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Abstract. Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper
vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable
if there is a list assignment L such that |L(v)| = k for every vertex v and the graph has exactly one
L-coloring with these lists. If a graph G is not uniquely k-list colorable, we also say that G has property
M(k). The least integer k such that G has the property M(k) is called the m-number of G, denoted by
m(G). In this paper, we characterize uniquely list colorability of the graph G = Kn

2 +Or. We shall prove
that m(K2

2 +Or) = 4 if and only if r > 9, m(K3
2 +Or) = 4 for every 1 6 r 6 5 and m(K4

2 +O1) = 4.
Keywords: vertex coloring (coloring), list coloring, uniquely list colorable graph, complete r-partite
graph.
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1. Introduction and preliminaries
All graphs considered in this paper are finite undirected graphs without loops or multiple

edges. If G is a graph, then V (G) and E(G) (or V and E in short) will denote its vertex-set
and its edge-set, respectively. The set of all neighbours of a subset S ⊆ V (G) is denoted by
NG(S) (or N(S) in short). The subgraph of G induced by W ⊆ V (G) is denoted by G[W ]. The
empty and complete graphs of order n are denoted by On and Kn, respectively. Unless otherwise
indicated, our graph-theoretic terminology will follow [2].

A graph G = (V,E) is called r-partite graph if V admits a partition indaguiActato r classes
V = V1 ∪ V2 ∪ . . . ∪ Vr such that the subgraphs of G induced by Vi, i = 1, . . . , r, is empty.
An r-partite graph in which every two vertices from different partition classes are adjacent is
called complete r-partite graph and is denoted by K|V1|,|V2|,...,|Vr| . The complete r-partite graph
K|V1|,|V2|,...,|Vr| with |V1| = |V2| = . . . = |Vr| = s is denoted by Kr

s .
Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union

G = G1 ∪ G2 has, as expected, V (G) = V1 ∪ V2 and E(G) = E1 ∪ E2. Their join defined is
denoted G1 +G2 and consists of G1 ∪G2 and all edges joining V1 with V2.

Let G = (V,E) be a graph and λ is a positive integer.
A λ-coloring of G is a mapping f : V (G) → {1, 2, . . . , λ} such that f(u) ̸= f(v) for any

adjacent vertices u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring is
called the chromatic number of G and is denoted by χ(G). We say that a graph G is n-chromatic
if n = χ(G).

Let (L(v))v∈V be a family of sets. We call a coloring f of G with f(v) ∈ L(v) for all v ∈ V is
a list coloring from the lists L(v). We will refer to such a coloring as an L-coloring. The graph
G is called λ-list-colorable, or λ-choosable, if for every family (L(v))v∈V with |L(v)| = λ for all
v, there is a coloring of G from the lists L(v). The smallest positive integer λ such that G has a
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λ-choosable is called the list-chromatic number, or choice number of G and is denoted by ch(G).
The idea of list colorings of graphs is due independently to V.G. Vizing [19] and to P.Erdös,
A. L. Rubin, and H. Taylor [7].

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list
of k colors L(v), such that there exists a unique L-coloring for G, then G is called a uniquely
k-list colorable graph or a UkLC graph for short. If a graph G is not uniquely k-list colorable, we
also say that G has property M(k). So G has the property M(k) if and only if for any collection
of lists assigned to its vertices, each of size k, either there is no list coloring for G or there exist
at least two list colorings. The least integer k such that G has the property M(k) is called
the m-number of G, denoted by m(G). The idea of uniquely colorable graph was introduced
independently by Dinitz and Martin [6] and by Mahmoodian and Mahdian [14].

For example, one can easily see that the graph K1,1,2 has the property M(3) and it is U2LC,
so m(K1,1,2) = 3.

