
Journal of Siberian Federal University. Mathematics & Physics 2024, 17(4), 478–487

EDN: FNJLHS
УДК 544.45, 536.2, 519.62

Influence of Boundary Conditions on the Critical
Parameters of Reactive Flow Ignition in a Channel
with Heat Recuperation

Igor G. Donskoy∗

Melentiev Energy Systems Institute
Irkutsk, Russian Federation

Received 17.02.2024, received in revised form 05.04.2024, accepted 06.05.2024

Abstract. A one-dimensional problem of reacting flow thermal stability in a U-shaped channel is
studied. A finite difference scheme is proposed for this problem. Borders of domain of existence of a
bounded solution are estimated. Calculations are carried out for two variants of the inlet boundary
condition. Relationship between critical parameter and other parameters is obtained.
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Thermal explosion problems are problems with critical parameters for which the solution ex-
ists only under restrictions on values of these parameter. Frank–Kamenetsky considered classical
thermal explosion problems related to the stability of reacting media [1]. The thermal stabil-
ity of reacting flows which is directly related to problems of chemical and energy engineering
were studied [2, 3]. The influence of forced and free convection was considered [4–9]. Thermal
explosion equations contain source terms responsible for heat release (often, this is an exother-
mic chemical reaction, Joule heat, or viscous dissipation [10–15]) and terms responsible for heat
transfer (thermal conductivity, convection). As a rule, these are local relations. Non-local trans-
port mechanisms appear, for example, in media with radiative heat transfer [16–18] or in media
of complex structure [19–21]. In this work, thermal explosion equation with non-local term is
studied. It naturally appears when considering recuperative heat exchange surface in a U-shaped
channel. Combustion in such channels was previously considered in many works (for example,
see [22–25]).

1. Thermal explosion equation for a U-shaped channel
The classical thermal explosion problem for plane symmetry with conductive heat transfer

may be written as follows [1]
d2θ

dx2
(ξ) + Fk exp [θ (ξ)] = 0. (1)

Here θ is temperature, ξ is spatial coordinate, and Fk is Frank–Kamenetsky number (critical
parameter of the problem). Frank–Kamenetsky number is defined as the ratio between heat

source intensity and conductive heat transfer rate: Fk =
EaL

2Qw (T0)

λRgT 2
0

(here Ea is chemical

reaction activation energy, L is a reactor size, Q is a reaction heat, T0 is ambient temperature,
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w (T0) is reaction rate at ambient conditions, λ is thermal conductivity, Rg is the universal gas
constant).

Boundary conditions are as follows

dθ

dξ
(0) = 0; θ (1) = 0. (2)

The critical value of Fk is about 0.88. Equation (1) does not have a solution at higher Fk
because reacting medium becomes unstable reaching high-temperature conditions when equation
(1) is not applicable. In the presence of convective heat transfer (for example, in the presence of
reacting mixture flow in a channel), the equation can be written in the form

−Pe
dθ

dξ
(ξ) +

d2θ

dx2
(ξ) + Fk exp [θ (ξ)] = 0. (3)

Here Pe is the Peclet number, Pe =
cρuL

λ
. Here c is heat capacity, ρ is fluid density, u is

mean velocity, L is a channel length. It was shown that as Pe increases the critical value of
Fk also increases reaching limit Fkcr −→ Pe [26]. Equation (2) is correct for small heat losses.
Otherwise, it should be modified as follows

−Pe
dθ

dξ
(ξ) +

d2θ

dx2
(ξ) + Fk exp [θ (ξ)]−Bienvθ (ξ) = 0. (4)

Here Bi is the Biot number, Bi =
αL

λ
(α is heat transfer coefficient). Generally, the Biot

number depends on the Peclet number but in this paper they are considered as independent
parameters. Equation (4) describes the stationary heat transfer in one-dimensional linear channel
(Fig. 1a). As the numbers Pe and Bi increase the critical value of Fk also increases [27]. The non-
stationary behaviour of reacting flow was considered in [28]. In the present work, the primarily
interest is in ignition conditions (how Fkcr depends on conditions) rather than its dynamic
features.

