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Abstract. In this work, we introduce the concept of maximal m-convex (m — cv) functions and we
solve the Dirichlet Problem with a given continuous boundary function for strictly m-convex domains
D C R™. We prove that for the solution of the Dirichlet problem in the class m — cv of functions, its
Hessian HZ~™*"! = 0 in the domain D.
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Introduction

In this work, we introduce the concept of maximal functions and for strictly m-convex domains
D C R™ we solve the Dirichlet Problem with a given continuous boundary function. We prove
that that for the solution of the Dirichlet problem in the class m — cv of functions, its Hessian
H?~m%! = ( in the domain D.

If the potential theory in the class of strongly m-subharmonic functions is based on dif-
ferential forms and currents (dd°u)® A "% > 0,k = 1,2...,n — m + 1, where 8 = dd°||z|2
the standard volume form in C”, then the theory of potential in the class of m — cv func-
tions, in particular, maximal m — cv functions and the Dirichlet problem are related to Hessians
Hk (u) 20, k=1,2,...,n—m+ 1. The main method for studying maximal m — cv functions,
which in general are not smooth, is to connect m — cv functions with strongly m-subharmonic
(shy,) functions. Theory of sh,, functions is well studied and currently the subject of study by
many mathematicians (see Z. Blocki [6], S. Dinew and S.Kolodzej [7], S.Li [8], H. C.Lu [9, 10],
A. Sadullaev, B. Abdullaev [11,12] etc.)
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1. Strongly m-subharmonic and m-convex functions

Twice smooth function u(z) € C?(D), D C C", is called strongly m-subharmonic u € sh,, (D),
if at each point of the domain D hold

shm(D):{u602: (dduw)* A g"F > 0, k:1,2,...,n—m+1}:

_ {u €C2: ddu A Bt >0, (ddu)? A B2 > 0,. .., (ddou)™ A gL > o} Y

where 3 = dd¢||z||? the standard volume form in C".
Operators (ddcu)k A Bk closely related to the Hessians. For a twice smooth function, u €

i 0%u
C?(D) the second-order differential dd°u = 5 Z szj AdZy (at the fixed point o € D) is a
- RjOZL
gk I
Hermitian quadratic form. After approaching unitary transformation of coordinate, it is reduced

to diagonal form dd°u = — [Mdzy AdZ1 + ...+ Adz, AdZ,], where Aq, ..., A, the eigenvalues

0%u

8Zja 2k
unitary transformation does not change the differential form 3 = dd¢||z||?. It is easy to see that
(ddu)™ A B"F = kl(n — k) H" (u)8", (2)
where H*(u) = > A
1<y < <Jr<n
Consequently, a twice smooth function u(z) € C%(D), D C C", is strongly m-subharmonic
if at each point 0o € D the next inequalities hold

3!

of the Hermitian matrix ( ), which are real: A = (A1,...,A,) € R™. Note that the

i - -+ Aj,, is the Hessian of dimension k of the vector A = A(u) € R™.

H*w) = HF(u) >0, k=1,2,...,n—m+1. (3)

Note that the concept of a strongly m-subharmonic function is defined, in general, in the
distribution sense

Definition 1. A function u € L}, (D) is called sh,, in the domain D C C", if it is upper

loc
semicontinuous and for any twice smooth sh,, functions vy, ..., Vn_m the current dd°u A ddvy A

< Add®Vp_m A BT defined as
[ddcu Addvi A ... Add vy —m A Bm_l] (w) =

- / wddvy A N ddvp—p AT A ddw,  w e FOO (4)
18 positive.

In the work of Blocki [6], it was proven that this definition is correct, that for functions
u € C%(D) this definition coincides with the original definition of sh,, functions. Moreover, the
class of bounded sh,, functions define the operators (ddcu)k ABPF >0, k=1,2,...,n—m+1
as Borel measures in the domain D (see [6,11]).

