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Abstract. The purpose of this paper is to introduce and study strongly m-subharmonic (sh., ) functions
on complex manifolds X € CV, dimX =n, n < N. There are different ways to define sh,,-functions on
complex manifolds: using local coordinates, using retraction m : C~ — X or using Jensen measures (see
for example [1,8,13]). In this paper we use the local coordinates. In Section 1 we present the definition
and simplest properties of sh.,-functions in C". In Section 2, we provide the definition of sh,-functions
in the domains D C X of the complex manifold X and prove several of their potential properties. Section
3 introduces maximal functions and their properties, while Section 4 presents the main result of the work
(Theorem 4.1) concerning the solvability of the Dirichlet problem in regular domains.
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The theory of strongly m-subharmonic (sh,,) functions plays an important role in the po-
tential theory. It expands and develops the well-known pluripotential theory, introduced at the
end of the last century, which at present is the main subject for studying analytic functions of
several complex variables and plurisubharmonic functions.

The pluripotential theory is based on plurisubharmonic (psh) functions and is related to the

Monge-Ampere operator (dd“u)". Here, as usual d = +0 and d¢ = ? This theory is based
7

on research in numerous fundamental works of E. Bedford, A. Taylor, J. Siciak, A. Sadullaev and

others (see, for example, [2,10,14]). sh,,-functions are related to the operator

(dd°u)™ AB™™, 1< m < n, (1)

where (3 = dd°|z|? is the standard volume form in the complex space C".

Since dd°u A B"~1 = AufB", operator (1) for m = 1 gives the Laplace operator, and for m = n
the Monge-Ampere operator. The operator (1) is called the complex operator in Hessians,
because it is easy to calculate

(ddu)™ A B"7™ = ml(n — m)!Hp, (u) 8",
where H,(u)= > Aj, ... Aj,. is the Hessian of the eigenvalue vector A= (Ay, A2, ... ,Ap)

1< <jm<n
of the matrix (u, y).
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With the help of Hessians, a class of sh,,-functions was defined (see Definition 2.1. below)
in the works of Z.Blocki, S.Dinew, S.-Y.Li, H.Lu and others (see, for example, [3,4,6,7]).
Moreover, in their works sh,,-functions are also defined in the class L}, (D) and a number of
their fundamental properties are proven. The potential theory in the class of sh,,-functions is

developed in the work of A.Sadullaev and B. Abdullaev [9].

1. Hessians

Let u € C%(D) be a twice differentiable function given in a domain D C C". The second-

1 . .
order differential ddu = 3 >_u; zdz; A dZy represents a Hermitian quadratic form, where u; ; =
gk

0%u
84—82} .
reduced to a diagonal form ddu = %[/\1 dzy Ndzy + -+ + Apdzy A dZ,], where Aq, ..., \, are the

. Therefore, through an appropriate unitary transformation of coordinates, it can be

eigenvalues of the Hermitian matrix (u; ).
It is clear that

(dd°u)* A "% = kl(n — k) Hy,(w)3", k=1,...,n,

where Hy(u) = > Aj, - - - Aj, is the Hessian of dimension k of the vector A = A(u) € R™.
1< < <je<n

Definition 1.1 (see [9]). A function u € C?(D) is called shy, in domain D C C", if it satisfies
the following condition

(dduw)* A" * >0 Vk=1,2,...,n—m+ 1.

It is known that for all twice differentiable sh,,-functions w,v1,...,v,_, the following in-
equality holds
dd®u A ddvy A -+ A ddvy_pm A BT = 0. (2)

Moreover, if a twice differentiable function u satisfies (2) for all twice differentiable sh.,,-functions

1

U1y ..., Un_m, then u is a sh,,-function. Using this, we can define sh,,-functions in the class ;.

Definition 1.2 (see [9]). An upper semicontinuous function u in the domain D C C™ is called
Shy, in D, if for any twice differentiable sh,,-functions vy, ..., v,_m the current dd“u A ddvy A
c - AddVp_m A BT defined as

[dd°u A dd°vy A -+ A ddvy_p A BT (w) =

= /uddcvl Ao ANddvp_pm A BT A ddw, w e F(O’O)(D)

18 positive, where F(O’O)(D) s a space of test functions in D.

