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Abstract. The purpose of this paper is to introduce and study strongly m-subharmonic (shm) functions
on complex manifolds X ⊂ CN , dimX = n, n 6 N. There are different ways to define shm-functions on
complex manifolds: using local coordinates, using retraction π : CN → X or using Jensen measures (see
for example [1, 8, 13]). In this paper we use the local coordinates. In Section 1 we present the definition
and simplest properties of shm-functions in Cn. In Section 2, we provide the definition of shm-functions
in the domains D ⊂ X of the complex manifold X and prove several of their potential properties. Section
3 introduces maximal functions and their properties, while Section 4 presents the main result of the work
(Theorem 4.1) concerning the solvability of the Dirichlet problem in regular domains.
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The theory of strongly m-subharmonic (shm) functions plays an important role in the po-
tential theory. It expands and develops the well-known pluripotential theory, introduced at the
end of the last century, which at present is the main subject for studying analytic functions of
several complex variables and plurisubharmonic functions.

The pluripotential theory is based on plurisubharmonic (psh) functions and is related to the

Monge-Ampère operator (ddcu)n. Here, as usual d = ∂+∂ and dc =
∂ − ∂

4i
. This theory is based

on research in numerous fundamental works of E. Bedford, A.Taylor, J. Siciak, A. Sadullaev and
others (see, for example, [2, 10, 14]). shm-functions are related to the operator

(ddcu)m ∧ βn−m, 1 6 m 6 n, (1)

where β = ddc|z|2 is the standard volume form in the complex space Cn.
Since ddcu∧βn−1 = ∆uβn, operator (1) for m = 1 gives the Laplace operator, and for m = n

the Monge–Ampère operator. The operator (1) is called the complex operator in Hessians,
because it is easy to calculate

(ddcu)m ∧ βn−m = m!(n−m)!Hm(u)βn,

where Hm(u)=
∑

16j1<...<jm6n
λj1 . . . λjm is the Hessian of the eigenvalue vector λ=(λ1, λ2, . . . ,λn)

of the matrix (uj,k̄).
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With the help of Hessians, a class of shm-functions was defined (see Definition 2.1. below)
in the works of Z. Blocki, S.Dinew, S.-Y. Li, H. Lu and others (see, for example, [3, 4, 6, 7]).
Moreover, in their works shm-functions are also defined in the class L1

loc(D) and a number of
their fundamental properties are proven. The potential theory in the class of shm-functions is
developed in the work of A. Sadullaev and B.Abdullaev [9].

1. Hessians

Let u ∈ C2(D) be a twice differentiable function given in a domain D ⊂ Cn. The second-

order differential ddcu =
i

2
∑
j,k

uj,k̄dzj ∧ dz̄k represents a Hermitian quadratic form, where uj,k̄ =

∂2u

∂zj∂z̄k
. Therefore, through an appropriate unitary transformation of coordinates, it can be

reduced to a diagonal form ddcu =
i

2
[λ1dz1 ∧ dz̄1 + · · ·+ λndzn ∧ dz̄n], where λ1, . . . , λn are the

eigenvalues of the Hermitian matrix (uj,k̄).
It is clear that

(ddcu)k ∧ βn−k = k!(n− k)!Hk(u)βn, k = 1, . . . , n,

whereHk(u) =
∑

16j1<···<jk6n
λj1 . . . λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Definition 1.1 (see [9]). A function u ∈ C2(D) is called shm in domain D ⊂ Cn, if it satisfies
the following condition

(ddcu)k ∧ βn−k > 0 ∀ k = 1, 2, . . . , n−m+ 1.

It is known that for all twice differentiable shm-functions u, v1, . . . , vn−m the following in-
equality holds

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 > 0. (2)

Moreover, if a twice differentiable function u satisfies (2) for all twice differentiable shm-functions
v1, . . . , vn−m, then u is a shm-function. Using this, we can define shm-functions in the class L1

loc.

Definition 1.2 (see [9]). An upper semicontinuous function u in the domain D ⊂ Cn is called
shm in D, if for any twice differentiable shm-functions v1, . . . , vn−m the current ddcu ∧ ddcv1 ∧
· · · ∧ ddcvn−m ∧ βm−1 defined as

[ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1](ω) =

=
∫
uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F (0,0)(D)

is positive, where F (0,0)(D) is a space of test functions in D.

The set of shm-functions in D is denoted by shm(D). It is clear that psh = sh1 ⊂ sh2 ⊂
· · · ⊂ shn = sh and we have the following important property.