Fig. 1. Schemes of a linear channel (a) and a U-shaped channel (b). Corresponding finite
difference grids are shown below plots

Let us consider a U-shaped one-dimensional channel. It is a simple model of a recuperative
burner (Fig. 1b). The inner surface of such channel allows heat exchange between sections. The
reaction products heat the fresh mixture which enlarges the stable combustion ranges compared
with linear channels [22–25]. It is possible to represent a U-shaped channel in the form of a
one-dimensional graph [29] as shown in Fig. 1b. Additional connections appear between the two
halves of the channel (dashed lines). The thermal explosion equation can be written as follows

−Pe
dθ

dξ
(ξ) +

d2θ

dx2
(ξ) + Fk exp [θ (ξ)]−Bi [θ (ξ)− θ (1− ξ)] = 0. (5)
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Equation (5) contains the term responsible for heat loss which is non-local, i.e., it depends
on temperature at two points. With additional bending of the channel temperature dependence
may become more complex.

The problem with two counterflow channels is not quite equivalent to equation (4) since
equation (5) is continuous at the inflexion point while in the problem with two channels the
choice of suitable boundary conditions is required [22, 23]. The critical condition for equation
(5) corresponds only to the upper limit of thermal stability. Therefore it does not reflect the
range of high-temperature stationary states. Our estimates have rather limited applicability. A
regime map for a similar problem with two counterflow channels was presented [22, 23], where
one can find several possible types of behaviour. In this paper, only the stability limit of low-
temperature steady states is considered, i.e., conditions of self-ignition of reacting flow are found.
***********************************************************************

2. Finite difference scheme
Equation (5) can be approximated with the following finite difference scheme

(1 + hPe) θi−1 −
(
2 + hPe+ h2Bi

)
θi + θi+1 + h2BiθN+1−i = −h2Fk exp

(
θ̃i

)
. (6)

The difference system produces system of linear equations if the right hand side is linearised
or fixed. It can be solved using standard solvers.

Assuming Bi = 0 and expanding the exponential function in equation (5), one can obtain
truncated linear differential equation that can be solved analytically to test difference scheme
(6). Results of numerical solution are presented in Fig. 2. Numerical error ε is defined as the
integral of absolute difference between numerical solution and exact solution, and N is a number
of grid nodes. Upper graphs correspond to the equation with constant and uniform heat source:

−Pe
dθ

dξ
(ξ) +

d2θ

dx2
(ξ) + Fk = 0. (7)

Lower graphs were obtained for the linear heating source:

−Pe
dθ

dξ
(ξ) +

d2θ

dx2
(ξ) + Fk (1 + θ) = 0. (8)

The difference scheme is stable and approximates the original differential equation with the
first order of accuracy (this is due to the convective term). Calculations show that when Peclet
number is less then 100 upwind scheme does not suffer from numerical diffusion. High Peclet
numbers were not considered due to requirements of laminar flow.

Stability of the difference scheme (6) is supported by fixing the right hand side (heat source).
After each iteration temperature distribution is updated, and the problem is solved for updated
fixed heat source. The space step h = 0.002 was used in the calculations. The critical value of
the Fk number can be found by the bisection method as described in [30].

3. Results and discussion
It is natural to expect that when Pe = 0 and Bi = 0 the critical number Fk will be equal to

0.88. For Bi = 0 the relationship between Fkcr and Pe was obtained in [26, 27]. Fig. 3 shows
the relationship between critical value Fk and numbers Pe, Bi. As Pe increases at a constant
Bi the critical value of Fk increases over almost the entire calculated region. However, in the
range of Pe numbers close to 4 the relationship between Fkcr and Bi changes. At lower Pe,
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Fig. 2. Relationship between numerical error and number of grid nodes for linearised equations:
(a) constant heating source; (b) linear heating source. Numbers on the right are orders of
accuracy

an increase in Bi leads to an increase in Fkcr and vice versa at higher Pe. It means that heat
transfer intensification between the channel parts narrows the region of stable ignition for low
flow rates.