The list coloring model can be used in the channel assignment. The fixed channel allocation
scheme leads to low channel utilization across the whole channel. It requires a more effective
channel assignment and management policy, which allows unused parts of channel to become
available temporarily for other usages so that the scarcity of the channel can be largely mitigated
[20]. It is a discrete optimization problem. A model for channel availability observed by the
secondary users is introduced in [20]. The research of list coloring consists of two parts: the
choosability and the unique list colorability. In [10], we characterized list-chromatic number of
the graph G = Kn

2 +Or. In [11] and [12], we characterized uniquely list colorability of the graph
G = Kn

2 +Kr. In [13], we characterized uniquely list colorability of complete tripartite graphs.
In this paper, we characterize uniquely list colorability of the graph G = Kn

2 + Or. We shall
prove that m(K2

2 + Or) = 4 if and only if r > 9, m(K3
2 + Or) = 4 for every 1 6 r 6 5 and

m(K4
2 +O1) = 4.

2. Preliminaries
We need the following Lemmas 1–20 to prove our results.

Lemma 1 ( [14]). Each UkLC graph is also a U(k − 1)LC graph.

Lemma 2 ( [14]). The graph G is UkLC if and only if k < m(G).

Lemma 3 ( [14]). A connected graph G has the property M(2) if and only if every block of G is
either a cycle, a complete graph, or a complete bipartite graph.

Lemma 4 ( [14]). For every graph G we have m(G) 6 |E(G)|+ 2.

Lemma 5 ( [14]). Every UkLC graph has at least 3k − 2 vertices.

If n = 1 then G = Kn
2 + Or is a complete bipartite graph, by Lemma 3, G has the property

M(2).

Lemma 6. With G = Kn
2 +Or, we have m(G) 6 r2 − r + 2n+ 4

2
.

Proof. It is clear that |E(G)| = r2 − r + 2n

2
. By Lemma 4,

m(G) 6 r2 − r + 2n+ 4

2
.

Lemma 7. If G = Kn
2 +Or is UkLC then k 6 2n+ 1.
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Proof Suppose that G is UkLC. Then there exists a list of k colors L(v), such that there
exists a unique L-coloring f for G. Let V (G) = V1 ∪ V2 ∪ . . . ∪ Vn+1 is a partition of V (G) such
that |V1| = |V2| = . . . = |Vn| = 2, |Vn+1| = r and for every i = 1, 2, . . . , n+ 1 the subgraphs of G
induced by Vi, is empty graph. Set Vn+1 = {v1, v2, . . . , vr}.

It is clear that |f(V1 ∪ V2 ∪ . . . ∪ Vn)| 6 2n and |L(v1) \ {f(v1)}| = k − 1. If k > 2n+ 1 then
|L(v1) \ {f(v1)}| > 2n. So there exists c ∈ L(v1) \ {f(v1)} such that c /∈ f(V1 ∪ V2 ∪ . . . ∪ Vn).
It follows that there exists a unique L-coloring f ′ for G: f(v) = f ′(v) if v ∈ V (G) \ {v1} and
f(v1) = c. It is not difficult to see that f ̸= f ′, a contradiction. Thus, k 6 2n+ 1. 2

Lemma 8. m(K2
2 +Or) = 3 for every 1 6 r 6 2.

Proof. By Lemma 3, G = K2
2 +Or is U2LC. Suppose that G is U3LC. By Lemma 5, |V (G)| > 7,

a contradiction. So m(G) = 3.

Lemma 9 ( [14]). m(K2
2 +O3) = 3.

Lemma 10 ( [23]). m(K2
2 +Or) = 3 for every 4 6 r 6 8.

Lemma 11. m(K2
2 +Or) = 3 for every 1 6 r 6 8.

Proof. It follows from Lemma 8, Lemma 9 and Lemma 10.

Lemma 12 ( [23]). G = K2
2 +O9 is U3LC.

The join of Or and Kn, Or +Kn = S(r, n), is called a complete split graph. It is clear that
S(1, n) is a complete graph for every n > 1, by Lemma 3, m(S(1, n)) = 2 for every n > 1.