Theorem 1.1. If u ∈ shm(D), then for any complex hyperplane Π ⊂ Cn restriction u|Π is a
shm-function in D

⋂
Π, i.e.

u|Π ∈ shm(D ∩Π).
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2. shm-functions on a Stein manifold X.

Let us recall the definition of a Stein manifold. Let X be a complex manifold of complex
dimension n and denote by O(X) the ring of holomorphic functions on X.

Definition 2.1 (see [16]). A complex analytic manifold X of dimension n is called Stein manifold
if

1) X is holomorphic convex, i.e.

K̂ = {z : z ∈ X, |f(z)| 6 sup
K
|f | for all f ∈ O(X)}

is a compact subset of X for every compact subset K ⊂ X;
2) If z1 and z2 are different points in X, then f(z1) 6= f(z2) for some f ∈ O(X);
3) For every z ∈ X, one can find functions f1, . . . , fn ∈ O(X) which form a coordinate system

at z.

It is well-known that the Stein manifold X can always be embedded in some space of higher
dimension, X ⊂ CN , N > n.

We define shm-functions on a Stein manifold X ⊂ CN , dimX = n, for 1 6 m 6 n by
restricting β = ddc||z||2, z = (z1, . . . , zN ) to X. In local coordinates φ (ξ) : B → U, B ⊂
Cn, U ⊂ X, ξ = (ξ1, . . . , ξn) the differential form β|X has the following form

β|X = β|U = α(ξ) =
i

2
[dφ1(ξ) ∧ dφ̄1(ξ) + · · ·+ dφN (ξ) ∧ dφ̄N (ξ)].

Definition 2.2 (see [15]). A function u ∈ C2(D) is called shm-function in the domain D ⊂ X
if

[(ddcu)|X ]k ∧ [β|X ]n−k > 0, k = 1, 2, . . . , n−m+ 1,

or, equivalently, in local coordinates of D the following holds

(ddcu(ϕ(ξ)))k ∧ αn−k(ξ) > 0, k = 1, 2, . . . , n−m+ 1. (3)

It is clear that if U1

⋂
U2 6= ∅ are two open sets on X, then from β|Uj = β|Uk

◦ φ−1
k ◦ φj it is

easy to obtain that the positivity of the forms in (3) does not depend on the choice of the local
coordinates, i.e. Definition 2.2 is correct.

From the definition of shm-function, it obviously follows that if u, v1, . . . , vn−m ∈
shm (D)

⋂
C2 (D), then

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1 > 0. (4)

Conversely, if a twice differentiable function u satisfies (4) for all v1, . . . , vn−m ∈
shm (D)

⋂
C2 (D) , then u is a shm-function in D. This conclusion can be proved in the same

way as in the case X = Cn since the differential forms β|X in local coordinates is a strictly
positive (1, 1) form and by using suitable linear mapping it can be reduced to a diagonal form
λ1dξ1 ∧ dξ̄1 + · · ·+ λndξn ∧ dξ̄n.

As above, we can define shm-functions in the class of functions L1
loc.

Definition 2.3 (see [5]). A function u ∈ L1
loc (D) is called shm in a domain D ⊂ X if it is

upper semicontinuous and for any twice differentiable shm-functions v1 , . . . , vn−m the current
ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1 which is defined as[

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)m−1
]

(ω) =

=
∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)m−1 ∧ ddcω, ω ∈ F 0,0 (D)

(5)
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is positive.

The class of shm-functions in a domain D is denoted by shm (D) . Usually a trivial function
u (z) ≡ −∞ is also included in shm (D) .

The following properties of shm (D) follow easily from definitions of shm-function.
1) A linear combination of shm-functions with non-negative coefficients also is a shm-

function, i.e.

uk(z) ∈ shm (D) , ak ∈ R+ (k = 1, 2, . . . , p) ⇒ a1u1(z) + a2u2(z) + · · ·+ apup(z) ∈ shm (D) ;

2) We have the following relation

sh1 (D) ⊂ · · · ⊂ shm (D) ⊂ · · · ⊂ shn (D) .

3) The limit of a uniformly converging or monotonically decreasing sequence of shm-functions
is also shm-function:

uj (z) ∈ shm (D) , uj (z)⇒ u (z) ⇒ u (z) ∈ shm (D) ;

uj (z) > uj+1 (z) (j = 1, 2, . . . ) ⇒ lim
j→∞

uj (z) ∈ shm (D) .

The above properties 1)–3) follow directly from Definition 2.3 and from the Lebesgue–Levi
theorem on monotone convergence.

