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Abstract. The Fréedericksz effect consisting in the reorientation of liquid crystal molecules in an
extended layer under the action of inhomogeneous electric field is simulated in the paper. The constitutive
equations for tangential stress, angular velocity, and electric potential are obtained from the equations
of a simplified dynamic model of a 5CB nematic liquid crystal in the acoustic approximation. The
algorithm for numerical solution of the constitutive equations is constructed on the basis of finite-
difference schemes. The algorithm is implemented with the use of CUDA technology for computers with
graphics accelerators.
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Introduction

Liquid crystals (LCs) have in a certain temperature range both fluidity (the property of liq-
uids) and anisotropy (the property of solid crystals). There is an order in the spatial orientation
of liquid crystal molecules which significantly affects their properties. To characterize the order a
unit vector “director” is introduced. It specifies the preferred direction of the molecules. Depend-
ing on the order of orientation of molecules there are three classes of LCs: nematic (molecules
are oriented in the direction of the vector-director and located randomly), smectic (molecules
form layers, and each layer has its own orientation of molecules) and cholesteric (molecules are
form into layers, creating a spiral). Liquid crystals are sensitive to external influences which
make it possible to control their properties by changing their spatial orientation. That is why
the liquid crystal state of matter is of scientific interest to researchers. Liquid crystals are widely
used in creating displays of various digital devices. Due to anisotropy of the permittivity weak
electric field causes the liquid crystal molecules to rotate, and it results in the change of optical
properties. The reorientation of liquid crystal molecules under the action of electric field was
first observed and studied by Fréedericksz and his colleagues [1]. The orientation was changed
when strong enough field was applied to the liquid crystal. This effect was called the Fréedericksz
transition, and it has a threshold character. Theoretically, it was studied using the elastic free
energy of Frank and the energy of interaction with electric field. The Oseen–Frank model [2,
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3] describes the static state of liquid crystals. According to the theory, the field causes such
deformation of the liquid crystal that distribution of molecules corresponds to minimum of the
free energy which is equal to the sum of elastic and dielectric components. The elastic energy is a
quadratic form in terms of derivatives of the vector-director with respect to spatial coordinates.
However, this model cannot be generalized for the analysis of dynamic processes. It does not take
into account translational motion because only rotational motion is considered. By now univer-
sal dynamic model has been developed by Eriksen [4] and Leslie [5]. It is based on conservation
laws and takes into account translational and rotational degrees of freedom of molecules. This
theory describes the flow of nematic liquid crystal from the hydrodynamic point of view, and it
is reduced to the Oseen–Frank theory in the static case. The need to create new dynamic models
of liquid crystal is dictated by the complexity of the existing universal Eriksen–Leslie model that
requires construction of state functions using specific experiments. A simplified dynamic model
in the acoustic approximation was proposed [6]. It includes equations of acoustics and heat con-
duction. These equations are based on conservation laws and the Cosserat continuum model, and
they include small independent rotations of particles in addition to translational motion. The
model describes he dynamic behaviour of nematic liquid crystals under the action of mechanical,
thermal and electrical external factors.

Analysis of an unstable state in statics was carried out in [7], where the governing equations of
the model are non-linear variational Euler equations for the electric potential and the orientation
angle of molecules in the problem of minimizing the potential energy functional.

This work is devoted to modelling the reorientation of molecules in an extended liquid crystal
layer located in the electric field of a capacitor with short plates arranged periodically. The
governing equations are obtained from the simplified dynamic model of the liquid crystal in
the acoustic approximation. The developed parallel numerical algorithm is based on an explicit
difference scheme of the second order of approximation. The accuracy of numerical solution
can be improved by choosing a finer grid due to the distribution of computational load. The
computational algorithm is implemented as a software package written in C++ by means of
CUDA technology using video card graphics accelerators.

1. Formulation of the problem

The governing partial differential equations for the angular velocity ω and tangential stress
q are obtained by differentiating the equations of the simplified dynamic model of the nematic
liquid crystal:
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Here ρ is the density, j is the moment of inertia, η is the viscosity coefficient, α is the modu-
lus of elastic resistance to rotation, γ is the modulus of elastic resistance to curvature change.
Equations (1) describe moment interactions of liquid crystal molecules under the action of in-
homogeneous electric field in a two-dimensional formulation. This model of the effect of the
Fréedericksz reorientation have a fewer number of equations in comparison with the general
model. The initial data for q and ω are
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where q0, ω0 are the values of the required quantities at the initial moment of time. The initial
linear velocities and moment stresses are assumed to be equal to zero. The boundary conditions
are formulated in terms of q and ω. The symmetry conditions for stress state of the liquid crystal
are given in terms of derivatives qx1 , ωx1 or qx2 , ωx2 (depending on the symmetry line).

