 1
< = 9@~ + 8l | — v = < D =@ (o1 +8llwol'T) .

= max [((40)0) - (4p) @[ e <

o te[0,T]

(4 = (ap)@),

- 1 1 T
<oy ol = @ 1= 4 [ — @ oy~ + 8ol WD — @)= <
_ 1
< [ = 9@ 5! [ho + o1 + 81kl T .
Let 0 > o*, where
ot = max {1 +8|[Yoll'T, 25 [ho + 1 + 8l1boll'T] }

Then operator A is contracting operator on S, (10, |[1o]|'). It follows from the Banach fixed-point
theorem that (22) is solvable and has a unique solution in S, (3o, ||t||!) for any fixed T > 0.
Since w =: 11 then

Uyyt(1'7y,ﬁ) = ¢1($»yat)- (27)

Function u(x,y,t) is determined from equation (27) as follows

w(z,y.1) = ha,t) + olrry) — plr.0) + / ’ / (v — (., 7)drdn.

Thus, the solution of inverse problem (1)—(4) is found. a
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I'nobanpHas Pa3peaminMOCTb 3aJa49M1 OIIpedeJiIecHud Aapa
B IBYMEPHOM ypaBHE€HHNHN TEILJIOIIPOBOJAHOCTHU C IIaMATBbIO

Hypaumypon K. [lypaues

Byxapckoe ornenenne Mucruryra maremaruku AH PY3
Tocynapcreennsblii yausepcurer Byxapbr

Byxapa, ¥Y36ekucran

2Kassion 3. HypuaausoB

Tocynapcrsennsiit yauBepcurer Byxapbl

Byxapa, ¥Yzbekucran

Awnunoramusi. B cratbe uccienyercst obpaTHasi 3aja4a ONPEIe/IEHUs] [IByMEPHOTO sIJIpa WHTErPAJIBHOTO
YJICHA, 3aBUCAIIECTO OT BPEMEHHOH IEepEeMEHHOU ¢ W IIepBOA KOMIIOHEHTBI IIPOCTPAHCTBEHHON IEepEMEH-
woit (x,y) B umHTErpo-auddepeHInaIbHOM YPABHEHUU TEILIONPOBOAHOCTH. JJIs 9TOro ypaBHEHHs [IPH
3a/IaHHOM sIIpa U3ydaeTcs IMpsiMasi HadaJlbHO-KpaeBas 3ajada ¢ ycaoBuamu Heiimana Ha rpanuie mps-
MOyToJbHOU obactu. C momorrpo Gyaknun ['prHa Ta 33/1a9a CBOIUTCS K WHTETPATHLHOMY yPABHEHUIO
BOJIBTEPPOBCKOTO THUIIA BTOPOI'O POJIA, 8 3aT€M METO/IOM II0CJIEI0BATEIbHBIX TPUOINKEHUI JOKA3BIBAETCS
CyIIIeCTBOBaHUE €JIMHCTBEHHOTO pelenus. B o6paTHOil 3a/1a4e B KA4eCTBE YCJIOBUS TIEPEOIPE/IE/IEHUST HC-
TOJIb3YETCS pellienne mpsiMoii 3aaqn Ha mockoct y = 0. O6paTHas 3a7a49a 3aMEHI€TCST SKBUBAJIEHTHOM
BCIIOMOTaTeIbHOM 33 1a4eil, boJiee yaoOHOM Jy1s JajabHeiero ucciaeaoBanus. Jasee sra 3a/1a4da CBOIUTCA
K CHCTEME MHTErPAJIbHBIX YPABHEHUN BTOPOTO POJa OTHOCUTEBHO HEM3BECTHBIX (dpyHKIwil. [Ipumensist
K 9TOH CHCTeMe TeOpeMY O HENOABHXKHOHM TOYKE B KJIACCE HEIPEPBIBHBIX II0 BPEMEHH CO 3HAYCHUAMU
B mpocTpancTBax [€nbiepa GyHKINA C IKCIIOHEHIINAJIBHON BECOBOII HOPMOM, JIOKA3bIBAETCS OCHOBHOM
pe3yJIbTaT CTAaTbU, COCTOSIINN B IIOOAJBLHON TeopeMe CyIeCTBOBAHUS U €JIMHCTBEHHOCTU PEIIeHUs] 06-
PaTHOU 3a7a4u.

KumaroueBbie cioBa: nnTerpo-auddepenimaabHoe ypaBHenue, obpaTHas 3aj1a4da, Teopema banaxa, cy-
II[ECTBOBAHUE, €J[MHCTBEHHOCTD.
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