EDN: EZQZAV УДК 517.55+517.51

# Maximal Functions and the Dirichlet Problem in the Class of m-convex Functions

#### Azimbay Sadullaev\*

V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan National University of Uzbekistan Tashkent, Uzbekistan

#### Rasulbek Sharipov<sup>†</sup>

Urgench State University Urgench, Uzbekistan

Received 16.01.2024, received in revised form 23.02.2024, accepted 14.04.2024

**Abstract.** In this work, we introduce the concept of maximal m-convex (m-cv) functions and we solve the Dirichlet Problem with a given continuous boundary function for strictly m-convex domains  $D \subset \mathbb{R}^n$ . We prove that for the solution of the Dirichlet problem in the class m-cv of functions, its Hessian  $H^{n-m+1}_{\omega}=0$  in the domain D.

Keywords: subharmonic functions, convex functions, m-convex functions, Borel measures, Hessians.

**Citation:** A. Sadullaev, R. Sharipov, Maximal Functions and the Dirichlet Problem in the Class of *m*-convex Functions, J. Sib. Fed. Univ. Math. Phys., 2024, 17(4), 519–527. EDN: EZQZAV.



#### Introduction

In this work, we introduce the concept of maximal functions and for strictly m-convex domains  $D \subset \mathbb{R}^n$  we solve the Dirichlet Problem with a given continuous boundary function. We prove that that for the solution of the Dirichlet problem in the class m-cv of functions, its Hessian  $H^{n-m+1}_{\omega}=0$  in the domain D.

If the potential theory in the class of strongly m-subharmonic functions is based on differential forms and currents  $(dd^cu)^k \wedge \beta^{n-k} \geq 0$ ,  $k=1,2\ldots,n-m+1$ , where  $\beta=dd^c\|z\|^2$  the standard volume form in  $\mathbb{C}^n$ , then the theory of potential in the class of m-cv functions, in particular, maximal m-cv functions and the Dirichlet problem are related to Hessians  $H^k(u) \geq 0$ ,  $k=1,2,\ldots,n-m+1$ . The main method for studying maximal m-cv functions, which in general are not smooth, is to connect m-cv functions with strongly m-subharmonic  $(sh_m)$  functions. Theory of  $sh_m$  functions is well studied and currently the subject of study by many mathematicians (see Z. Błocki [6], S. Dinew and S. Kolodzej [7], S. Li [8], H. C. Lu [9, 10], A. Sadullaev, B. Abdullaev [11,12] etc.)

<sup>\*</sup>sadullaev@mail.ru https://orcid.org/0000-0003-4188-1732

<sup>†</sup>sharipovr80@mail.ru https://orcid.org/0000-0002-3033-3047

 $<sup>\</sup>odot$  Siberian Federal University. All rights reserved

### 1. Strongly m-subharmonic and m-convex functions

Twice smooth function  $u(z) \in C^2(D)$ ,  $D \subset \mathbb{C}^n$ , is called strongly *m*-subharmonic  $u \in sh_m(D)$ , if at each point of the domain D hold

$$sh_m(D) = \left\{ u \in C^2 : (dd^c u)^k \wedge \beta^{n-k} \geqslant 0, \ k = 1, 2, \dots, n-m+1 \right\} =$$

$$= \left\{ u \in C^2 : dd^c u \wedge \beta^{n-1} \geqslant 0, (dd^c u)^2 \wedge \beta^{n-2} \geqslant 0, \dots, (dd^c u)^{n-m+1} \wedge \beta^{m-1} \geqslant 0 \right\}, \quad (1)$$
where  $\beta = dd^c ||z||^2$  the standard volume form in  $\mathbb{C}^n$ .

Operators  $(dd^c u)^k \wedge \beta^{n-k}$  closely related to the Hessians. For a twice smooth function,  $u \in C^2(D)$  the second-order differential  $dd^c u = \frac{i}{2} \sum_{j,k} \frac{\partial^2 u}{\partial z_j \partial \bar{z}_k} dz_j \wedge d\bar{z}_k$  (at the fixed point  $o \in D$ ) is a

Hermitian quadratic form. After approaching unitary transformation of coordinate, it is reduced to diagonal form  $dd^c u = \frac{i}{2} \left[ \lambda_1 dz_1 \wedge d \, \bar{z}_1 + \ldots + \lambda_n dz_n \wedge d \, \bar{z}_n \right]$ , where  $\lambda_1, \ldots, \lambda_n$  the eigenvalues of the Hermitian matrix  $\left( \frac{\partial^2 u}{\partial z_j \partial \, \bar{z}_k} \right)$ , which are real:  $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ . Note that the unitary transformation does not change the differential form  $\beta = dd^c ||z||^2$ . It is easy to see that

$$(dd^c u)^k \wedge \beta^{n-k} = k!(n-k)!H^k(u)\beta^n, \tag{2}$$

where  $H^k(u) = \sum_{1 \leq j_1 < \dots < j_k \leq n} \lambda_{j_1} \dots \lambda_{j_k}$  is the Hessian of dimension k of the vector  $\lambda = \lambda(u) \in \mathbb{R}^n$ .