Lemma 13. (i) m(S(1, n)) = 2 for every n > 1;
(ii) m(S(r, 1)) = 2 for every r > 1;
(iii) m(S(2, n)) = 3 for every n > 2.

Proof. (i) It is clear that S(1, n) is a complete graph for every n > 1, by Lemma 3, m(S(1, n)) = 2
for every n > 1.

(ii) It is clear that S(r, 1) is a complete bipartite graph for every r > 1, by Lemma 3,
m(S(r, 1)) = 2 for every r > 1.

(iii) By Lemma 3, G = S(2, n) is U2LC for every n > 2.
It is not difficult to see that |E(G)| = 1. By Lemma 4, m(S(2, n)) 6 3 for every n > 2.
Thus, m(S(2, n)) = 3 for every n > 2.

Lemma 14 ( [8]). m(S(3, n)) = 3 for every n > 2;

Lemma 15 ( [8]). For every r > 2, m(S(r, 3)) = 3.

Lemma 16 ( [9]). The graph S(4, 4) has the property M(3).

Lemma 17 ( [16]). The graph S(4, 5) has the property M(3).

Lemma 18. (i) G = S(4, n) has the property M(4) for every n > 2;
(ii) S(4, n) is U3LC for every n > 6;
(iii) m(S(4, n)) = 4 for every n > 6.

Proof. Let G = S(4, n) is a complete split graph with V (G) = I ∪ K, G[I] = O4 , G[K] = Kn,
n > 2. Set

I = {u1, u2, u3, u4}, K = {v1, v2, . . . , vn}.

(i) For suppose on the contrary that graph G = S(4, n) is U4LC. So there exists a list of 4
colors L(v) for each vertex v ∈ V (G), such that there exists a unique L-coloring f for G. We
consider separately four cases.
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Case 1: |f(I)| = 1.
In this case, let f(ui) = a for every i = 1, 2, 3, 4. Set graph H = G − I, it is not difficult to

see that H is a complete graph Kn. We assign the following lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).

It is clear that |L′(v)| = 3 for every v ∈ V (H). By Lemma 3, H has the property M(2), so H
has the property M(3). It follows that with lists L′(v), there exist at least two list colorings for
the vertices v of H. So it is not difficult to see that with lists L(v), there exist at least two list
colorings for the vertices v of G, a contradiction.

Case 2: |f(I)| = 2.
In this case, let f(I) = {a, b}. Set graph H = G − I, it is not difficult to see that H is a

complete graph Kn. We assign the following lists L′(v) for the vertices v of H:
(a) If a, b ∈ L(v) then L′(v) = L(v) \ {a, b}.
(b) If a ∈ L(v), b /∈ L(v) then L′(v) = L(v) \ {a, c}, where c ∈ L(v) and c ̸= f(v).
(c) If a /∈ L(v), b ∈ L(v) then L′(v) = L(v) \ {b, c}, where c ∈ L(v) and c ̸= f(v).
(d) If a, b /∈ L(v) then L′(v) = L(v) \ {c, d}, where c, d ∈ L(v), c ̸= d and c, d ̸= f(v).

It is clear that |L′(v)| = 2 for every v ∈ V (H). By Lemma 3, H has the property M(2). It
follows that with lists L′(v), there exist at least two list colorings for the vertices v of H. So it
is not difficult to see that with lists L(v), there exist at least two list colorings for the vertices v
of G, a contradiction.

Case 3: |f(I)| = 3.
In this case, let f(I) = {a, b, c}. Without loss of generality, we may assume that f(u1) =

f(u2) = a, f(u3) = b, f(u4) = c. Set graph G′ = (V ′, E′), with

V ′ = I ∪K, E′ = (E(G) ∪ {u1u3, u1u4, u2u3, u2u4}).

