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Abstract. In this paper, we have constructed the main group of transformations allowed by the system
of differential equations for the flow of a viscous inhomogeneous fluid in a Hele-Shaw cell. A classifying
equation for the viscosity function was obtained, and a basis of operators was constructed that preserved
the form of the original equations. The basis of the space of solutions of the defining equations is
described. Invariants of operators are found and invariant solutions of the equations are obtained.
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Introduction

Systems of differential equations are important in the natural sciences. Often these equations
are difficult to solve by integrating them directly. To solve complex systems of differential
equations, their group properties are studied, that is, the properties of leaving the differential
manifold of the equation under consideration invariant when the independent and differential
variables undergo transformations of a certain group of transformations. If this property exists,
they say that the system of equations admits a group, and when transforming from this group,
any solution of the system goes back into the solution of this system, which makes it possible
to obtain various classes of partial solutions of the system by integrating simpler systems of
equations.

In this paper, the equations of a viscous inhomogeneous fluid in a Hele-Shaw cell are re-
searched by group analysis method. The movement of a viscous fluid is described by the Navier-
Stokes equations. Article [3] describes two-layer flows in a hele-show cell. The geometry of the
flow of a two-layer fluid in a cell is shown in Figure 1. The dimensions of the cell in the direction
of the x and y axes significantly exceed the width of the gap between the cell plates.
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Fig. 1. Geometry of Hele-Shaw cell [3]

Article [3] presents a system of differential equations of the form

pluy + B(uug + vuy)) + py = —pu,
Py = —pg,
Uy + vy =0, (1)
P+ upz +vpy =0,
n= p(p).

Here the independent variables — x and y are spatial coordinates in the Hele-Shaw cell and
t — time. The differential variables are u — horizontal and v — vertical components of velocity,
p — pressure, p — density. In addition, there is an arbitrary element p — viscosity, which is some
unknown function of density. From the physical meaning we assume p > 0. The equations also
include two constants: g — acceleration of gravity and 5 = 1.2.

1. Infinitesimal operator and its extension

Let’s study the equations (1) using group analysis. To do this, we will follow the algorithm
for searching for group transformations allowed by a differential equation given in [1,2].

We introduce notation for independent variables ! = z, 22
2 4

=y, z3 =t, and for differential

variables u! = u, u? = v, v® = p, u* = p. Let us denote partial derivatives with respect to

independent variables

_ 1 .2 _ .3 _ .4
Uy = Uy, Vg =U7, Pz =1Uy, Pz = U,
_ 1 .2 _ .3 A
uy = U3, Uy = U3, py = Uy, Py = Uy,

_ 1 .2 .3 _ .4
U = uz, V¢ =1uz, Pr="7us, P¢=Ug3.

In the new notation equations (1) take the form

utud + pulutul + fuutud +ud + p(ut)u' =0,
us + gut =0,
uj +us =0,

ué +utu] + utus = 0.

(2)

The equations (1) define the manifold E in the space of variables, the following substitution
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is required to move to the manifold F

ul = —utuy — But (ulul +vPud) — plut)ut,
ug = —g’LL4, 3
2 1 (3)

Uy = —Uq,

uy = —uluf —utuj.

We look for the infinitesimal operator in the form
0 1 0 5 0 3 0 4, 0
81'3 + g 8u + g (“)uz + K GU3 g 8'LL4’

X — 51 _|_ 52 + 53

To obtain the continuation of the operator to the first derivatives its necessary to use the
0 .
formula )1( =X+ (fa—a, where (& = D;(n®) — u§D;(£7). Summation is carried out according
Uu;

0 0
to the indices of independent (i, j) and differential («) variables; D; = e + ufa—a +... 1]
x u

2. Defining equations
Let us apply the invariance criterion [2] by acting on the second equation of system (2) by

the operator )1(

X(uj +gu®) = X(u3) + gX (u*) = ¢+ gn’* _—

Let’s move to the manifold [E] using substitutions (3)
M3 + i + (—un)nyz + (—gu)gs + gy —
= (—utug — futuluy — Bututuy — put) (& + upy + (—up)€et
+ (—gut)eys + up€ua) — (—gu®) (€3 +uz€ls + (—ui)€he + (—gu')Ehs + up€ha)—
—u3(&2 + ua€in + (—u1)&z + (—gu")&is + ur€ie) + g1 = 0.