Now let D C R™ and u(z) € C%(D). Similar to (2) we want to define m-convex functions

2 2
in the domain D C R™. The matrix Ou 0u

> is orthogonal, . Therefore,

O0x;0 xy, 0x;0 xy, - 0x0
after a suitable orthonormal transformation, it is transformed into a diagonal form
A0 ... 0
9*u 0 X ... O
H )
O0z;0 xy,
0 0 ... A\
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2
O0x;0xy,

= > Aji ... Aj, the Hessian of the dimension %k of the eigenvalue vector A =
1<+ <gr<n

= ()\1’)‘27 AR An)

where A\; = A, (z) € R the eigenvalues of the matrix ( > Let H*(u) = H*(\) =

Definition 2. A twice smooth function u € C%(D) is called m-convex in D C R™, u € m—cv(D),
if its eigenvalue vector A = A\(x) = (A1(x), Aa(x), ..., A\ (2)) satisfies the conditions

m —cvn C*(D {Hk = H* (\(2)) >0, Vz € D, k=1,....,n—m+1}.

Theory m — cv functions is a poorly-studied and new direction in the theory of real geometry.
However, when m = n the class n — co N C?*(D) = {1+ + A\, = O} coincides with the
class of subharmonic functions, and when m = 1 this class 1 — co N C*(D) = {H' (\) > 0} =
{A120,...,\, >0} coincides with functions that are convex functions in R™. The class of
convex functions is well studied (A. Alexandrov, I. Bakelman, A. Pogorelov, see [1-5]). Thism > 1
class was studied in a series of works by N.Ivochkina, N. Trudinger, H. Wang, etc. (see. [16-22]).

Principal difficulties in the theory of m—cv functions are the introduction of class m—cvnL}, .,
i.e. definition m — cv(D) functions in the class of upper semicontinuous, locally integrable or
bounded functions. So, for m = n (the case of subharmonic functions) in the class of upper
semicontinuous, locally integrable functions u(x) € n — cv(D) is defined as a distribution, where
the Laplace operator Au is a Borel measure.

The key point to study m — cv N L}, functions is the following relationship m — cv and shy,
functions (see. [14]). We embed R} into C7, by R} C C = R} + iR} (z = z +14y), as a real
n-dimensional subspace of the complex space C7.

Theorem 1. A twice smooth function u(z) € C*(D), D C R?, is m — cv in D if and only if

a function u®(z) = u®(x + iy) = u(x) that does not depend on variables y € Ry, is shy, in the
domain D x Ry.

Definition 3. An upper semicontinuous function u (x) in a domain D C RY is called m-convex
D, if the function u® (z) is strongly m-subharmonic,u® (z) € shy, (D x RY) .

If a function u(x) is locally bounded and m-convex in the domain D C R?, then uc(z)
will be also locally bounded, strongly m-subharmonic function in the domain D x Ry C CZ,
u(z) € shy N LS, (D x RY) . Therefore, the operators are correctly defined

(ddu)" AB"F, k=1,2,....n—m+1

as Borel measures in the domain D x Ry C CZ, ux = (dd°u A gk,

Since for a twice smooth function (dd°u®)® A 7% = kl(n — k)!H* (u¢) 8", then for a locally
bounded, strongly m-subharmonic function in the domain, D x R} C C7 it is natural to define
its Hessians, equating them to the measure

c 1 c, C n—
H" (u) = k!(nﬂi D B gy fFagt. 5)

By using (5) we can now define Hessians H*, k=1,2,...,n —m + 1, in the class of locally
bounded, m-convex functions in the domain D C R?. Let u(z) be locally bounded, m-convex
function in the domain D C R}. Let us define Borel measures in the domain D x Ry C C7

e = (ddu" ABF k=12, n—m+1.
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Since u¢ € shy, (D X R’y‘) does not depend on y € R, then for any Borel sets, E; C D,

E, C Ry the measures ik (Ex x Ey) does not depend on the set £, C Ry, ie.

esk,
1
mesE, ur (B x Ey) = v (E;). Borel measures
(By) = — i (B x B,), k=1,2 +1 (6)
VoY x) = x ’ =L 4., ’
k k mesE, Hi y n—m

we call by Hessians H* = H*(E,), k 1,2,...,n — m + 1, for a locally bounded, m-
convex u(xz) € m — cv(D) function in the domain D C RZ. For a twice smooth function,

u(z) € m—cv(D)NC?(D) the Hessians are ordinary functions, however, for a non-twice smooth,
but bounded upper semicontinuous function, u(z) € m — cv(D) N L*>(D), the Hessians H*,
k=1,2,...,n—m+ 1, are positive Borel measures (see [13,15]).

2. Maximal functions and the Dirichlet problem

Similar to the Monge-Ampere operator (ddcu)nﬂn+1 A ™71 in the class sh,, of functions,
the Hessian measures H~™"! in the class m — cv(D) also has the property of dominance: the
function, with smaller its total mass, is closer to the maximal.