During the action of electric field bulk forces f = (P ·∇)E and moment of forces m = P ×E

arise. Here E = −∇φ is the electric field vector, P = ε0 χE is the electric polarization vector,
χ = ε− I is the dielectric susceptibility tensor, and ε is the dielectric susceptibility tensor. In a
2D formulation of the problem bulk forces and moment of forces are defined as follows
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The permittivity along moleculesε∥ and permittivity across molecules ε⊥ are different. Compo-
nents of ε tensor depend on rotation angle of molecules θ:

ε11 = ε∥ cos
2 θ + ε⊥ sin2 θ, ε22 = ε∥ sin

2 θ + ε⊥ cos2 θ, ε12 = ε21 =
(
ε∥ − ε⊥

)
cos θ sin θ,

Relations for calculating components of the permittivity tensor contain rotation angle that
changes each time step when solving dynamic problem. Thus, it is necessary to add an equation
for the rotation angle to system of equations (1):

∂θ

∂t
= ω. (3)

Bulk forces and moment of forces (2) are taken into account in the right parts of governing
equations (1). In turn, a change in the spatial orientation of molecular domains due to the action
of forces and moment of forces leads to a change in the permittivity tensor. Then, electric field
is changed.

The perturbation by the electric field occurs as follows. A horizontally infinite flat liquid
crystal layer located between short capacitor plates is considered. Potential difference is set
between upper and bottom plates: φ+ = φ0, φ− = −φ0. Conditions for the continuity of the
electric potential (between the dielectric and air) and the continuity of the normal component of
the electric induction vector are set at the interface:
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The initial distribution of orientation angles θ0 relative to the x1 axis is known inside the
layer. It is given, for example, as shown in Fig. 1. Angle θ is calculated in succeeding time steps
using the difference analogue of equation (3).
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Fig. 1. Scheme of perturbation of the liquid crystal layer by an electric field

2. Computational algorithm

The solution of the problem includes several stages. At the first stage, it is necessary to
calculate the values of the electric potential included in (2). The electric potential satisfies the
anisotropic equation ∇ · (ε · ∇φ) = 0 in the LC layer. To solve this equation the finite difference
method is used to implement an iterative process in which the Poisson equation is recursively
solved using fast Fourier transform with respect to new approximation of the potential φn+1:

ε̃△φn+1 = ε̃△φn −∇ · (ε · ∇φn).

Here the right hand side is calculated using approximation from the previous time step φn,
constant ε̃ is chosen in such a way that iterative process converges. The process continues until
the relative error defined as the uniform difference norm becomes sufficiently small. Calculations
showed that no more than 10 iterations are required for the convergence of the iterative process
with a relative error of 10−5 for ε̃ = (ε∥ + ε⊥)/2.

The Laplace equation ∆φ = 0 is satisfied outside the LC layer. It is solved by the method
of straight lines. The segment is uniformly partitioned in the direction x1, and derivatives with
respect to x2 are replaced by finite differences. Thus, function φ is discrete in the direction
x1 and continuous in the direction x2. Further, the solution is constructed using the Fourier
transform. To calculate the solution, the same rectangular grid is considered for both solutions.
The algorithm of calculation of electrical action on the liquid crystal layer is described in detail
in [8]. After finding the values of the electric potential, bulk forces and moment of forces are
calculated using (2) where partial derivatives are replaced with finite differences. At the last
stage, using the explicit second order of accuracy finite-difference scheme “cross” values of q and
ω are determined:
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Then rotation angle is recalculated as follows
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3. Analysis of the unstable state of LC based
on the Oseen–Frank model

When the potential difference is below of some threshold value, an oscillatory motion of
molecules occurs with a small deviation from the initial position. The static Oseen–Frank theory
is used to estimate the instability of the equilibrium of the liquid crystal. In accordance with
the theory, the distribution of orientation angles of molecules in the equilibrium state of the LC
layer under the action of electric field created by charges on the plates satisfies the stationarity
condition for the potential energy functional:
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The vector-director responsible for the predominant direction of liquid crystal molecules depends
in this case only on x2: n =
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. The equilibrium of liquid crystal molecules

is achieved by minimizing the Oseen–Frank free energy functional:∫
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Taking into account that the first term in expression (8) does not depend on n and n in turn
does not depend on x1, this expression takes the form

D · E = ε0 ε⊥

(
dφ

dx2

)2

+ ε0 ∆ε

(
dφ

dx2

)2

sin2 θ.

– 276 –



Irina V. Smolekho Analysis of the Unstable State of a Nematic Liquid Crystal . . .

After substituting (6) and (8) into (7) and taking into account that sin θ ≈ θ, one can obtain∫ h
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Varying the functional and integrating it by parts, one can obtain that∫ h
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Minimization of the functional gives an estimate of the instability at which the functional
loses its convexity. Corresponding Euler equation (9) with boundary conditions θ(0) = θ(h) = 0

has non-trivial solutions
φ+ − φ− = π

√
γ

ε0 ∆ε
.