Let us now state properties whose proofs are more complicated.
4)The maximum of a finite number of shm-functions is also a shm-function, i.e.,

u1(z), u2(z), . . . , up(z) ∈ shm (D) ⇒ max{u1(z), u2(z), . . . , up(z)} ∈ shm (D) .

Proof. We fix v1, . . . , vm−1 ∈ shm (D)
⋂
C2 (D) and put α = ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1

.

According to (4), the differential form α is positive. For small positive number ε > 0, considering
the differential form α+ε(ddcβ|X)n−1

, without loss of generality, we can assume that it is strictly
positive. Then the operator

ddcu ∧ α = ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1

is an elliptic operator. If the function u (z) is shm-function in D, then from the positivity in the
generalized sense of the form ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1 we have the positivity of
the form ddcu ∧ α, which means α-subharmonicity (see, for example, [11, 12]) of function u in
local coordinates, defined by formula (3).

Let us take functions u1(z), u2(z), . . . , up(z) ∈ shm (D) . Since they are α-subharmonic in the
local coordinate, the maximum function u = max{u1(z), u2(z), . . . , up(z)} is also α-subharmonic.
This means that ddcu ∧ α > 0 in the generalized sense. So, we have ddcu ∧ α > 0 for every
v1, . . . , vm−1 ∈ shm (D)

⋂
C2 (D) and α = ddcv1 ∧ · · · ∧ ddcvn−m ∧ [β|X ]m−1

, i.e.[
ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)m−1

]
(ω) =

=
∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ (β|X)m−1 ∧ ddcω > 0, ∀ω ∈ F 0,0 (D) , ω > 0.

According to Definition 2.3, u is a shm-function. The proof is complete. 2
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5) For any locally uniformly bounded family ut (z) ∈ shm (D) , t ∈ T, we have[
sup
t
ut (z)

]∗
∈ shm (D) .

Similarly, the regularization of the upper limit of locally uniformly bounded sequence uj (z) ∈

shm (D) is a shm-function, i.e.,
[

lim
j→∞

uj (z)
]∗
∈ shm (D) . In particular, the regularization of

the limit of a monotonically increasing, locally uniformly bounded sequence of shm-functions is
again shm-function.

Proof. Let us deal with the supremum, assuming without loss of generality that there exists
M > 0 : ut (z) 6 M. We fix v1, . . . , vm−1 ∈ shm (D)

⋂
C2 (D) and put it as above α =

ddcv1∧· · ·∧ddcvn−m∧ [β|X ]m−1
, assuming without loss of generality that α is a strictly positive

(n− 1, n− 1)-form. Since ddcuj ∧ α > 0, then uj are α-subharmonic functions for the elliptic
operator ddcuj ∧α. Then, just as for the Laplace operator ddcuj ∧ βn−1 in Cn (see [14]), we can

show that
[

sup
t
ut (z)

]∗
∧ α > 0. The proof is complete. 2

6) Let uj (z) ∈ shm (D) be a sequence of shm-functions satisfying uj (z) 6 Mj(j = 1, 2, . . . )

where
∞∑
j=1

Mj converges. Then
∞∑
j=1

uj (z) is a shm-function.

Proof. The functions uj (z) − Mj (j = 1, 2, . . . ) are not positive. Therefore, the sequence

vk (z) =
k∑
j=1

[uj (z)−Mj ] is monotonically decreasing. By property 3) we have
∞∑
j=1

(uj (z)−Mj) ∈

shm (D). Since the series
∞∑
j=1

Mj converges, then
∞∑
j=1

uj(z)∈shm (D) . The proof is complete. 2

7) Let γ(t) : R → R be a convex and non-decreasing function, and u (z) ∈ shm (D) . Then
γ ◦ u ∈ shm (D) .

3. Maximal functions.

Maximal functions are analogous of harmonic functions in the class of shm-functions, they
are studied by the A. Sadullaev, B.Abdullaev [9] in Cn. Let us give the definition of a maximal
shm-function on a Stein manifold X.

Definition 3.1. A function u (z) ∈ shm (D) , D ⊂ X is called maximal in the domain D ⊂ X
if for any function v (z) ∈ shm (D) for which lim

z→∂D
(u (z)− v (z)) > 0 holds u (z) > v (z) in D.

The condition lim
z→∂D

(u (z)− v (z)) > 0 for arbitrary shm-functions u (z) , v (z) can be un-

derstood as follows: for any ε > 0 there exists a compact subset F ⊂ D outside of which
v (z) 6 u (z) + ε. In particular, v (z) = −∞ if u (z) = −∞.