The set of sh,,-functions in D is denoted by sh,,(D). It is clear that psh = shy C shy C
-++ C sh, = sh and we have the following important property.

Theorem 1.1. If u € sh,, (D), then for any complex hyperplane II C C™ restriction u|n is a
$hp, -function in D (11, i.e.
ul € shy, (D NII).
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2. shp-functions on a Stein manifold X.

Let us recall the definition of a Stein manifold. Let X be a complex manifold of complex
dimension n and denote by O(X) the ring of holomorphic functions on X.

Definition 2.1 (see [16]). A complex analytic manifold X of dimension n is called Stein manifold

if

1) X is holomorphic convez, i.e.

K={z: ze X, |f(2)| <sup|f| for all f € O(X)}
K

is a compact subset of X for every compact subset K C X;

2) If z1 and z9 are different points in X, then f(z1) # f(z2) for some f € O(X);

3) For every z € X, one can find functions f1,..., fn € O(X) which form a coordinate system
at z.

It is well-known that the Stein manifold X can always be embedded in some space of higher
dimension, X C CY, N > n.

We define sh,,-functions on a Stein manifold X ¢ CV, dimX = n, for 1 < m < n by
restricting 3 = dd°||z||?, z = (z1,...,2n) to X. In local coordinates ¢ (¢) : B — U, B C
Ch, UcCX, £=(&,...,&) the differential form (|x has the following form

Blx = Blu = al€) = S1d61(€) A dby(6) + -+ + dow (€) A dby ()]

Definition 2.2 (see [15]). A function u € C?(D) is called shyy,-function in the domain D C X
if

[(dd“w)|x]" A [Blx])" " 20, k=1,2,...,n—m+1,
or, equivalently, in local coordinates of D the following holds

(dd°u(p(©)))F Aa™*(E) >0, k=1,2,...,n—m+ 1. (3)

It is clear that if Uy (YU # @ are two open sets on X, then from gy, = B|v, o ¢]:1 o¢; it is
easy to obtain that the positivity of the forms in (3) does not depend on the choice of the local
coordinates, i.e. Definition 2.2 is correct.

From the definition of sh,,-function, it obviously follows that if w,vy,...,vp_m €
shm (D) (N C? (D), then

dd®u A dd®vy A -+ A dd®vp_m A [B]x]™ T = 0. (4)

Conversely, if a twice differentiable function w satisfies (4) for all vy,...,0p—m €
shm (D)(C? (D), then u is a shy,-function in D. This conclusion can be proved in the same
way as in the case X = C™ since the differential forms [|x in local coordinates is a strictly
positive (1,1) form and by using suitable linear mapping it can be reduced to a diagonal form
Ad€y Ad€y + -+ ApdEp A dE,.

As above, we can define sh,,-functions in the class of functions L}

loc®

Definition 2.3 (see [5]). A function u € L}, (D) is called shy, in a domain D C X if it is

loc
upper semicontinuous and for any twice differentiable shy,-functions vi, ... ,vp_p, the current

ddeu A ddevy A -+ A ddvn_m A [Blx]™ " which is defined as
[ddcu AddCvy A -+ A ddvp_m A (5|X)’"‘1] (w) =

(5)
= /uddcm A ANddVp—_m A (5|X)m_1 ANdd‘w, we F%°(D)
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18 positive.

The class of shy,-functions in a domain D is denoted by sh,, (D). Usually a trivial function
u (z) = —oo is also included in sh,, (D).

The following properties of sh,, (D) follow easily from definitions of sh,,-function.

1) A linear combination of shy,-functions with non-negative coefficients also is a Shp,-
function, i.e.

ug(2) € shy (D), ar €RY (k=1,2,...,p) = arui(z)+agua(2) + -+ apu,(2) € shy, (D);
2) We have the following relation
shy (D) C -+ C shpy (D) C - C shy (D).

3) The limit of a uniformly converging or monotonically decreasing sequence of shyy, -functions
18 also sh.,-function:

uj (2) € shy (D), uj(2) =3 u(z) = u(z) €shy(D);

uj (2) Zujp1(2) (j=1,2,...) = lim u;(2) € shy (D).

j—o0

The above properties 1)-3) follow directly from Definition 2.3 and from the Lebesgue-Levi
theorem on monotone convergence.