For a 5CB liquid crystal with γ = 6 · 10−12 H, ε ∥ = 16.7, ε⊥ = 7 the threshold value the
potential difference is about 1 V. Above this value, the molecules lose their stability and turn
along the direction of the field, forming swarms of identically oriented molecules.

4. Calculation results

A parallel program implementing the described algorithms is written in C++ using CUDA
technology for computing systems with graphics accelerators. The calculations were carried out
on the high-performance Flagman server of ICM SB RAS.

In all calculations, the coefficients for the 5CB liquid crystal were taken according to experi-
mental data [9]. Earlier, the value of coefficient α = ν2j π2 was based on the resonant frequency
ν∗ = 350MHz obtained experimentally in [10]. In the present work, calculations were carried out
for various values of ν. It was studied how the orientation of molecules changes at different time
steps in this case. The bulk density of the moment of inertia is determined as j = ρ (Nδ0)

2/12,
where δ0 = 1.87 nm, N = 10, ρ = 1022 kg/m3. A finite difference grid is introduced in the space
x1, x2 with the space step ∆x1 in the direction x1 and the space step ∆x2 in the direction x2.
The time step is defined as ∆t. The grid consists of a set of nodes Rn

i1,i2
= R(tn, x1i1 , x2i2).

Loads can be specified on some sections of the boundary.
Figs. 2–4 show the results of calculations for 10× 4µm liquid crystal layer under the action

of electric field for various initial orientations of molecules and various arrangements of plates.
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The horizontal lines show the boundaries of the layer exposed to electric field. The thick lines
show the capacitor plates. The capacitor plates are arranged non-symmetrically in Fig. 2 a, and
they are arranged symmetrically in Fig. 2 b. The length of the upper plate is 1µm, the length of
the lower plate is 2.5µm in both calculations. The finite difference grid in the LC layer contains
640× 256 cells, and in the outer parts of the layer it contains 640× 128 cells.

Fig. 2. Disturbance of the LC layer by electric field: level lines of electric potential φ at 10000th
time step; rotation angle of molecules θ = π/4 (a), 0 (b)

Fig. 3 shows the level lines for the rotation angle of molecules in the LC layer for the problem
in Fig. 2 a for different α and ν at various time steps. The results for ν = 11 MHz and α = 0.36
Pa are shown on the left side, and results for ν = 35 MHz and α = 3.6 Pa are shown on the
right side. The potential difference is 1.5 V that exceeds the threshold value of 1 V. Therefore,
liquid crystal molecules are reoriented in the direction of the electric field. One can also observe
the effect of formation of large domains of identically oriented molecules (so-called swarms), the
size of which changes with time.

Fig. 4 shows level lines with similar parameters but for symmetrical capacitor plates for the
problem in Fig. 2 b.

It is noted that the smaller ν and hence coefficient α the larger swarms are formed which
more slowly break up into smaller ones over time. Swarms disintegrate already at 20000 – 25000
time step for ν = 35 MHz. That is not observed for ν = 11 MHz.

Conclusion

This paper presents mathematical model of the action of electrical field on liquid crystals.
Equations of the model are obtained from the previously developed dynamic model within the
framework of acoustic approximation. The model allows one to significantly speed up the time
of calculations. The algorithm for numerical solution of model equations is implemented as a
parallel program in C++ using CUDA technology.

The developed model can be used to study the behaviour of liquid crystals under the action of
electric field in dynamics and formation of swarms depending on the intensity of electric field, the
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Fig. 3. Distribution of orientation angles of LC molecule domains with symmetrical arrangement
of plates: 5000th (a), 10000th (b), 15000th (c), 25000th (d) time steps

initial rotation angle of molecules and location of the capacitor plates. The results showed that
as frequency increases smaller swarms are formed which quickly break up into smaller swarms.
The results of calculations can be applied to the study of the dynamics of liquid crystals in
the problems of propagation of thermoelastic waves caused by weak mechanical and electrical
disturbances.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2023-912).
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Fig. 4. Distribution of orientation angles of LC molecule domains with symmetrical arrangement
of plates: 5000th (a), 10000th (b), 15000th (c), 25000th (d) time steps
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Анализ неустойчивого состояния нематического жидкого
кристалла на основе упрощенной динамической модели

Ирина В. Смолехо
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В статье моделируется эффект Фредерикса, состоящий в переориенации молекул
жидкого кристалла в протяженном слое под действием неоднородного электрического поля. Опре-
деляющие уравнения для касательного напряжения, угловой скорости и электрического потенци-
ала получены из уравнений упрощенной динамической модели нематического жидкого кристалла
5ЦБ в акустическом приближении. Построен алгоритм численного решения определяющих урав-
нений с помощью конечно-разностных схем. Программная реализация алгоритма выполнена по
технологии CUDA для компьютеров с графическими ускорителями.

Ключевые слова: жидкий кристалл, динамика, электрический потенциал, эффект Фредерикса,
метод прямых, уравнение Лапласа, параллельное программирование, технология CUDA.
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