Consequently, a twice smooth function  $u(z) \in C^2(D)$ ,  $D \subset \mathbb{C}^n$ , is strongly m-subharmonic if at each point  $o \in D$  the next inequalities hold

$$H^k(u) = H_o^k(u) \ge 0, \quad k = 1, 2, \dots, n - m + 1.$$
 (3)

Note that the concept of a strongly m-subharmonic function is defined, in general, in the distribution sense

**Definition 1.** A function  $u \in L^1_{loc}(D)$  is called  $sh_m$  in the domain  $D \subset \mathbb{C}^n$ , if it is upper semicontinuous and for any twice smooth  $sh_m$  functions  $v_1, \ldots, v_{n-m}$  the current  $dd^c u \wedge dd^c v_1 \wedge \cdots \wedge dd^c v_{n-m} \wedge \beta^{m-1}$  defined as

$$\left[dd^{c}u \wedge dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1}\right](\omega) =$$

$$= \int u \, dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1} \wedge dd^{c}\omega, \quad \omega \in F^{0,0}$$
(4)

 $is\ positive.$ 

In the work of Błocki [6], it was proven that this definition is correct, that for functions  $u \in C^2(D)$  this definition coincides with the original definition of  $sh_m$  functions. Moreover, the class of bounded  $sh_m$  functions define the operators  $(dd^cu)^k \wedge \beta^{n-k} \geqslant 0, \ k = 1, 2, \ldots, n-m+1$  as Borel measures in the domain D (see [6,11]).

Now let  $D \subset \mathbb{R}^n$  and  $u(x) \in C^2(D)$ . Similar to (2) we want to define m-convex functions in the domain  $D \subset \mathbb{R}^n$ . The matrix  $\left(\frac{\partial^2 u}{\partial x_j \partial x_k}\right)$  is orthogonal,  $\frac{\partial^2 u}{\partial x_j \partial x_k} = \frac{\partial^2 u}{\partial x_k \partial x_j}$ . Therefore, after a suitable orthonormal transformation, it is transformed into a diagonal form

$$\left(\frac{\partial^2 u}{\partial x_j \partial x_k}\right) \to \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array}\right),$$

where  $\lambda_j = \lambda_j(x) \in \mathbb{R}$  the eigenvalues of the matrix  $\left(\frac{\partial^2 u}{\partial x_j \partial x_k}\right)$ . Let  $H^k(u) = H^k(\lambda) = \sum_{1 \leq j_1 < \dots < j_k \leq n} \lambda_{j_1} \dots \lambda_{j_k}$  the Hessian of the dimension k of the eigenvalue vector  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ .

**Definition 2.** A twice smooth function  $u \in C^2(D)$  is called m-convex in  $D \subset \mathbb{R}^n$ ,  $u \in m-cv(D)$ , if its eigenvalue vector  $\lambda = \lambda(x) = (\lambda_1(x), \lambda_2(x), \dots, \lambda_n(x))$  satisfies the conditions

$$m - cv \cap C^2(D) = \{H^k(u) = H^k(\lambda(x)) \ge 0, \ \forall x \in D, \ k = 1, \dots, n - m + 1\}.$$

Theory m-cv functions is a poorly-studied and new direction in the theory of real geometry. However, when m=n the class  $n-cv\cap C^2(D)=\{\lambda_1+\cdots+\lambda_n\geqslant 0\}$  coincides with the class of subharmonic functions, and when m=1 this class  $1-cv\cap C^2(D)=\{H^1(\lambda)\geqslant 0\}=\{\lambda_1\geqslant 0,\ldots,\lambda_n\geqslant 0\}$  coincides with functions that are convex functions in  $\mathbb{R}^n$ . The class of convex functions is well studied (A. Alexandrov, I. Bakelman, A. Pogorelov, see [1–5]). This m>1 class was studied in a series of works by N. Ivochkina, N. Trudinger, H. Wang, etc. (see. [16–22]).

Principal difficulties in the theory of m-cv functions are the introduction of class  $m-cv\cap L^1_{loc}$ , i.e. definition m-cv(D) functions in the class of upper semicontinuous, locally integrable or bounded functions. So, for m=n (the case of subharmonic functions) in the class of upper semicontinuous, locally integrable functions  $u(x) \in n-cv(D)$  is defined as a distribution, where the Laplace operator  $\Delta u$  is a Borel measure.

The key point to study  $m - cv \cap L^1_{loc}$  functions is the following relationship m - cv and  $sh_m$  functions (see. [14]). We embed  $\mathbb{R}^n_x$  into  $\mathbb{C}^n_z$ , by  $\mathbb{R}^n_x \subset \mathbb{C}^n_z = \mathbb{R}^n_x + i\mathbb{R}^n_y(z = x + iy)$ , as a real n-dimensional subspace of the complex space  $\mathbb{C}^n_z$ .