Let us formulate the following theorem, which allows us to define maximal functions in
convenient forms

Theorem 3.1. The following statements are equivalent
1) u (z) is a maximal function in D;
2) for any subdomain G ⊂⊂ D the inequality u (z) > v (z) , ∀z ∈ G holds for all functions

v (z) ∈ shm (G) satisfying lim
z→∂G

(u (z)− v (z)) > 0;
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3) for any subdomain G ⊂⊂ D the inequality u (z) > v (z) , ∀z ∈ G holds for all functions
v (z) ∈ shm (D) for which

u|∂G > v|∂G.

4. The Dirichlet problem in the class of shm-functions
on a Stein manifold X.

In this section we will discuss the solvability of the Dirichlet problem in the class of shm-
functions on a Stein manifold X ⊂ CN ,dimX = n.

Definition 4.1. A domain D ⊂ X is called strictly m-convex if D = {ρ (z) < 0} for some strictly
shm-function ρ(z) in some neighborhood D+ of D̄. Strictly of the shm-function ρ (z) means that
there is a δ > 0 such that ρ (z)− δ ·

(
‖z‖2

)
X

is a shm-function in D+.

Remark 4.1. If the domain D ⊂ X is a strictly m-convex, then any point ζ0 ∈ ∂D is a peak
point, i.e. there is a peak function q (z) ∈ shm (D)

⋂
C
(
D
)

: q
(
ζ0
)

= 0, q|D̄\{ζ0} < 0.

In fact, by Definition 4.1, there is δ > 0 such that the function

q (z) = ρ (z)− δ ·
(∥∥z − ζ0

∥∥2
)
X

is a shm-function in D, which will be continuous on D and q
(
ζ0
)

= 0, q|D̄\ζ0 < 0.
Let D ⊂ X be a strictly m-convex domain and given a continuous function ϕ (ζ) ∈ C (∂D) .

We consider the following Dirichlet problem: find a function satisfying the following conditions
a) u ∈ shm (D) ;
b) lim

z→ζ
u (z) = ϕ (ζ) , ∀ζ ∈ ∂D;

c) u is maximal function in D.
In order to solve the Dirichlet problem, we will use the Perron method. Let us define the

following class

U (ϕ,D) =
{
v ∈ shm (D) : lim

z→∂D
v (z) 6 ϕ (ζ)

}
and put

ω (z) = sup
v∈U(ϕ,D)

v (z) .

Theorem 4.1. The upper regularization ω∗ (z) of ω(z) is a solution to the Dirichlet problem,
i.e. ω∗ (z) satisfies the conditions a), b) and c).

Proof. First we prove that ω∗ (z) is a shm-function in D. Since ϕ is continuous and by the
maximum principle we deduce that the class of functions of U (ϕ,D) is uniformly bounded from
above. By property 5 of Section 2 its regularization is a shmf-unction in D.

Now we prove the continuity of the function ω∗(z) on ∂D. First, we show that lim
z→ζ0

ω(z)>ϕ(ζ0)

for any fixed point ζ0 ∈ ∂D. Set M = ‖ϕ‖∂D and fix ε > 0. Then from the continuity of the
function ϕ (ζ) ∈ C (∂D) there is r > 0 such that∣∣ϕ (ζ)− ϕ

(
ζ0
)∣∣ < ε ∀ζ ∈ ∂D

⋂
B
(
ζ0, r

)
,

where B
(
ζ0, r

)
⊂ CN .

– 618 –



Sevdiyar A. Imomkulov, Sukrotbek I.Kurbonboev The Dirichlet Problem in the Class . . .

Since the point ζ0 is a peak point, then there is a peak function q (z) ∈ shm (D) such that

q
(
ζ0
)

= 0, sup
‖z−ζ0‖>ε, z∈D

q (z) = qε < 0.

Let us estimate the boundary values of the following function

vε (z) = −ε+ ϕ
(
ζ0
)

+
q (z)
|qε|

(
M + ϕ

(
ζ0
))
.

If ζ ∈ ∂D
⋂
B
(
ζ0, r

)
, then

lim
z→ζ

vε 6 −ε+ ϕ
(
ζ0
)
6 ϕ (ζ) ;

if ζ ∈ ∂D\B
(
ζ0, r

)
, then

lim
z→ζ

vε 6 −ε+ ϕ
(
ζ0
)
−M − ϕ

(
ζ0
)
6 ϕ (ζ) .

Hence, lim
z→ζ

vε 6 ϕ (ζ) for all ζ ∈ ∂D and vε ∈ U (ϕ,D) . Consequently, we get that vε (z) 6 ω (z)

and lim
z→ζ0

ω (z) > lim
z→ζ0

vε (z) = −ε+ ϕ
(
ζ0
)
. Since ε > 0 is arbitrary, we have

lim
z→ζ0

ω (z) > ϕ
(
ζ0
)
.