Let us now state properties whose proofs are more complicated.

4) The mazimum of a finite number of shy,-functions is also a shy,-function, i.e.,

u1(2),u2(2), ..., up(2) € shym (D) = max{ui(2),us(2),...,up(2)} € shy, (D).

Proof. We fix vy, ...,0m—1 € shy, (D)(C? (D) and put a = dd®vy A -+ - A ddvy—m A [ﬁ|X]m_1.
According to (4), the differential form « is positive. For small positive number € > 0, considering
the differential form a+e(dd°g] X)n*l7 without loss of generality, we can assume that it is strictly
positive. Then the operator

dd®u A a = dd®u A ddvy A -+ A dd®vp_m A [Blx]" "

is an elliptic operator. If the function w (z) is shy,-function in D, then from the positivity in the
generalized sense of the form ddu A ddvy A -+ A ddv,_m N [ﬂ|x]m71 we have the positivity of
the form dd°u A «, which means a-subharmonicity (see, for example, [11,12]) of function v in
local coordinates, defined by formula (3).

Let us take functions uq(2), u2(2), ..., up(2) € shy, (D). Since they are a-subharmonic in the
local coordinate, the maximum function u = max{u(2), u2(2), ..., up(2)} is also a-subharmonic.
This means that dd°u A a > 0 in the generalized sense. So, we have dd“u A o > 0 for every
U1y U1 € 8hy (D) C? (D) and a = dd®vy A -+~ A dd“vn_m A [Blx])" ", L.

{ddcu Addevy A -+ - A dd®vp_m A (5|X)”H] (w) =

= /uddcvl Ao Addvy_m A (B1x)™ 7 Addéw =0, VYw e FO (D), w > 0.

According to Definition 2.3, u is a shy,-function. The proof is complete. O
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5) For any locally uniformly bounded family u; (z) € shy, (D), t € T, we have

*

{Stzp s (z)} € shy (D).

Simalarly, the regularization of the upper limit of locally uniformly bounded sequence u;(z) €
*

Shp (D) is a shpy,-function, i.e., { lim u; (2)| € shy, (D). In particular, the regularization of
j—00

the limit of a monotonically increasing, locally uniformly bounded sequence of sh.,-functions is
again shy,-function.

Proof. Let us deal with the supremum, assuming without loss of generality that there exists
M > 0: u(2) < M. We fix v1,...,0m-1 € shy, (D) C?(D) and put it as above o =
ddvy A+ - Add vy A [B\X}m_l7 assuming without loss of generality that « is a strictly positive
(n—1,n — 1)-form. Since ddu; A o > 0, then u; are a-subharmonic functions for the elliptic
operator dd°uj A a.. Then, just as for the Laplace operator dd®u; A 3"~! in C" (see [14]), we can

*

show that [sup ut (z)} A« = 0. The proof is complete. O
t

6) Let u; (2) € shy, (D) be a sequence of shy,-functions satisfying u; (z) < M;(j =1,2,...)
o0 o0
where Y Mj converges. Then Y u; (2) is a shy,-function.
j=1 j=1
Proof. The functions wu;(z) — M; (j =1,2,...) are not positive. Therefore, the sequence
k o0
vk (2) = > [u; (2) — M;] is monotonically decreasing. By property 3) we have _ (u; (2) — M;) €

Jj=1 Jj=1
o0

shy, (D). Since the series ) M, converges, then ) u;(2) € shy, (D). The proof is complete. O
j=1 j=1

7) Let v(t) : R — R be a convex and non-decreasing function, and u(z) € shy, (D). Then
you € shy, (D).

3. Maximal functions.

Maximal functions are analogous of harmonic functions in the class of sh,,-functions, they
are studied by the A.Sadullaev, B. Abdullaev [9] in C™. Let us give the definition of a maximal
sh,-function on a Stein manifold X.