**Theorem 1.** A twice smooth function  $u(x) \in C^2(D)$ ,  $D \subset \mathbb{R}^n_x$ , is m - cv in D if and only if a function  $u^c(z) = u^c(x + iy) = u(x)$  that does not depend on variables  $y \in \mathbb{R}^n_y$ , is  $sh_m$  in the domain  $D \times \mathbb{R}^n_y$ .

**Definition 3.** An upper semicontinuous function u(x) in a domain  $D \subset \mathbb{R}^n_x$  is called m-convex D, if the function  $u^c(z)$  is strongly m-subharmonic,  $u^c(z) \in sh_m(D \times \mathbb{R}^n_u)$ .

If a function u(x) is locally bounded and m-convex in the domain  $D \subset \mathbb{R}^n_x$ , then  $u^c(z)$  will be also locally bounded, strongly m-subharmonic function in the domain  $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$ ,  $u^c(z) \in sh_m \cap L^{\infty}_{loc}\left(D \times \mathbb{R}^n_y\right)$ . Therefore, the operators are correctly defined

$$(dd^{c}u^{c})^{k} \wedge \beta^{n-k}, \ k = 1, 2, \dots, n-m+1$$

as Borel measures in the domain  $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$ ,  $\mu_k = (dd^c u^c)^k \wedge \beta^{n-k}$ .

Since for a twice smooth function  $(dd^cu^c)^k \wedge \beta^{n-k} = k!(n-k)!H^k(u^c)\beta^n$ , then for a locally bounded, strongly m-subharmonic function in the domain,  $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$  it is natural to define its Hessians, equating them to the measure

$$H^{k}(u^{c}) = \frac{\mu_{k}}{k!(n-k)!} = \frac{1}{k!(n-k)!} (dd^{c}u^{c})^{k} \wedge \beta^{n-k}.$$
 (5)

By using (5) we can now define Hessians  $H^k$ , k = 1, 2, ..., n - m + 1, in the class of locally bounded, m-convex functions in the domain  $D \subset \mathbb{R}^n_x$ . Let u(x) be locally bounded, m-convex function in the domain  $D \subset \mathbb{R}^n_x$ . Let us define Borel measures in the domain  $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$ 

$$\mu_k = (dd^c u^c)^k \wedge \beta^{n-k}, \quad k = 1, 2, \dots, n - m + 1.$$

Since  $u^c \in sh_m\left(D \times \mathbb{R}^n_y\right)$  does not depend on  $y \in \mathbb{R}^n_y$ , then for any Borel sets,  $E_x \subset D$ ,  $E_y \subset \mathbb{R}^n_y$  the measures  $\frac{1}{mesE_y}\mu_k\left(E_x \times E_y\right)$  does not depend on the set  $E_y \subset \mathbb{R}^n_y$ , i.e.  $\frac{1}{mesE_y}\mu_k\left(E_x \times E_y\right) = \nu_k\left(E_x\right)$ . Borel measures

$$\nu_k: \quad \nu_k(E_x) = \frac{1}{mesE_y} \mu_k(E_x \times E_y), \quad k = 1, 2, \dots, n - m + 1,$$
 (6)

we call by Hessians  $H^k = H^k(E_x)$ , k = 1, 2, ..., n - m + 1, for a locally bounded, m-convex  $u(x) \in m - cv(D)$  function in the domain  $D \subset \mathbb{R}^n_x$ . For a twice smooth function,  $u(x) \in m - cv(D) \cap C^2(D)$  the Hessians are ordinary functions, however, for a non-twice smooth, but bounded upper semicontinuous function,  $u(x) \in m - cv(D) \cap L^{\infty}(D)$ , the Hessians  $H^k$ , k = 1, 2, ..., n - m + 1, are positive Borel measures (see [13, 15]).

### 2. Maximal functions and the Dirichlet problem

Similar to the Monge-Ampere operator  $(dd^cu)^{n-m+1} \wedge \beta^{m-1}$  in the class  $sh_m$  of functions, the Hessian measures  $H_u^{n-m+1}$  in the class m-cv(D) also has the property of dominance: the function, with smaller its total mass, is closer to the maximal.

**Theorem 2** (Comparison principle). If  $u, v \in m - cv(D) \cap C(D)$  and a set  $F = \{x \in D : u(x) < v(x)\} \subset\subset D$ , then

$$H_u^{n-m+1}(F) \geqslant H_v^{n-m+1}(F).$$
 (7)

*Proof.* The proof of the theorem is carried out in several stages.

1) If  $D \subset \mathbb{R}^n$  a bounded domain with a smooth boundary  $\partial D$  and  $u, v \in m - cv(D) \cap C^2(\bar{D})$ :  $u|_D < v|_D$ ,  $u|_{\partial D} \equiv v|_{\partial D}$ , then  $H^{n-m+1}_u(D) \geqslant H^{n-m+1}_v(D)$ .