Here the quantities u$* are independent variables. We split the equation into independent
variables ul, ud, ul, u3, uj and get

== =6 =6 =6 =0,

5 — mysgut +n'tg + péut — pElagutut + Ggut — Esggutut =0,
Bebutut — Bl gulutut — i — pelaut — E2gut =0,

BE, Loutut — Bfirzu2u4 =0,

B&utut — BELsguPutut + nly + péhiut + Eagut =0,

f%u‘l — figgu‘lzf1 =0,

—& + Ehsgu’ =0,

Moa + pégau’ + Eragu® = 0.
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Subjecting the first, third and fourth equations of the system to similar processing, we get

1_ g1 1 1 1
=8 =82 =& =& =0,
2 2 2, — g2, —

ul 7 Su?2 T Sud T Sut — Y

3 3 3 3 3 3
51:52: =& = u3:§u4: ,

Moz = Nas = Na =0,
7734 = Oa
=l =2 =0,

Nar = Mgz = 1ys = 0,

as well as a set of defining equations

DE1.1: niu* + Bniutu + Bn

DE1.2:
DE1.3:
DE1.4:
DE2.1:
DE3.1:
DE3.2:
DE3.3:
DEA4.1:
DE4.2:
DEA4.3:

sulut +nf — pndsut + pgtut + Ggut + ntpgaut +ntp =0,

=87t +ptut + ptut +utut (nh —nls) =0,

ut [uP(nly —ns + &0 — &) +0* — 87165 — ul] +n*u® = 0,
nt +ut(ni —nds + & - &) =0,

n3 + g(n* +ut(€5 —nls)) =0,

n -+ — nasgut =0,

My —N2e — &L+ 65 =0,

7]31 _5% = 07

ntul +n3u? 4+ n3 =0,
nt—&+ul(& &) =0,
n? — & —u'ed +u (& —€3) = 0.

3. Operators allowed by the system of equations

Considering differential and algebraic consequences from the defining equations, we obtain
the coordinates of the tangent vector field of the infinitesimal operator

¢t = Cox' + Cs,

€2 = (205 — 2C4)2? + Cg,

€ = Cua® + Cs,

n' = (Cy — Cy)u', (4)

1’}2 = (202 — 304)’(1,27
773 = (Cl +2Cy — 2C’4)u3 -+ A((ES),
774 = Ciut.

The solution (4) of the defining equations depends on six arbitrary constants C ... Cs and on
an arbitrary function A(x3). Since there are infinitely many options for choosing function A(z?),
then the solution space L is infinite-dimensional. The space L can be represented as a direct
sum L = L5 @ L>°, where L° is a six-dimensional space of solutions for which A(z®) =0 , and

the subspace L° is infinite-dimensional and consists of solutions such that Cy=--- = Cg =0,

0

A(z?) # 0 with the operator X4 = A(x?) =

ou3
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We alternately set one of the constants C;—1. ¢ equal to one, and the rest equal to zero

=(0,0,0,0,u3, ut),

= (2%, 22%,0,u’, 2u?, 203, 0),
(100000)

= (0, =222, 23, —u', —3u?, —2u3,0),
— (0, 0,1,000)

=(0,1,0,0,0,0).

We scalarly multiply the resulting vectors by 0 = (9,1, 052, Op3, Oy1, Oy2, Oys, Oya) and get the
operators

X1 =0C-0=u0ys +u'dy,

=(-0= :Ulazl + 2:U2512 + ulaul + 2u25u2 + 2u38u3,
Xy =G50 = O,
Xy =0 0=—-2220,2 + 2305 — ul0y — 3u0y2 — 2u30,s,
X5 =(5-0 =0y,
X6 =C(6 0= 0y2.

Operators X3, X¢ correspond to shifts along spatial coordinates, while X5 is time shift. Op-
erator X sets uniform stretching, operators Xs u X, are heterogeneous stretch.

4. Classification equation

The equation (—C; + Cyq)pu + Cru*p,s = 0 is a classification equation with solution
C,—Cy
w==C (u4) i , C = const.