It is clear that G′ is complete split graph S(2, n+ 2) with V (G′) = I ′ ∪K ′, where

I ′ = {u1, u2}, K ′ = {u3, u4, v1, v2, . . . , vn}

By (iii) of Lemma 13, with lists L(v), there exist at least two list colorings for the vertices v
of G′. So it is not difficult to see that with lists L(v), there exist at least two list colorings for
the vertices v of G, a contradiction.

Case 4: |f(I)| = 4.
In this case, f(ui) ̸= f(uj) for every i, j ∈ {1, 2, 3, 4}, i ̸= j. Set graph G′′ = (V ′′, E′′), with

V ′′ = I ∪K, E′′ = E(G) ∪ {uiuj |i, j = 1, 2, 3, 4; i ̸= j}.

It is clear that G′′ is a complete graph Kn+4. By Lemma 3, G′′ has the property M(2), so with
lists Lv, there exist at least two list colorings for the vertices v of G′′. Since V (G) = V (G′′), it
is not difficult to see that with lists Lv, there exist at least two list colorings for the vertices v of
G, a contradiction.

(ii) We assign the following lists for the vertices of G:
L(u1) = {1, 3, 4}, L(u2) = {1, 7, 8}, L(u3) = {2, 5, 6}, L(u4) = {2, 7, 8};
L(v1) = {1, 2, 3}, L(v2) = {1, 2, 4}, L(v3) = {1, 2, 5}, L(v4) = {1, 2, 6}, L(v5) = {1, 2, 7},

L(v6) = L(v7) = . . . = L(vn) = {1, 2, 8}.
A unique coloring f of G exists from the assigned lists:

f(u1) = 1, f(u2) = 1, f(u3) = 2, f(u4) = 2;
f(v1) = 3, f(v2) = 4, f(v3) = 5, f(v4) = 6, f(v5) = 7, f(v6) = f(v7) = . . . = f(vn) = 8.
(iii) It follows from (i) and (ii).

Lemma 19 ( [21]). (i) For every n > 2, S(5, n) has the property M(4);
(ii) If n > 5 then m(S(5, n)) = 4.
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Lemma 20. m(S(r, n)) 6 4 for every 1 6 r 6 5 and n > 6.

Proof It follows from Lemma 13 to Lemma 19. 2

3. On property M(4) of the graph Kn
2 +Om

Set the graph G = Kn
2 + Or. Let V (G) = V1 ∪ V2 ∪ . . . ∪ Vn+1 is a partition of V (G)

such that |V1| = |V2| = . . . = |Vn| = 2, |Vn+1| = r and for every i = 1, 2, . . . , n + 1 the
subgraphs of G induced by Vi, is empty graph. Set Vi = {ui1, ui2} for every i = 1, 2, . . . , n and
Vn+1 = {v1, v2, . . . , vr}.

Theorem 21. m(Kn
2 +Or) 6 m(Kn−1

2 +Or) + 2 for every r > 1, n > 2.

Proof. Put m(Kn−1
2 + Or) = t. For suppose on the contrary that graph G = Kn

2 + Or satisfies
m(G) = k > t+2. So there exists a list of k− 1 colors L(v) for each vertex v ∈ V (G), such that
there exists a unique L-coloring f for G. Set graph H = G− V1, it is not difficult to see that H
is a graph Kn−1

2 +Or. We consider separately two cases.
Case 1: |f(V1)| = 1.
In this case, f(u11) = f(u12) = a. We assign the following lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).

It is clear that |L′(v)| = k − 2 > t + 1 for every v ∈ V (H). Since H has the property M(t), by
Lemma 1, H has the property M(t+ 1), so H has the property M(k − 2). It follows that with
lists L′(v), there exist at least two list colorings for the vertices v of H. So it is not difficult to see
that with lists L(v), there exist at least two list colorings for the vertices v of G, a contradiction.