Definition 3.1. A function u(z) € shy, (D), D C X is called mazimal in the domain D C X
if for any function v (z) € Shy, (D) for which lim (u(2) —v(2)) = 0 holds u(z) > v (z) in D.
z—0D

The condition lim (u(z) —wv(2)) > 0 for arbitrary shy,-functions w (z),v (z) can be un-
z—0D
derstood as follows: for any € > 0 there exists a compact subset F' C D outside of which

v (2) < u(z) +e. In particular, v (z) = —o0 if u (2) = —o0.
Let us formulate the following theorem, which allows us to define maximal functions in
convenient forms

Theorem 3.1. The following statements are equivalent
1) u(z) is a mazimal function in D;
2) for any subdomain G CC D the inequality u(z) > v(2), Yz € G holds for all functions
v (2) € shy, (G) satisfying lim (u(z) —v(z)) = 0;
oG

z—
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3) for any subdomain G CC D the inequality u(z) = v (z), Yz € G holds for all functions
v (2) € shy, (D) for which

ulpg 2 Vs

4. The Dirichlet problem in the class of sh,,-functions
on a Stein manifold X.

In this section we will discuss the solvability of the Dirichlet problem in the class of sh,-
functions on a Stein manifold X ¢ CV,dim X = n.

Definition 4.1. A domain D C X is called strictly m-convezr if D = {p () < 0} for some strictly
sho-function p(z) in some neighborhood DV of D. Strictly of the sh.,-function p (z) means that

there is a § > 0 such that p (z) — 0 - (||z||2)X is a shp,-function in DT.

Remark 4.1. If the domain D C X is a strictly m-convex, then any point (o € 0D is a peak
point, i.e. there is a peak function q(z) € shy, (D)(C (b) i q ((0) =0, q|D\{<O} < 0.

In fact, by Definition 4.1, there is § > 0 such that the function
2
a(z)=p() -3 (|l =),

is a sh,,-function in D, which will be continuous on D and ¢ (CO) =0, Q|D\<0 < 0.
Let D C X be a strictly m-convex domain and given a continuous function ¢ (¢) € C (dD).
We consider the following Dirichlet problem: find a function satisfying the following conditions
a) u € shy, (D);
b) lim u (2) = ¢ (), V(€ € OD;

¢) u is mazximal function in D.
In order to solve the Dirichlet problem, we will use the Perron method. Let us define the
following class
U(p,D) = {v € shm (D) : lim v (2) < @(C)}

z—0D

and put
w(z)= sup wv(z).
veU(p,D)

Theorem 4.1. The upper regularization w* (z) of w(z) is a solution to the Dirichlet problem,
i.e. w* (z) satisfies the conditions a), b) and c).

Proof. First we prove that w* (z) is a shy,-function in D. Since ¢ is continuous and by the
maximum principle we deduce that the class of functions of U (p, D) is uniformly bounded from
above. By property 5 of Section 2 its regularization is a sh,,f-unction in D.

Now we prove the continuity of the function w*(z) on dD. First, we show that lim w(z) > ¢(¢?)
z—(0

for any fixed point ¢° € dD. Set M = ||¢||,p and fix € > 0. Then from the continuity of the
function ¢ (¢) € C (0D) there is r > 0 such that

Q)= ¢ (") <e Y¢edD()B(¢ ).

where B (¢%,r) c CV.
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Since the point (¥ is a peak point, then there is a peak function ¢ () € sh,, (D) such that

q(¢”) =0, sup ¢ (z) =¢ <0.
l2=¢0|[>e, z€D

Let us estimate the boundary values of the following function

vg(z):—s+<p(<0)+q|éj|)(M+ga(<0)).

If (€ DN B (¢%r), then
lim v. < —e+ ¢ (¢°) <9 (Q);

z—(

if ¢ € 9D\B (¢° ) , then

linévsé—s+w(éo)—M—w(<°) <p(C).

z

Hence, liTIEUE < ¢ (Q) for all ¢ € 9D and v, € U (p, D) . Consequently, we get that v, (z) < w (z)
Z

and lim w(z) > lim v. (2) = -+ ¢ (CO) . Since € > 0 is arbitrary, we have
0

z—(O z—(

Now we will show that mow (z) < ¢(¢°) . To prove this inequality we fix the function
z—(

u(z) €U (p, D) and consider the sum w (z) + g (2) , where

gs(Z)=—6—<p(C°)+q|(§:|)(M—SO(CO))-

It’s clear that u (2) + g (2) € shy, (D). Now let’s estimate the boundary values of the function
ge (2) : If ( € ODN B (¢°,7) , then

lim g. (2) < —e — ¢ (¢°) <9 (Q).

z—C

Similarly, if ¢ € 9D\B (¢%,r), then

Imcgs (z) < —e— ¢ (¢°) +ii§c qq(z) (M= (¢") =

|4l

——e—p () + L (M= (%)) =~ - M <= 0).