Theorem 2 (Comparison principle). If u,v € m—cv(D)NC(D) and a set F = {z € D : u(z) <
v(x)} CC D, then
L (F) > By (), @

Proof. The proof of the theorem is carried out in several stages.

1) If D € R" a bounded domain with a smooth boundary 0D and u,v € m—cv(D)NC?(D) :
ulp < vlp, ulyp = vlyp, then Hy=™ (D) > Hy~™ (D).

Actually, let us put R} in C7, R} C C? = R} + iR} (2 = = + iy), and construct the func-
tions u®(2) = u(z) € shn(D x RY), v°(2) = v(z) € shy(D x RY). We take the cylinder
Q={(z,y) €D x Ry :zeD, |yl < 1}. The boundary of the cylinder is 9Q = Sy U Sa, where
S1=D x {lyl =1}, S> = oD x {lyll < 1}

According to the Stokes formula we have

/ Q [(ddcuc)nide' /\ﬁm—l _ (ddc,UC)nferl /\Bm_l} _
B / [(ddu®) — (ddv)] A
Q
[(ddcuc) A (ddcvc)n—m + (ddCuC)Q A (dchC)n—m—l 4t (ddCUC)n—m A (ddC’UC):| A ﬂm71 _

= [ [~ @
oQ

[(ddcuc) A (ddev®)" ™™ 4 (ddeu®)® A (ddev)™ ™ 4 4 (ddeu) ™ A (dd%)} A g™t
Note that the differential form

[(ddcuc) A (ddev®)" ™™ + (dd°u®)? A (ddve) ™ 4o 4 (ddeu) ™ A (ddcv‘:)}
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is positive and [(d°u®) — (d°v°)] = d°(u® — v°) represents the derivative by the internal normal
O(uf — v°
[(d°u®) — (d°v°)] = d(u® — v°) ~ % Since the function u® — v°® does not depend on y,
(3‘(”87_0) = 0. Therefore,
" =1

[ @)~ @
S1

[(ddu) A (dd“v®)" ™" 4 (dd°ut)® A (ddv")" ™" 4o (ddou)" " A (dd°oe)| A BT =0,
For the integral over S
[l = @)
Sa
[(ddcuC) A (ddev®)™ ™™ 4 (dd°u®)? A (ddve)" ™ 4o 4 (ddeu) ™ A (ddch)} A B >0,

since u® — v¢ < 0 inside D and (u® — v°)|,, = 0. Therefore, d°(u® — v°) is positive on Ss.
That’s why,
{(ddcuc)n—m-‘rl /\ﬁm—l _ (ddcvc)n—m-l-l A ﬁm—l] _
Q

= / [(ddcuC)”‘m“ A BT — (ddv)" A 5’"*1} > 0.
Dx{llyll<1}
From here,
(ddcuc)n*m+1 A ﬂmfl > (ddcvc)n*erl A ﬂmfl
Dx{llyll<1} Dx{llyll<1}

and according to (6) H»~™+1(D) > Hr~™+Y(D).
2) If u,v € C?(D) and the open set F' = {u < v} CC D, then from 1) it easily follows that

Hn—7rz+1(F> > Hn_77L+1(F).
3) In general: u,v € C(D). Then set
F={zeD: uzx) <v(zx)}

will be an open set. Fixing domain G, G’ : F cC G CcC G’ cC D, number 6 > 0 and open set
Fs = {u(z) + d < v(xz)} CC F. Let’s construct sequences of approximations u;, v; € m—cv(G')N
C*(G), j=1,2,...: uj L u, v; | v. Due to continuity u,v the convergence u; | u, v; | v
will be uniform in G and, therefore, Jjo, ko : Fz35 C F' = {ur, +26 <v;} C F5, j = jo, k > ko.
According to 2) we have

H - E) = HY ™ FY, k= ko, § 2 jo.
Hence for such k£ and j
Hy = (Fas) < Hy 7" THF') < Hy 7N EFY) < Hyp 7 (Fy).
When, j — oo, k — oo according to the properties of Borel measures, we have