This equation does not include the constants Cs, C3, Cs5, Cg, therefore, the transformations
corresponding to the operators X, X3, X5, X retain the form of equations for any type of de-
pendence of the liquid viscosity on density.

Let us consider different types of u(u*).

1) ;4 — arbitrary function. This means that the classification equation is satisfied when
—C1+Cy =0 end Cyu* = 0. From here, C; = C4y = 0. We get the kernel of transformations
with operators {Xs, X3, X5, X6, X4}

2) 1 =0. In the case of a non-viscous liquid, we substitute u = 0, p,2 = 0 in the classifying
equation and we obtain the identity. In this case we can choose arbitrary C4, Cy, and the basis
of operators is { X1, X, X3, X4, X5, X6, X4}

3) n=C#0. In this case p,2a = 0 end C; = C4. Then the coordinates of the vector tan-
gent field ¢! = Coxl + C3, €2 = (20y — 2Cy)2% + C8, € = Ca® + CP, = (Cy — Cy)ut,
= (20?7 = 3CHu?, n* = (2Cy — Cy)ud + A(2?), n* = Crut. ba51s of operators is
{X1 + X4, Xo, X3, X5, X6, Xa}
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4) p=C-(ut)k. Substituting p end p,2 = Ck(u*)*~! in the classifying equation, we get
Cy = C1(1 — k). Basis of operators is {X; + (1 — k) X4, Xo, X3, X5, X6, X4}

5. Operator invariants

Operator invariants are found from invariance criterion X;J = 0 [2].

3
u p
_ T ,2 .3 .1 2 —
JXl - {iﬁ YL, T, U U 711,4} - {xay7t7u7vap}7

Jo = dgp s oW W w1 gy uvop
Xo = yT,U 7(I1)27I1’($1)27(I1)2 - .’E27 7I7z27x27p )

2

au37u4} = {y,t,unup, p}7

1)2 (U2)2 u3 U2 U2 P
J = 17 ?(a® 27 (U’ ) 39 o> 4 = ) t2a77777a ’
X4 {$ T (LII ) 22 (1'2)3 72 U €,y y y P

Ix, = {xz,x3,u1,u

1

JXs = {x17x2,u 7u2uu37u4} = {x7yuu7v7p7p}7

JXS = {x17x37u17u27u37u4} = {:C7t7u,v7p,p}-

6. Invariant solutions for the operator (X,, X5)

Let’s take two operators from the core of the main group of transformations and let’s create
a two-parameter group H = (X3, X5). We transform the basis of invariants of the operator Xj

JX5 - {xay7u7’u7pap} — {1‘7

We take the invariant A = % as an independent variable. Let’s calculate its partial derivatives
T

2 2\ 1 A
At =0, )\, = ——z =——, Ay = 5 = —. We take the remaining four invariants as new required
x x x
functions
u v
UM =—- = u="Uz, V) = — = v="Va?
p 2
P()\):?:>p:Px, R(N) =p.
After transforming the original system of equations to new variables and the required func-
tions, we obtain a factor system E|H which contains ordinary differential equations for A

BR(UV' +VU')+ 2P — 2AP' = —pl,
P’ = —Ry,

U—2\U'+V' =0,

R (V —2XU) = 0.

From the last equation of the factor system we have two cases.
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Case 1. V =2A\U. Substitute V' = 2U 4 2\U’ in third equation of F|H and get U=0. Then
what remains from the first equation is an equation with separable variables 2P — 2A\P’ = 0, end
P = C\, P' = C; = const, from third equation V' =0, V = Cy = const, from second equation

r=-S
We feturn to the "physical" variables and write down the invariant solution
u=Uzx=0, v=Vz?=Cu? p=Pz*=C0Cy, szz—%.
Case 2. R'=0, R = C1 = const. From second equation we get P'= —C1g end P= —C1g\+Cs.
Note that in this case pu(p) = p(R) = u(Cy) = const. Let k = —%. Then first equation of

E|H takes the form
k(VU' —UV') +2C, = U.