Fig. 4 shows the effect of Bi in more detail. As Bi increases the values of Fkcr and the
maximum temperature converge to the same limit. Interestingly, for large Bi numbers the
maximum temperature is reached not at the reactor outlet but in its middle, at the channel
inflexion point. Fig. 5 shows the temperature profiles at the stability border. The temperature
profile does not depend on Pe in the limit of large Bi. This phenomenon can be explained as
follows. With high intensity of heat transfer through the inner wall of the channel the temperature
distribution becomes more and more symmetrical. In this case, the critical value Fkcr is equal to
the critical value in the half-channel. The dimensional analysis gives the value of 0.88×22 = 3.52
which is close to calculated values. The maximum admissible temperature in this setting is 1.2
which is also observed from calculations.

The boundary conditions for problem (5) in form (2) are not quite correct. The inlet Dirichlet
boundary condition choice leads to the situation when the main heat loss at low Pe is due to heat
transfer through the inlet boundary (which corresponds to the transition region in Fig. 2). It
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Fig. 3. Relationship between critical value of Fk (isolines) and parameters Bi, Pe under Dirichlet
inlet boundary condition

Fig. 4. Relationship between Fkcr, θmax and Bi under Dirichlet inlet boundary condition

means that condition (2) corresponds to the case when reactive mixture enters into the channel
from a temperature-controlled reservoir. It may not quite accurately reflect the physical picture
of the problem. If the reactor does not have such a control then heat flow through the left
boundary may lead to a dangerous situation when preheated fresh mixture reacts before entering
the channel. In this case a more reasonable choice is thermally isolated flow-permeable left
boundary that is described by the Danckwerts boundary condition [31]

dθ

dξ
(0) = −Peθ (0) . (9)

Fig. 6 shows the relationship between critical value Fk and Pe, Bi under boundary condition
(9). This relationship is monotonic in both variables. However, for small Pe the heat loss through
the inlet boundary is low so the reaction mixture ignites already at small Fk. It means that for
low Pe heat recuperation occurs due to the thermal conductivity of the reaction mixture itself.
In this case, the temperature near the inlet becomes close to critical. This may cause a flashback
of the flame into the reservoir. Another reason for the low Fkcr values is the neglect of heat
losses through the outer channel walls.

Fig. 7 shows temperature profiles at the thermal stability border. As in the previous case,
profiles tend to have a symmetric parabolic shape in the large Bi limit but the number Pe
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Fig. 5. Temperature profiles in U-shaped channel under Dirichlet inlet boundary condition

Fig. 6. Relationship between critical value of Fk (isolines) and parameters Bi, Pe under Danck-
werts inlet boundary condition

included in the boundary condition determines the reaction mixture temperature at the inlet.
As Pe increases the difference between solutions corresponding to boundary conditions (2) and (9)
decreases. In general, as Bi increases the critical number Fk decreases (Fig. 8), i.e., the ignition
region is expanding. Heat recuperation makes it possible to achieve the ignition of mixtures with
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a lower calorific value (although the notable effect requires heat transfer intensification by orders
of magnitude).

Fig. 7. Temperature profiles in U-shaped channel under Danckwerts inlet boundary condition

Fig. 8. Relationship between Fkcr, θmax and Bi under Danckwerts inlet boundary condition

It should be noted once again that applicability of the results is limited by the self-ignition
phenomenon. Free variation of parameters Pe and Bi is also an approximation. In the general
case, the number Bi is found from the solution of the conjugate heat transfer problem [32]. In
addition, the thermophysical properties of the reacting mixture are assumed to be constant while
in practice this is not the case. For example, during the combustion of gases the density is very
sensitive to temperature. Since velocity is determined from the continuity equation then the
velocity depends on the chemical reaction rate (such relationship may be one of the reasons for
fluctuations in the combustion front). Finally, the model does not take into account the heat
losses of the outer channel walls. Their presence will significantly change the regime map.
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Conclusion
In this work, the behaviour of the temperature distribution in a channel with a counterflow

heat transfer is numerically studied which makes it possible to recuperate the heat released during
an exothermic reaction. The relationship between critical parameter Fk and the flow rate (Pe)
and the heat transfer coefficient (Bi) is calculated. It is shown that when the Dirichlet inlet
boundary condition is used non-physical solutions appear. This corresponds to conductive heat
loss through the boundary. These solutions vanish when the Danckwerts boundary condition is
used. The obtained results can be useful to study the limits of self-ignition in reactors with heat
recuperation.