Consequently, we have

T () + 9: ()] < T (2) + Ty g () < T w(2) — 0(¢) < 0
for any ¢ € dD. Thus thanks to the maximum principle, u (z) + g- (2) < 0 in D, i.e. u(z) <
—9: (2), Vz € D. Since the function u (z) € U (¢, D) is arbitrary, we get w (2) < —g- (2), z € D.
As a consequence we deduce that

lim w(z) < lim (—g-(2)) = —e + ¢ (¢°).

2—(0 2—(0
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Since € > 0 is arbitrary, by letting ¢ — 0 we get @O w(z) < ().
Combining lim w(z) > ¢ (¢°) with ling0 w(z) < ¢ (¢°) we get the continuity lir?ow (z) =
z—(¢O0 z— z—
¢ (¢%) at every point ¢° € dD. This means that limqw(z) = ¢ (¢) is true in 9D, i.e. w(z) is

continuous on 9D. It is not difficult to see that the regularization w* (z) is continuous at the
boundary i.e., limC w*(z) =9 (), Y¢ € 0D.
z—

Let us now prove that the function w* (z) is maximal in D. We will prove this by contrary,
assume there is a domain G CC D and a function 9 (2) € shy, (D) @ Oye < Wy, but
¥ (2°) > w(z") at some point z° € G. It’s easy to see that function

_f max{¥(2),w(2)}, z€G
U(z)_{ w(z), z € D\G

is a shp,-function and v|,, = w|yp = ¢. Therefore, v (2) < w(2) and hence ¥ (2°) < w(2°).
This leads to contradiction. The proof is complete. O
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Samauya /lupuxise B kiaacce shy,-pyHKIMit Ha MHOrooopa3um
HITeiina X

CeBausip A. IMmoMKyi0B
Cykpotoek 1. Kypbonboen

Harmonasbaeiit yausepcuter Y306eKucTana
TamkenT, Y36ekucran

Awnnoranusi. llenpro manHO# pabOTHI SIBISETCS BBEIEHNE U U3yUeHUE Shy,-DYyHKINN Ha KOMIIJIEKCHBIX
muoroo6pazusix X C CV, dimX = n, n < N. lMerorcst pasHble CIIOCOObI OMPEIENEHHST -y HKIIHT
Ha KOMIIJIEKCHBIX MHOT0OOpa3usiX: MPU IMOMOIIU JIOKAJBHBIX KOODIWUHAT, MPYU TOMOIIMU PETPAKIUUA T :
CY — X, npu nomomu mep Uencena (cu. [1,8,13]). Hns onpenernenus shy,-byHKIu Ha KOMILIEKCHOM
MHOroo6pa3uu X MbI [I0JIb3YEMCsl JIOKAJIbHBIMI KoopauHaTaMu. B paszese 1 Mbl IpuBOAMM onpejiesieHue
U mpocTeiiinue CBOUCTBa Shp,-dyHkmit B npocrpancree C". B paszgene 2 maercs onpejenenue Shy,-
byukmit B obmactax D C X KOMILIEKCHOTO MHOT0oOpa3usi X 1 JTOKA3bIBACTCS Psi/i UX MOTEHIMATBHBIX
cBoiicTB. B pazzesie 3 onpeiensiorcs MakCuMaJibHble (DYHKIIMN ¥ UX CBOWMCTBA, U B pa3Jiesie 4 Mbl JOKaXKeM
OCHOBHOI1 peayisbrar pabors! (Teopema 4.1.) o paspermmmoctu 3aaa4au JJupuxiie B peryssipHbIX 001aCTsIX.

KuaroueBsle ciioBa: sh,-pyuknnn, mopucybrapmonndeckue yHkimn, maorooopasue Illreitna, 3a1a-

qa lupuxite.
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