Let’s consider the case when Cy = 0. Let us express V from the first equation E|H

U U?
= AU — —.
V=t 20U - (6)
, _1u'v -uu” , 20UV - UU”
V= e +2U + 20U T

On the other hand, from the third equation V' = 2A\U’ — U, and we get an ordinary differential
equation with respect to U
U'U'(1+kU)=UU"(1-kU).
This equation does not include an independent variable A, therefore, we can lower the order
of the equation by taking U as the independent variable and the unknown function is U" = f(U),
and we get

d\ ~ d\  dU dx

_ AU’ _df(U) _ df dU

U// — f/f

Then
fIfIL+EU] = Uf'[L - kU] = 0.

Case 2.1. Ecm f =0, U' =0, U = C3 = const.

U /1
ThenV=U/<k+2)\U/—U>:oo, P:—C]_g)\, R:C]_
d, 1+ kU
Case 2.2. Solving differential equation —f = +7dU , we get dependence A(U) =

f  U(I-KU)
k20U

1
=7 [1nBU —2kU + , A = const, B = const.

The function A(U) is continuous and increases strictly monotonically by (0; +00), therefore
it is a bijection A : (0;4+00) = R. This means there is an inverse function U(\).
To find the dependence U()\), it’s need to solve the equation for U

1 2772
f(U):Z {lnBU—2kU+k v —A=0.
We use Newton’s iterative scheme
f(Uk)f (Ug)

N V)R T L GAYIAN
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Fig. 2. Dependence U()) for a) water, u = 8.9410~* Pa-s, 6) glycerin, u = 1.49 Pa-s
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The derivative U’ is approximated to the second order of accuracy by the difference relation

vy = YO+ h)2—hU()\ =1 o),

Now using (6), we can calculate V(A). Let’s go through the formulas (5) to the original
Y. We see that the

differential variables and obtain a numerical solution for a fixed A\ = 5 -
T

resulting solution is stationary.
We impose a rectangular grid with a step (Az, Ay) on the Hele-Shaw cell and

vector field of the fluid flow velocity (Fig. 3).

calculate the

0.275 0275 / =
— - — — — — — — Pl . e
0.250 0.250 /" g
—_— S — — — — — — —a i T Sy ~ N
0255 > > > > > > e e - e R e N
02001 == =+ = —= — — = = = = 0200 #7 AT A > e o - - W\
—~
0175 - o = = = = = = = 0175 - = o s - - Y
-
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0.150 0.150 » \ X
- e R - - - - - o e - - - - - N
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a) 6)

Fig. 3. Vector field of current velocities for a) water at A = 10, 6) glycerin at A = 103
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HccnenoBanue ypaBHEeHUIT BA3KOI HEOJHOPOIHOM »KNIKOCTHU
B sdeiike XeJje-IIloy MeTo/ioM rpynnoBOro aHaJjmn3a

Anekcanap A.Poaunonos

Huknra A. CaBesibeB
Cubupckuii demepasbHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickas @eneparus

Awnnoranusi. B pabore mocTpoera OCHOBHas Tpymmma TpeoOpa30BaHUil, JOIYCKAEMBIX CHUCTEMON aud-
depeHIaIbHbIX YPABHEHUI TeUeHUs BA3KON HEOTHOPOIHOM KujakocTu B sueiike Xesie—11loy, mosrydeno
KJIacCuUIUpyIOlee ypaBHEHNE OTHOCUTEIBHO (DYHKIINK BA3KOCTH, IIOCTPOEH OA3KC OIlepaToOPOB, COXPa-
HSIIOIWX BUJI UCXOAHBIX ypaBHeHuil. Omncan 6a3uc MpOCTPAHCTBA PEIIEHN OIPEeISIONUX YPABHEHUN.
Haiiiensr nHBapraHTHI OIEPATOPOB U MOJIyYeHb MHBAPUAHTHBIE PENTeHNs] YPABHEHHIA.

Kurouesnie ciioBa: prHHOBOfI aHaJIUu3, YpaBHEHUA KNJIKOCTU, I/IH(bI/IHI/ITGSI/IMa.HbeIIjI orepaTop, nHBa-

PUAHT, THBapUAHTHOE perienue, sueiika Xene—Illoy.
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