Actually, let us put  $\mathbb{R}^n_x$  in  $\mathbb{C}^n_z$ ,  $\mathbb{R}^n_x \subset \mathbb{C}^n_z = \mathbb{R}^n_x + i\mathbb{R}^n_y$  (z = x + iy), and construct the functions  $u^c(z) = u(x) \in sh_m(D \times \mathbb{R}^n_y)$ ,  $v^c(z) = v(x) \in sh_m(D \times \mathbb{R}^n_y)$ . We take the cylinder  $\Omega = \{(x,y) \in D \times \mathbb{R}^n_y : x \in D, ||y|| < 1\}$ . The boundary of the cylinder is  $\partial\Omega = S_1 \cup S_2$ , where  $S_1 = D \times \{||y|| = 1\}$ ,  $S_2 = \partial D \times \{||y|| < 1\}$ .

According to the Stokes formula we have

$$\begin{split} \int \ _{\Omega} \left[ \left( dd^{c}u^{c} \right)^{n-m+1} \wedge \beta^{m-1} - \left( dd^{c}v^{c} \right)^{n-m+1} \wedge \beta^{m-1} \right] = \\ = \int_{\Omega} \left[ \left( dd^{c}u^{c} \right) - \left( dd^{c}v^{c} \right) \right] \wedge \\ \left[ \left( dd^{c}u^{c} \right) \wedge \left( dd^{c}v^{c} \right)^{n-m} + \left( dd^{c}u^{c} \right)^{2} \wedge \left( dd^{c}v^{c} \right)^{n-m-1} + \dots + \left( dd^{c}u^{c} \right)^{n-m} \wedge \left( dd^{c}v^{c} \right) \right] \wedge \beta^{m-1} = \\ = \int_{\partial \Omega} \left[ \left( d^{c}u^{c} \right) - \left( d^{c}v^{c} \right) \right] \wedge \\ \left[ \left( dd^{c}u^{c} \right) \wedge \left( dd^{c}v^{c} \right)^{n-m} + \left( dd^{c}u^{c} \right)^{2} \wedge \left( dd^{c}v^{c} \right)^{n-m-1} + \dots + \left( dd^{c}u^{c} \right)^{n-m} \wedge \left( dd^{c}v^{c} \right) \right] \wedge \beta^{m-1}. \end{split}$$

Note that the differential form

$$\left[\left(dd^{c}u^{c}\right)\wedge\left(dd^{c}v^{c}\right)^{n-m}+\left(dd^{c}u^{c}\right)^{2}\wedge\left(dd^{c}v^{c}\right)^{n-m-1}+\cdots+\left(dd^{c}u^{c}\right)^{n-m}\wedge\left(dd^{c}v^{c}\right)\right]$$

is positive and  $[(d^c u^c) - (d^c v^c)] = d^c (u^c - v^c)$  represents the derivative by the internal normal  $[(d^c u^c) - (d^c v^c)] = d^c (u^c - v^c) \sim \frac{\partial (u^c - v^c)}{\partial n}$ . Since the function  $u^c - v^c$  does not depend on y,  $\frac{\partial (u^c - v^c)}{\partial n}\Big|_{\|u\| = 1} = 0$ . Therefore,

$$\int_{S_1} \left[ (d^c u^c) - (d^c v^c) \right] \wedge$$

$$\left[ (dd^c u^c) \wedge (dd^c v^c)^{n-m} + (dd^c u^c)^2 \wedge (dd^c v^c)^{n-m-1} + \dots + (dd^c u^c)^{n-m} \wedge (dd^c v^c) \right] \wedge \beta^{m-1} = 0.$$

For the integral over  $S_2$ 

$$\int_{S_2} \left[ (d^c u^c) - (d^c v^c) \right] \wedge$$

$$\left[ \left( dd^c u^c \right) \wedge \left( dd^c v^c \right)^{n-m} + \left( dd^c u^c \right)^2 \wedge \left( dd^c v^c \right)^{n-m-1} + \dots + \left( dd^c u^c \right)^{n-m} \wedge \left( dd^c v^c \right) \right] \wedge \beta^{m-1} \geqslant 0,$$

since  $u^c - v^c < 0$  inside D and  $(u^c - v^c)|_{\partial D} = 0$ . Therefore,  $d^c(u^c - v^c)$  is positive on  $S_2$ .

That's why,

$$\int_{\Omega} \left[ (dd^{c}u^{c})^{n-m+1} \wedge \beta^{m-1} - (dd^{c}v^{c})^{n-m+1} \wedge \beta^{m-1} \right] =$$

$$= \int_{D \times \{\|y\| \le 1\}} \left[ (dd^{c}u^{c})^{n-m+1} \wedge \beta^{m-1} - (dd^{c}v^{c})^{n-m+1} \wedge \beta^{m-1} \right] \ge 0.$$

From here,

$$\int\limits_{D\times\{\|y\|\leqslant 1\}} \left(dd^cu^c\right)^{n-m+1}\wedge\beta^{m-1}\geqslant \int\limits_{D\times\{\|y\|\leqslant 1\}} \left(dd^cv^c\right)^{n-m+1}\wedge\beta^{m-1}$$

and according to (6)  $H_u^{n-m+1}(D) \geqslant H_v^{n-m+1}(D)$ .