Case 2: |f(V1)| = 2.
In this case, f(u11) = a, f(u12) = b, a ̸= b. We assign the following lists L′(v) for the vertices

v of H:
(a) If a, b ∈ L(v) then L′(v) = L(v) \ {a, b}.
(b) If a ∈ L(v), b /∈ L(v) then L′(v) = L(v) \ {a, c}, where c ∈ L(v) and c ̸= f(v).
(c) If a /∈ L(v), b ∈ L(v) then L′(v) = L(v) \ {b, c}, where c ∈ L(v) and c ̸= f(v),
(d) If a, b /∈ L(v) then L′(v) = L(v) \ {c, d}, where c, d ∈ L(v), c ̸= d and c, d ̸= f(v).
It is clear that |L′(v)| = k − 3 > t for every v ∈ V (H). Since H has the property M(t), by

Lemma 1, H has the property M(k− 3). It follows that with lists L′(v), there exist at least two
list colorings for the vertices v of H. So it is not difficult to see that with lists L(v), there exist
at least two list colorings for the vertices v of G, a contradiction.

Thus, m(Kn
2 +Or) 6 m(Kn−1

2 +Or) + 2 for every r > 1, n > 2.

Corollary 22. The graph G = K2
2 +Or has the property M(4) for every r > 1.

Proof. It is clear that K1
2 + Or is a complete bipartite graph K2,r. By Lemma 3, K1

2 + Or has
the property M(2). By Theorem 13, G = K2

2 +Or has the property M(4) for every r > 1.

Theorem 23. (i) G = K2
2 +Or is U3LC if and only if r > 9;

(ii) m(K2
2 +Or) = 4 if and only if r > 9.

Proof. (i) Firrst we prove the necessity. Suppose that G = K2
2 +Or is U3LC. If 1 6 r 6 8 then

by Lemma 11, m(G) = 3, a contradiction. Therefore, r > 9.
Now we prove the sufficiency. We assign the following lists for the vertices of G: L(u11) =

{1, 2, 6}, L(u12) = {3, 4, 5}; L(u21) = {1, 3, 6}, L(u22) = {2, 4, 6};
L(v1) = {1, 4, 5}, L(v2) = {1, 3, 6}, L(v3) = {1, 4, 6}, L(v4) = {1, 5, 6}, L(v5) = {2, 3, 4},

L(v6) = {2, 3, 5}, L(v7) = {2, 3, 6}, L(v8) = {2, 4, 6}, L(v9) = L(v10) = . . . = L(vr) = {2, 5, 6}.
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A unique coloring f of G exists from the assigned lists: f(u11) = 6, f(u12) = 5; f(u21) = 3,
f(u22) = 4;

f(v1) = f(v2) = f(v3) = f(v4) = 1, f(v5) = f(v6) = . . . = f(vr) = 2.
(ii) It follows from (i) and Corollary 22.

Theorem 24. (i) G = K3
2 +Or is U3LC for every r > 1;

(ii) m(K3
2 +Or) = 4 for every 1 6 r 6 5.

Proof. (i) We assign the following lists for the vertices of G: L(u11) = {1, 4, 5}, L(u12) = {2, 4, 5},
L(u21) = {1, 2, 3}, L(u22) = {3, 4, 5}, L(u31) = {1, 2, 4}, L(u32) = {3, 4, 5}, L(v1) = L(v2) =
. . . = L(vr) = {3, 4, 5}.

A unique coloring f of G exists from the assigned lists: f(u11) = 1, f(u12) = 2, f(u21) = 3,
f(u22) = 3, f(u31) = 4, f(u32) = 4, f(v1) = f(v2) = . . . = f(vr) = 5.

(ii) By (i), m(K3
2 +Or) > 4 for every r > 1. For suppose on the contrary that m(K3

2 +Or) =
t > 5 for every 1 6 r 6 5. Then for each vertex v in G = K3

2 + Or, there exists a list of t − 1
colors L(v), such that there exists a unique L-coloring for G. We consider separately two cases.