The research was carried out under State Assignment Project (no. FWEU-2021-0005) of
the Fundamental Research Program of Russian Federation 2021-2030 using the resources of the
High-Temperature Circuit Multi-Access Research Center.

References
[1] D.A.Frank-Kamenestskii, Diffusion and heat transfer in chemical kinetics, Princeton Univ.

Press, 2015.

[2] L.A.Vulis, Thermal regime of combustion, Moscow, Gosenergoizdat, 1954.

[3] Ya.B.Zeldovich, G.I Barenblatt, V.B.Librovich, G.M.Makhviladze, Mathematical theory of
combustion and explosion, Moscow, Nauka, 1980.

[4] A.G.Merzhanov, E.A.Shtessel’, Thermal explosion under natural convection, Dokl. Akad.
Nauk SSSR, 194(1970), 136–139 (in Russian).

[5] D.R.Jones, The dynamic stability of confined, exothermically reacting fluids, Int. J. Heat
Mass Transfer, 16(1973), 157–167.

[6] V.Balakotaiah, P.Pourtalet, Natural convection effects on thermal ignition in a porous
medium. II. Lumped thermal model-I, Proc. Roy. Soc. A., 429(1990), 555–567.

[7] B.V.Novozhilov, N.G.Samoilenko, G.B.Manelis, Thermal explosion in agitated medium,
Dokl. Akad. Nauk, 385(2002), 217–219 (in Russian).

[8] T.P.Ivleva, A.G.Merzhanov, E.N.Rumanov, N.I.Vaganova, A.N.Campbell, A.N.Hayhurst,
When do chemical reactions promote mixing?, Chem. Eng. J., 168(2011), 1–14.
DOI: 10.1016/j.cej.2011.01.002

[9] J.Melguizo-Gavilanes, P.A.Boettcher, R.Mevel, J.E.Shepherd, Numerical study of the tran-
sition between slow reaction and ignition in a cylindrical vessel, Combust. Flame, 204(2019),
116–136. DOI: 10.1016/j.combustflame.2018.12.036

[10] M.J.Frankel, Thermal explosion theory in an external field, J. Appl. Phys, 50(1979), 4412.

[11] D.D.Joseph, Non-linear heat generation and stability of the temperature distribution in
conducting solids, Int. J. Heat Mass Transfer, 8(1965), 281–288.

[12] S.A.Bostandzhiyan, A.G.Merzhanov, S.I Khudyaev, On hydrodynamic thermal explostion,
Dokl. Akad. Nauk SSSR, 163(1965), 133–136 (in Russian).

[13] S.A.Bostandzhiyan, I.S.Gordopolova, V.A.Shcherbakov, Modeling of an electrothermal ex-
plosion in gasless systems placed into an electroconducting medium, Combust. Explos. Shock
Waves, 49(2013), 668–675. DOI: 10.1134/S0010508213060051

– 485 –



Igor G.Donskoy Influence of Boundary Conditions on the Critical . . .

[14] I.G.Dik, Critical conditions for thermal explosion of a viscous fluid flowing in a channel of
finite length, Combust. Explos. Shock Waves, 12(1976), 70–77.

[15] S.O.Ajadi, The influence of viscous heating and wall thermal conditions on the thermal
ignition of a Poiseuille/Couette reactive flow, Russ. J. Phys. Chem. B, 4(2010), 652–659.
DOI: 10.1134/S1990793110040172

[16] R.Blouquin, G.Joulin, On a Variational Principle for Reaction/Radiation/Conduction Equi-
libria, Combust. Sci. Tech., 112(1996), 375–385.

[17] S.Sazhin, E.Shchepakina, V.Sobolev, Parameterisations of slow invariant manifolds: appli-
cation to a spray ignition and combustion model, J. Eng. Math. 114(2019), 1–17.
DOI: 10.1007/s10665-018-9976-4

[18] V.S.Zarubin, G.N.Kuvyrkin, I.Yu.Savelyeva, A.V.Zhuravskii, Conditions of thermal explo-
sion on a plate under convecive-radiative heat transfer, Bull. Moscow St. Tech. Univ. Ser.
Nat. Sci. 6(2020), 48–59 (in Russian). DOI: 10.18698/1812-3368-2020-6-48-59

[19] P. Bader, On a quasilinear elliptic boundary value problem of nonlocal type with an appli-
cation in combustion theory, Z. angew. Math. Phys. 35(1984), 771–779.