2) If  $u, v \in C^2(D)$  and the open set  $F = \{u < v\} \subset\subset D$ , then from 1) it easily follows that

$$H_u^{n-m+1}(F) \geqslant H_v^{n-m+1}(F).$$

3) In general:  $u, v \in C(D)$ . Then set

$$F = \{ x \in D : u(x) < v(x) \}$$

will be an open set. Fixing domain  $G, G': F \subset G \subset G' \subset D$ , number  $\delta > 0$  and open set  $F_{\delta} = \{u(x) + \delta < v(x)\} \subset F$ . Let's construct sequences of approximations  $u_j, v_j \in m - cv(G') \cap C^{\infty}(G'), \ j = 1, 2, \ldots: \ u_j \downarrow u, \ v_j \downarrow v$ . Due to continuity u, v the convergence  $u_j \downarrow u, \ v_j \downarrow v$  will be uniform in G and, therefore,  $\exists j_0, k_0 : F_{3\delta} \subset F' = \{u_k + 2\delta < v_j\} \subset F_{\delta}, \ j \geqslant j_0, \ k \geqslant k_0$ . According to 2) we have

$$H^{n-m+1}_{u_k}(F')\geqslant H^{n-m+1}_{v_j}(F'), \ k\geqslant k_0, \ j\geqslant j_0.$$

Hence for such k and j

$$H_{v_j}^{n-m+1}(F_{3\delta}) \leqslant H_{v_j}^{n-m+1}(F') \leqslant H_{u_k}^{n-m+1}(F') \leqslant H_{u_k}^{n-m+1}(\bar{F}_{\delta}).$$

When,  $j \to \infty$ ,  $k \to \infty$  according to the properties of Borel measures, we have

$$H_{\nu}^{n-m+1}\left(F_{3\delta}\right) \leqslant H_{\nu}^{n-m+1}\left(\bar{F}_{\delta}\right).$$

Tending  $\delta \to 0$  from here we get that  $H_v^{n-m+1}\left(\{u < v\}\right) \leqslant H_u^{n-m+1}\left(\overline{\{u < v\}}\right)$ . Applying this inequality to the functions  $u + \varepsilon, v$  we have  $H_v^{n-m+1}\left(\{u + \varepsilon < v\}\right) \leqslant H_u^{n-m+1}\left(\overline{\{u + \varepsilon < v\}}\right)$  and by tending  $\varepsilon \to 0$  we obtain the proof of the theorem.

**Definition 4.** A function  $u(x) \in m - cv(D)$  is called maximal in the domain  $D \subset \mathbb{R}^n$  if for this function the maximum principle holds in the class of m - cv(D), i.e. if  $v \in m - cv(D)$ :  $\lim_{x \to \partial D} (u(x) - v(x)) \ge 0, \text{ then } u(x) \ge v(x), \ \forall x \in D.$ 

Note that the following convenient maximality criterion is often used: a function  $u(x) \in m - cv(D)$  is maximal in the domain  $D \subset \mathbb{R}^n$  if and only if for any domain  $G \subset D$  the inequality  $u(x) \geqslant v(x)$ ,  $\forall x \in G$  holds for all functions  $v \in m - cv(D)$ :  $u|_{\partial G} \geqslant v|_{\partial G}$ .

Maximal functions are closely related to the Dirichlet problem.

**Theorem 3.** Let  $D = \{\rho(x) < 0\}$  strictly m - cv convex domain in  $\mathbb{R}^n$  and  $\varphi(\xi)$  a continuous function defined on the boundary  $\partial D$ . Let's put

$$\mathcal{U}(\varphi, D) = \left\{ u \in m - cv(D) \cap C(\bar{D}) : \ u|_{\partial D} \leqslant \varphi \right\}$$

and

$$\omega(x) = \sup \{ u(x) : u \in \mathcal{U}(\varphi, D) \}. \tag{8}$$

Then,  $\omega(x) \in m - cv(D) \cap C(\bar{D})$ ,  $\omega|_{\partial D} = \varphi$  and in addition,  $\omega(x)$  is the maximal m - cv function in D.

We remember, a domain  $D = \{\rho(x) < 0\}$  is strictly m - cv convex if the function  $\rho(x)$  is strictly m - cv in a neighborhood  $D^+ \supset \bar{D}, \ \rho(x) \in m - cv(D^+), \ \rho(x) - \delta |x|^2 \in m - cv(D^+)$  for some  $\delta > 0$ .