Now we will show that lim
z→ζ0

ω (z) 6 ϕ
(
ζ0
)
. To prove this inequality we fix the function

u (z) ∈ U (ϕ,D) and consider the sum u (z) + gε (z) , where

gε (z) = −ε− ϕ
(
ζ0
)

+
q (z)
|qε|

(
M − ϕ

(
ζ0
))
.

It’s clear that u (z) + gε (z) ∈ shm (D) . Now let’s estimate the boundary values of the function
gε (z) : If ζ ∈ ∂D

⋂
B
(
ζ0, r

)
, then

lim
z→ζ

gε (z) 6 −ε− ϕ
(
ζ0
)
6 ϕ (ζ) .

Similarly, if ζ ∈ ∂D\B
(
ζ0, r

)
, then

lim
z→ζ

gε (z) 6 −ε− ϕ
(
ζ0
)

+ lim
z→ζ

q (z)
|qε|

(
M − ϕ

(
ζ0
))

=

= −ε− ϕ
(
ζ0
)

+
q (ε)
|qε|

(
M − ϕ

(
ζ0
))

= −ε−M 6 −ϕ (ζ) .

Consequently, we have

lim
z→ζ

[u (z) + gε (z)] 6 lim
z→ζ

u (z) + lim
z→ξ

gε (z) 6 lim
z→ζ

u (z)− ϕ (ζ) 6 0

for any ζ ∈ ∂D. Thus thanks to the maximum principle, u (z) + gε (z) 6 0 in D, i.e. u (z) 6
−gε (z) , ∀z ∈ D. Since the function u (z) ∈ U (ϕ,D) is arbitrary, we get ω (z) 6 −gε (z) , z ∈ D.
As a consequence we deduce that

lim
z→ζ0

ω (z) 6 lim
z→ζ0

(−gε (z)) = −ε+ ϕ
(
ζ0
)
.
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Since ε > 0 is arbitrary, by letting ε→ 0 we get lim
z→ζ0

ω (z) 6 ϕ
(
ζ0
)
.

Combining lim
z→ζ0

ω (z) > ϕ
(
ζ0
)
with lim

z→ζ0
ω (z) 6 ϕ

(
ζ0
)
we get the continuity lim

z→ζ0
ω (z) =

ϕ
(
ζ0
)
at every point ζ0 ∈ ∂D. This means that lim

z→ζ
ω (z) = ϕ (ζ) is true in ∂D, i.e. ω (z) is

continuous on ∂D. It is not difficult to see that the regularization ω∗ (z) is continuous at the
boundary i.e., lim

z→ζ
ω∗ (z) = ϕ (ζ) , ∀ζ ∈ ∂D.

Let us now prove that the function ω∗ (z) is maximal in D. We will prove this by contrary,
assume there is a domain G ⊂⊂ D and a function ϑ (z) ∈ shm (D) : ϑ|∂G 6 ω|∂G, but
ϑ
(
z0
)
> ω(z0) at some point zo ∈ G. It’s easy to see that function

v(z) =
{

max {ϑ (z) , ω (z)} , z ∈ G
ω (z) , z ∈ D\G

is a shm-function and v|∂D = ω|∂D = ϕ. Therefore, v (z) 6 ω (z) and hence ϑ (zo) 6 ω (zo) .
This leads to contradiction. The proof is complete. 2
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Задача Дирихле в классе shm-функций на многообразии
Штейна X

Севдияр А.Имомкулов
Сукротбек И.Курбонбоев

Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. Целью данной работы является введение и изучение shm-функций на комплексных
многообразиях X ⊂ CN , dimX = n, n 6 N. Имеются разные способы определения shm-функций
на комплексных многообразиях: при помощи локальных координат, при помощи ретракции π :
CN → X, при помощи мер Иенсена (см. [1, 8, 13]). Для определения shm-функций на комплексном
многообразии X мы пользуемся локальными координатами. В разделе 1 мы приводим определение
и простейшие свойства shm-функций в пространстве Cn. В разделе 2 дается определение shm-
функций в областях D ⊂ X комплексного многообразия X и доказывается ряд их потенциальных
свойств. В разделе 3 определяются максимальные функции и их свойства, и в разделе 4 мы докажем
основной результат работы (Теорема 4.1.) о разрешимости задачи Дирихле в регулярных областях.

Ключевые слова: shm-функции, плюрисубгармонические функции, многообразие Штейна, зада-
ча Дирихле.
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