[20] V.A.Kudinov, A.V.Eremin, I.V.Kudinov, V.V.Zhukov, Strongly Nonequilibrium Model of
Thermal Ignition with Account for Space-Time Nonlocality, Combust. Explos. Shock Waves,
54(2018), 649–653. DOI: 10.1134/S0010508218060035

[21] Q.Xu, Y.Xu, Extremely low order time-fractional differential equation and application in
combustion process, Comm. Nonlinear Sci. Num. Sim., 64(2018), 135–148.
DOI: 10.1016/j.cnsns.2018.04.021

[22] R.V.Fursenko, S.S.Minaev, V.S.Babkin, Thermal Interaction of Two Flame Fronts Propa-
gating in Channels with Opposing Gas Flows, Combust. Explos. Shock Waves, 37(2001),
493–500. DOI: 10.1023/A:1012325216665

[23] R.V.Fursenko, S.S.Minaev, Flame stability in a system with counterflow heat exchange,
Combust. Explos. Shock Waves, 41(2005), 133–139. DOI: 10.1007/s10573-005-0015-1

[24] V.N.Kurdyumov M.Matalon, Analysis of an idealized heat-recirculating microcombustor,
Proc. Combust. Inst., 33(2011), 3275–3284. DOI: 10.1016/j.proci.2010.07.041

[25] V.N.Kurdyumov, D.Fernandez-Galisteo, C. Jimenez, Superadiabatic small-scale combustor
with counter-flow heat exchange: Flame structure and limits to narrow-channel approxima-
tion, Combust. Flame, 222(2020), 233–241. DOI: 10.1016/j.combustflame.2020.08.050

[26] I.G.Dik, A.V.Tolstykh, Ignition of a porous layer with a flow of heat carrier, Combust.
Explos. Shock Waves, 30(1994), 135–139.

[27] I.G.Donskoi, Variational problems for combustion theory equations, J. Appl. Mech. Tech.
Phys., 63(2022), 773–781. DOI: 10.1134/S0021894422050054

[28] E.I.Maksimov, Combustion process in reactors, Combust. Explos. Shock Waves, 14(1978),
612-618.

[29] I.V.Fryazinov, An algorithm for the solution of difference problems by graphs, USSR Com-
put. Math. Math. Phys., 10(1970), 268–273.

– 486 –



Igor G.Donskoy Influence of Boundary Conditions on the Critical . . .

[30] I.G.Donskoy, Steady-state equation of thermal explosion in a distributed activation energy
medium: numerical solution and approximations, iPolytech J., 26(2022), 626–639.
DOI: 10.21285/1814-3520-2022-4-626-639

[31] H.V.Mott, Z.A.Green, On Danckwerts’ Boundary Conditions for the Plug-Flow with Dis-
persion/Reaction Model, Chem. Eng. Comm., 202(2015), 739–745.
DOI: 10.1080/00986445.2013.871708

[32] A.E.Quintero, M.Vera, Laminar counterflow parallel-plate heat exchangers: An exact so-
lution including axial and transverse wall conduction effects, Int. J. Heat Mass Transfer,
104(2017), 1229–1245. DOI: 10.1016/j.ijheatmasstransfer.2016.09.025

Влияние граничных условий на критические параметры
зажигания в реагирующем потоке в канале
с рекуперацией теплоты

Игорь Г.Донской
Институт систем энергии

Иркутск, Российская Федерация

Аннотация. Исследована одномерная задача тепловой устойчивости реагирующего потока в U-
образном канале. Для этого предложена разностная схема решения нелокального уравнения кон-
вективного теплопереноса. Оценены границы области существования ограниченного решения. Про-
ведены расчеты для двух вариантов входного граничного условия. Получены зависимости значения
критического параметра от расхода и интенсивности теплоотдачи.

Ключевые слова: дифференциальные уравнения, тепловой взрыв, численное решение, рекупе-
ративный теплообмен.
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