It is natural to call the function  $\omega(x)$  as a solution to the Dirichlet problem:  $\omega(x)$  maximal and  $\omega|_{\partial D} = \varphi$ . Moreover, it is easy to see that a function  $u \in m - cv(D) \cap C(D)$  is maximal if and only if the function  $u^c(z) \in sh_m(D \times \mathbb{R}^n_y) \cap C(D \times \mathbb{R}^n_y)$  is a maximal  $sh_m$  function. It follows that  $(dd^cu^c)^{n-m+1} \wedge \beta^{m-1} = 0$  or  $H^{n-m+1}(u^c) = 0$ . This is equivalent to  $H^{n-m+1}(u(x)) = 0$ .

Proof of Theorem 3. Note that if in (8) instead of a class m-cv(D) we consider a wider class of subharmonic functions  $n-cv(D)=sh(D)\supset m-cv(D)$ , then we would obtain a solution to the classical Dirichlet problem:  $\nu(x)=\sup\big\{u\in sh(D)\cap C(\bar{D}):\ u|_{\partial D}\leqslant\varphi\big\}$ . In this case  $\Delta\nu\equiv 0,\ \nu|_{\partial D}\equiv\varphi$ . It is clear that  $\omega(x)\leqslant\nu(x)$  and

$$\overline{\lim}_{x \to \xi} \omega(x) \leqslant \varphi(\xi), \quad \forall \xi \in \partial D. \tag{9}$$

On the other hand, any fixed boundary point  $\xi^0 \in \partial D$  of a strictly m-convex domain  $D = \{\rho(x) < 0\}$ ,  $\rho(x)$ -strictly m - cv function in some neighborhood  $D^+ \supset \bar{D}$ , is a peak point: there exists  $v \in m - cv(D) \cap C(\bar{D})$ :  $v(\xi^0) = 0$ ,  $v|_{\bar{D} \setminus \{\xi^0\}} < 0$ .

In fact, since  $\rho(x)$  strictly m-cv function in a certain neighborhood  $D^+\supset \bar{D}$ , then for a sufficiently small positive number  $\delta>0$  the difference  $\rho(x)-\delta \|x-\xi^0\|^2$  is m-convex in  $D^+$ . Considering instead  $\rho(x)$  function

$$v(x) = \rho(x) - \delta \|x - \xi^0\|^2 \in m - cv(D) \cap C(\bar{D}): \ v(\xi^0) = 0, \ \ v|_{\bar{D} \setminus \{\xi^0\}} < 0$$

we'll make sure that the point  $\xi^0 \in \partial D$  is peak point.

Hence, for any fixed number  $\varepsilon > 0$  there is a large number M > 0 that  $M \cdot v(x) + \varphi(\xi^0) - \varepsilon \in \mathcal{U}(\varphi, D)$ . Therefore,  $M \cdot v(x) + \varphi(\xi^0) - \varepsilon \leqslant \omega(x)$  and  $\lim_{x \to \xi^0} \omega(x) \geqslant \varphi(\xi^0) - \varepsilon$ . Since the number

 $\varepsilon > 0$  and point  $\xi^0 \in \partial D$  are arbitrary, then  $\lim_{x \to \xi} \omega(x) \geqslant \varphi(\xi)$ ,  $\forall \xi \in \partial D$ . Combining this with (9) we get  $\lim_{x \to \xi} \omega(x) = \varphi(\xi)$ ,  $\forall \xi \in \partial D$ .

For regularization  $\omega^*$  which is m-cv function in the domain D condition of continuity on the boundary is also satisfied:  $\lim_{x\to\xi}\omega^*(x)=\varphi(\xi), \ \ \forall \xi\in\partial D.$  From  $\omega^*(x)\in m-cv(D), \ \lim_{x\to\partial D}\omega^*=\varphi$  follows that  $\omega^*(x)\leqslant\omega(x)$ , i.e.  $\omega^*(x)\equiv\omega(x)$  and  $\omega(x)$  is m-cv function. Let us show that it is maximal.

Assume the contrary, let there be a domain  $G \subset\subset D$  and a function  $\phi(x) \in m - cv(D)$ :  $\phi|_{\partial G} \leqslant \omega|_{\partial G}$ , but  $\phi(x^0) > \omega(x^0)$  at some point  $x^0$ .

Function

$$w(x) = \left\{ \begin{array}{ll} \max \left\{ \omega(x), \, \phi(x) \right\} & if \ x \in \bar{G} \\ \omega & if \ x \in D \backslash G \end{array} \right.$$

is m-convex,  $w(x) \in m - cv(D)$ ,  $w|_{\partial D} = \omega|_{\partial D} = \varphi$ . Therefore,  $w(x) \leqslant \omega(x)$  and  $\phi(x^0) \leqslant \omega(x^0)$ . This is contradiction.