Case 1: There exists i ∈ {1, 2, 3} such that |f(Vi)| = 1.
Without loss of generality, we may assume that |f(V1)| = 1 and f(u11) = f(u12) = a. Set

graph H = G − V1, it is not difficult to see that H is graph K2
2 + Or. We assign the following

lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).
It is clear that |L′(v)| = t − 2 > 3 for every v ∈ V (H). Since 1 6 r 6 5, by Lemma 11,

m(H) = 3. It follows that with lists L′(v), there exist at least two list colorings for the vertices
v of H. So it is not difficult to see that with lists L(v), there exist at least two list colorings for
the vertices v of G, a contradiction.

Case 2: |f(Vi)| = 2 for every i ∈ {1, 2, 3}.
Set graph G′ = (V ′, E′), with

V ′ = V (G), E′ = (E(G) ∪ {u11u12, u21u22, u31u32}).

It is clear that G′ is complete split graph S(m, 6) with V (G′) = I ′ ∪K ′, where

I ′ = {v1, v2, . . . , vr}, K ′ = {u11, u12, u21, u22, u31, u32}.

By Lemma 20, m(G′) 6 4. So with lists L(v), there exist at least two list colorings for the
vertices v of G′. So it is not difficult to see that with lists L(v), there exist at least two list
colorings for the vertices v of G, a contradiction.

Theorem 25. (i) If n > 4 and r > 1 then G = Kn
2 +Or is UkLC with k =

⌊n
2

⌋
+ 1;

(ii) m(K4
2 +O1) = 4.

Proof. (i) Put t =
⌊n
2

⌋
. We assign the following lists for the vertices of G:

L(ui1) = {1, 2, . . . , t+ 1} for every i = 1, 2, . . . , t+ 1;
L(ui2) = {t+ 2, t+ 3, . . . , 2t+ 1, i} for every i = 1, 2, . . . , t+ 1;
L(u(t+i)j) = {2, 3, . . . , t+ 1, t+ 1 + i} for every i = 1, 2, . . . , n− t, j = 1, 2;
L(v1) = L(v2) = . . . = L(vr) = {2, 3, . . . , t+ 1, n+ 2}.

A unique coloring f of G exists from the assigned lists:
f(ui1) = i for every i = 1, 2, . . . , t+ 1;
f(ui2) = i for every i = 1, 2, . . . , t+ 1;
f(u(t+i)j) = t+ 1 + i for every i = 1, 2, . . . , n− t, j = 1, 2;
f(v1) = f(v2) = . . . = f(vr) = n+ 2.
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(ii) By (i), G is U3LC. If G is U4LC then by Lemma 5, |V (G)| > 10, a contradiction. So
m(G) = 4.
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О свойстве M(4) графа Kn
2 +Om

Ли Хуан Ханг
Ханойский университет природных ресурсов и окружающей среды

Ханой, Вьетнам

Аннотация. Учитывая список L(v) для каждой вершины v, мы говорим, что граф G является
L-раскрашиваемым, если существует правильная раскраска вершин графа G, при которой каждая
вершина v принимает свой цвет из L(v). Граф однозначно раскрашивается в k-список, если суще-
ствует такое задание списка L, что |L(v)| = k для каждой вершины v и граф имеет ровно одну
L-раскраску этими списками. Если граф G не является однозначно раскрашиваемым в k-списке,
мы также говорим, что G обладает свойством M(k). Наименьшее целое число k такое, что G обла-
дает свойством M(k), называется m-числом G и обозначается m(G). В этой статье мы однозначно
характеризуем список раскрашиваемости графа G = Kn

2 + Or. Мы докажем, что m(K2
2 + Or) = 4

тогда и только тогда, когда r > 9, m(K3
2 +Or) = 4 для каждого 1 6 r 6 5 и m(K4

2 +O1) = 4.

Ключевые слова: раскраска вершин (раскраска), раскраска списков, граф, однозначно раскра-
шиваемый списком, полный r-раздельный граф.
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