H;L—m-‘rl (F35) < H;L—m-‘rl (F(S) )
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Tending § — 0 from here we get that H?»~™+! ({u < v}) < HP—™*! ({u < v}) . Applying this

inequality to the functions u + &,v we have H? ™*! ({u+¢e <v}) < HP—m*! ({u +e< v})
and by tending € — 0 we obtain the proof of the theorem. o

Definition 4. A function u(z) € m — cv(D) is called mazimal in the domain D C R™ if for
this function the mazimum principle holds in the class of m — cv(D), i.e. if v € m — cv(D) :
lim (u(z) —v(x)) >0, then u(z) > v(x), Yz € D.
x—0D

Note that the following convenient maximality criterion is often used: a function u(z) €
m — cv(D) is maximal in the domain D C R™ if and only if for any domain G CC D the
inequality u(z) > v(x), Yo € G holds for all functions v € m — cv(D) : ulyg = v]s¢-

Maximal functions are closely related to the Dirichlet problem.

Theorem 3. Let D = {p(z) < 0} strictly m — cv convexr domain in R™ and ¢(§) a continuous
function defined on the boundary OD. Let’s put

U(p, D) = {u em—cv(D)NC(D): ulyp < 90}

and
w(z) =sup{u(z): vwel(p,D)}. (8)

Then, w(z) € m — cv(D) N C(D), wl|,, = ¢ and in addition, w(z) is the maximal m — cv
function in D.

We remember, a domain D = {p(z) < 0} is strictly m — cv convex if the function p(z) is
strictly m — cv in a neighborhood D* D D, p(x) € m — cv (DY), p(z) — 6|z|> € m — cv (D)
for some 6 > 0.

It is natural to call the function w(z) as a solution to the Dirichlet problem: w(z) maximal
and wly, = ¢. Moreover, it is easy to see that a function u € m — cv(D) N C(D) is maximal if
and only if the function u®(2) € sh,,(D x R})NC(D x RY) is a maximal sh,, function. It follows
that (ddeu¢)”™ ™" A g7t = 0 or H"™+1(u¢) = 0. This is equivalent to H™~ ™+ (u(z)) = 0.

Proof of Theorem 3. Note that if in (8) instead of a class m — cv(D) we consider a wider class
of subharmonic functions n — cv(D) = sh(D) D m — cv(D), then we would obtain a solution
to the classical Dirichlet problem: v(z) = sup {u € sh(D)NC(D): ul,, < ¢}. In this case
Av =0, v|y, = . It is clear that w(z) < v(x) and
T w(a) < (€), V¢ € oD. (9)

On the other hand, any fixed boundary point 0 € 0D of a strictly m—convex domain
D = {p(x) <0}, p(z)—strictly m — cv function in some neighborhood D+ D D, is a peak point:
there exists v € m — cv(D) N C(D) : v(£%) =0, | py ggoy <0

In fact, since p(x) strictly m — cv function in a certain neighborhood D™ > D, then for a
sufficiently small positive number 6 > 0 the difference p(x) — § ||9c — §0H2 is m-convex in DT.
Considering instead p(x) function

v(x) = p(z) — 6 ||z — §OH2 em—cv(D)NC(D): v =0, V| py g0y <0

we’ll make sure that the point £° € D is peak point.
Hence, for any fixed number & > 0 there is a large number M > 0 that M -v(x) + (%) —¢€ €
U (¢, D). Therefore, M - v(x) + ¢(£°) — e < w(z) and lim w(z) > ¢(£°) — &. Since the number

x—&0
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£ > 0 and point £ € D are arbitrary, then lim w(x) > ¢(¢), V& € dD. Combining this with

r—E€
(9) we get liméw(:zz) = (), V&€ dD.
z—
For regularization w* which is m — cv function in the domain D condition of continuity on the
boundary is also satisfied: lirré w*(z) = p(§), V€€ IdD. From w*(z) € m—cv(D), liIgD w' =
T T—

follows that w*(z) < w(z), i.e. w*(z) = w(x) and w(x) is m — cv function. Let us show that it is
maximal.
Assume the contrary, let there be a domain G CC D and a function ¢(z) € m — cv(D) :
Ploe < wlpe, but ¢(z?) > w(2?) at some point z°.
Function B
w(z) = { max{w(x), p(x)} if xel
w if ve€D\G

is m-convex, w(z) € m—cv(D), wl,p, = w|yp = ¢. Therefore, w(z) < w(z) and ¢(2°) < w(z?).
This is contradiction.