It remains to prove that the function  $\omega$  will be continuous in the closure. Let's build an approximation

$$\omega_{\delta}(x) = \omega \circ K_{\delta}(x - y) \in m - cv(D_{\delta}) \cap C^{\infty}(D_{\delta}), \ D_{\delta} = \{x \in D : \ \rho(x) < \delta\},$$

 $\omega_{\delta}(x)\downarrow\omega(x)$ , as  $\delta\downarrow0$ . For small enough  $\delta>0$  each interior normal  $n_{\xi},\ \xi\in\partial D$  intersects  $\partial D_{\delta}$  at a single point  $\eta(\xi)\in\partial D_{\delta}$ , so that a homeomorphism  $n_{\delta}$  is defined  $n_{\delta}:\ \partial D\to\partial D_{\delta}$ . Let us put  $\varphi_{\delta}(\eta)=\varphi(n_{\delta}(\xi)),\ \eta\in\partial D_{\delta},\ \xi\in D$ . Since  $\lim_{x\to\xi}\omega(x)=\varphi(\xi),\ \forall \xi\in\partial D$ , then for any fixed  $\varepsilon>0$  there is a  $\delta_0>0$  such that  $|\omega(x)-\varphi_{\delta_0}(x)|<\varepsilon,\ \forall x\in\partial D_{\delta_0}$ . For a fixed  $\delta_0>0$  the domain  $D_{\delta_0}\subset\subset D$  and the approximation  $\omega_{\delta}(x)\downarrow\omega(x)$ , for  $\delta\downarrow0$  covers the domain  $D_{\delta_0}$ .

Now applying Hartogs' lemma to a compact set  $\partial D_{\delta_0}$  and a function  $\varphi_{\delta_0}(x) \in C(\partial D_{\delta_0})$  we find  $0 < \delta' < \delta_0$  such that

$$\omega_{\delta}(x) < \omega_{\delta_0}(x) + 3\varepsilon, \quad \forall x \in \partial D_{\delta_0}, \quad \delta < \delta'.$$
 (10)

Since the solution to the Dirichlet problem  $\omega(x)$  is maximal in D, from  $\omega_{\delta}(x) < \varphi_{\delta_0}(x) + 3\varepsilon$ ,  $\forall x \in \partial D_{\delta_0}$ ,  $\delta < \delta'$  follows that  $\omega_{\delta}(x) < \omega(x) + 4\varepsilon$ ,  $\forall x \in D_{\delta_0}$ ,  $\delta < \delta'$  because  $\omega(x) > \varphi_{\delta_0}(x) - 3\varepsilon$ ,  $\forall x \in \partial D_{\delta_0}$ . From here,  $\omega(x) < \omega_{\delta}(x) < \omega(x) + 4\varepsilon$ ,  $\forall x \in \partial D_{\delta_0}$ ,  $\delta < \delta'$ , i.e.  $|\omega_{\delta}(x) - \omega(x)| < 4\varepsilon$ ,  $\forall x \in D_{\delta_0}$ ,  $\delta < \delta'(\delta_0)$ . Since  $\varepsilon > 0$  arbitrary, then the convergence  $\omega_{\delta}(x) \downarrow \omega(x)$  will be uniform inside D and  $\omega(x) \in C(D)$ , because  $\omega_{\delta}(x) \in C^{\infty}(D_{\delta})$ . The theorem is proven

**Theorem 4.** A continuous m-cv function  $u(x) \in m-cv(D) \cap C(D)$  is maximal if and only if the Borel measure is  $H_u^{n-m+1} = 0$ .

Proof. We proved above the equality  $H_u^{n-m+1}=0$  for the maximal function  $u(x)\in m-cv(D)\cap C(D)$ . Let now  $H_u^{n-m+1}=0$  and we will show that u maximal. Assume that u is not the maximal. Then for some domain  $G\subset\subset D$  there is a function  $v\in m-cv(D):u|_{\partial G}\geqslant v|_{\partial G}$ , but  $v(x^0)-u(x^0)=\varepsilon>0$  for some point  $x^0\in G$ .

Approximating v by infinitely smooth m-cv functions  $v_j\downarrow v$ , and then using Hartog's lemma, we find  $j_0\in\mathbb{N}$  such that  $v_{j_0}|_{\partial G}< u|_{\partial G}+\frac{\varepsilon}{2}.$  Let us compare the function u(x) with the function  $v_{j_0}(x)+\delta \|x\|^2,$  where  $\delta=\frac{\varepsilon}{3\cdot \max\left\{\|x\|^2: x\in \bar{G}\right\}}.$  For such  $\delta>0$  a set

 $F = \left\{ u(x) + \frac{\varepsilon}{2} < v_{j_0}(x) + \delta \|x\|^2 \right\}$  is not empty and lies compactly in G. Then according to the comparison principle (Theorem 2)

$$\delta^{n} \int_{F} \left( dd^{c} \left\| x \right\|^{2} \right)^{n} \leqslant \int_{F} \left( dd^{c}v + \delta dd^{c} \left\| x \right\|^{2} \right)^{n} \leqslant \int_{F} \left( dd^{c}u \right)^{n} = 0,$$

which contradicts to  $\int_{F} \left( dd^{c} \|x\|^{2} \right)^{n} > 0$ . The theorem is proven.