It remains to prove that the function w will be continuous in the closure. Let’s build an
approximation

ws(z) =wo Ks(x —y) € m —cv(Ds) NC*(Ds), Ds ={x € D: p(z) <},

ws(x) L w(x), as § | 0. For small enough 6 > 0 each interior normal ng, £ € 0D intersects 0D;

at a single point 7(§) € dDs, so that a homeomorphism n; is defined ng : 9D — 9D;. Let us

put vs(n) = ¢(ns(§)), n € dDs, € € D. Since limgw(x) = p(§), V& € 0D, then for any fixed
T—

€ > 0 there is a §y > 0 such that |w(z) — s, (x)| < e, Vz € 0Ds,. For a fixed dg > 0 the domain
Ds, CC D and the approximation ws(z) | w(x), for § | 0 covers the domain Ds,.

Now applying Hartogs’ lemma to a compact set 9Ds, and a function ¢s,(x) € C(9Ds,) we
find 0 < 8" < §p such that

ws(x) < ws, () + 3¢, V165D5,5<5/. 10
0 0

Since the solution to the Dirichlet problem w(z) is maximal in D, from ws(z) < @5, (z) +
3e, Vo € 9Ds,, 6 < ¢ follows that ws(z) < w(x) + 4e, Vo € Ds,, 6 < §' because w(z) >
s, () — 32, Vx € ODs,. From here, w(z) < ws(z) < w(x)+ 4e, Vo € dD;,, § < &', ie.
|ws(z) — w(z)| < 4e, Y € Ds,, § < §'(dp). Since € > 0 arbitrary, then the convergence ws(x) |
w(z) will be uniform inside D and w(z) € C(D), because ws(x) € C*°(Ds). The theorem is
proven O

Theorem 4. A continuous m — cv function u(x) € m —cv(D)NC(D) is mazimal if and only if
the Borel measure is H' =™ = (.

Proof. We proved above the equality H?~™%! = ( for the maximal function u(z) € m — cv(D) N
C(D). Let now H? ™! = 0 and we will show that u maximal. Assume that u is not the
maximal. Then for some domain G CC D there is a function v € m — cv(D) : u|y5 = v|y¢, but
v(2%) — u(2°) = & > 0 for some point 2° € G.
Approximating v by infinitely smooth m — cv functions v; | v, and then using Hartog’s
. € .
lemma, we find jo € N such that vj [, < ulyg + 3 Let us compare the function wu(z)

with the function vj,(z) + 6 |z|*, where § = < . For such 6 > 0 a set

S-InaX{HxH2 DX € G}
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F = {u(m) + % <wvj(x)+46 Hx||2} is not empty and lies compactly in G. Then according to the

comparison principle (Theorem 2)
5"/ (ddc ||xH2) 'g/ (ddev + 6ddc||z||)" g/ (ddu)™ = 0,
F F F

n
which contradicts to / (ddc ||m||2) > 0. The theorem is proven. O
F
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MakcumaJjibHble (byHKIUN 1 334a49a upuxiie
B KJIACCE M-BBIMYKJIbIX (DYyHKIU

Aszumbait CanysiiaeB

UNucruryr maremaruku nmenu B. V. Pomanosckoro Akanemun nayk Pecrybiuku Y30ekucran
Harponasbablil yHEBepCcuTeT Y30€KUCTAHA

TarmkenT, ¥Y36ekucran

Pacyn6ek ITapunos
VPpreHuckuit rocyJapCTBEHHBIN YHUBEPCUTET
Ypreuu, Y3bekucran

Awnnortaumsi. B sToii paboTe MbI BBOIUM MOHATHE MAKCHMAJILHBIX M-BBIMYKIBIX (M — cv) DyHKIui n
JIs CTPOro M-BBINYKJIbIX obnacreit D C R™ pemaem Samauy lupuxiie ¢ 3aJaHHOM ITPAaHUYIHON Helpe-
pbiBHOI dyHKIMER. [okaykem, 9To 7151 pentenust 3aaadu Jlupuxiie B kiacce m—cv pyuknumii ero eccuan
Hr~ ™1 =0 B o6mactu D.

KuarouyeBbie ciioBa: cybrapMoHndeckKue (pyHKIUU, BBINTYKJIble (DYHKIHMU, M-BBITYKJble GyHKImN, Bo-
peJieBCKHe MeDpbl, 'eccuansr.
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