#### References

- [1] A.D.Aleksandrov, Intrinsic geometry of convex surfaces, OGIZ, Moscow, 1948 (in Russian); German transl., Akademie Verlag, Berlin, 1955.
- [2] A.D.Aleksandrov, Dirichlet's problem for the equation  $det(z_{ij}) = \varphi$ , Vestnic Leningrad University, 13(1958), 5–24 (in Russian).
- [3] I.J.Bakelman, Variational problems and elliptic Monge-Ampere equations, *J. Diff. Geo*, **18**(1983), 669–999.
- [4] I.J.Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer Verlage, New York, 1994.
- [5] A.V.Pogorelov, Extrinsic geometry of convex surfaces, "Nauka", Moscow, 1969; English transl., Amer. Math. Soc, Providence, R. I., 1973.
- [6] Z.Błocki, The domain of definition of the complex Monge-Ampere operator, Amer. J. Math., 128(2006), no. 2, 519–530. DOI: 10.1353/ajm.2006.0010
- [7] S.Dinew, S.Kolodziej, A priori estimates for the complex Hessian equation, *Anal. PDE*, **7**(2014), 227–244. DOI: 10.2140/apde.2014.7.227
- [8] S.Y.Li, On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, *Asian J.Math.*, 8(2004), 87–106. DOI: 10.4310/AJM.2004.v8.n1.a8
- [9] H.Ch.Lu, Solutions to degenerate Hessian equations, Jurnal de Mathematique Pures et Appliques, 100 6(2013), 785–805. DOI: 10.1016/j.matpur.2013.03.002
- [10] H.Ch.Lu, V.D.Nguyen, Degenerate complex Hessian equations on compact Keahler manifolds, *Indiana University Mathematics Journal*, 64(2015), no. 6, 1721–1745.
  DOI: 10.1512/iumj.2015.64.5680
- [11] A.Sadullaev, B.Abdullaev, Potential theory in the class of m-subharmonic functions. Analytic and geometric issues of complex analysis, Trudy Mat. Inst. Steklova, MAIK Nauka/Interperiodica, Moscow, 279(2012), 155–180. DOI: 10.1134/S0081543812080111
- [12] A.S.Sadullaev, B.I.Abdullaev, Capacities and Hessians in the class of m-subharmonic functions,  $Dokl.\ Math.\ 87(2013),\ 88-90.\ DOI:\ 10.1134/S1064562413010341$
- [13] A.Sadullaev, Definition of Hessians for m-convex functions as Borel measures, (to appear).
- [14] R.A.Sharipov, M.B.Ismoilov, m-convex (m cv) functions, Azerbaijan Journal of Mathematics, **13**(2023), no. 2, 237–247. DOI: 10.59849/2218-6816.2023.2.237

- [15] R.A.Sharipov, M.B.Ismoilov, Hessian measures in the class of m-convex (m-cv) functions. (Preprint).
- [16] L.Caffarelly, N L.irenberg, J.Spruck, Functions of the eigenvalues of the Hessian, Acta Math, 155(1985) 261–301.
- [17] N.Ivochkina, N.S.Trudinger, X.J.Wang, The Dirichlet problem for degenerate Hessian equations, Comm. Partial Diff. Equations, 29(2004) 219–235. DOI: 10.1081/PDE-120028851
- [18] N.S.Trudinger, X.J.Wang, Hessian measures I, Topol. Methods Nonlinear Anal., 10(1997), 225–239.
- [19] N.S.Trudinger, X.J.Wang, Hessian measures II, Anal. Math., 150(1999), 579-604.
- [20] N.S.Trudinger, X.J.Wang, Hessian measures III, J. Funct. Anal., 193(2002), 1–23.
- [21] X.J.Wang, K.S.Chou, Variational theoryfor Hessian equations, Comm. Pure Appl. Math., 54(2001), 1029–1064. DOI: 10.1002/cpa.1016
- [22] X.J.Wang, The k-Hessian equations, Lect. Notes Math., 1977(2009).

# Максимальные функции и задача Дирихле в классе m-выпуклых функций

#### Азимбай Садуллаев

Институт математики имени В. И. Романовского Академии наук Республики Узбекистана Национальный университет Узбекистана Ташкент, Узбекистан

## Расулбек Шарипов

Ургенчский государственный университет Ургенч, Узбекистан

**Аннотация.** В этой работе мы вводим понятие максимальных m-выпуклых (m-cv) функций и для строго m-выпуклых областей  $D \subset \mathbb{R}^n$  решаем Задачу Дирихле с заданной граничной непрерывной функцией. Докажем, что для решения задачи Дирихле в классе m-cv функций его Гессиан  $H^{n-m+1}_{\omega}=0$  в области D.

**Ключевые слова:** субгармонические функции, выпуклые функции, *m*-выпуклые функции, Борелевские меры, Гессианы.