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Abstract. In this work, we present a new result which concerns the obtainment of the Green function
relative to the time-independent Schrodinger equation in two dimensional space. The system considered
in this work is a particle that have an energy E and moves in an axi-symmetrical potential. Precisely,
we have assumed that the potential (V(r)), in which the particle moves, to be equal to zero inside an
annular region (radius b) and to be equal a positive constant (Vp) in a crown of internal radius b and
external radius a (b < a) and equal zero outside the crown (r > a). We have explored the bounded
states regime for which (E < Vj). We have used, to obtain the Green function, the continuity of the
solution and of its derivative at (r = b) and (r = a): We have obtained the associate Green function and
the discrete spectra of the Hamiltonian in the region (r < b).
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Introduction

The method of Green’s function is considered as an important tool that allows to solve
many problems encountered in general physics, mechanics, fluid mechanics, quantum mechanics,
acoustics, electromagnetism and mathematical physics etc. The Green function is attributed to
the distribution theory that was introduced by Green [1] in electromagnetism, and later used by
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Neuman and by Helmholtz in the theory of Newtonian potential [2] and acoustics consecutively.
There are usually several Green functions associated with the same equation. These different
functions are distinguished from each other by the boundary conditions. Thus it is important,
when we calculate the Green function of the linear differential equation to specify the boundary
conditions. Before dealing with the description of our problem we include some works that
are closely related to our problem. In [3,4] the authors have treated the problem of a thin
circular Kirchhoff Poisson-plate. The plate edge is assumed to be elastically supported so that
the boundary values are that the radial bending moment equals zero, whereas the strength is
proportional to the function of the deflection on the boundary. The Green function is also studied
by [5] in circular, annular and exterior circular domain. In [6,7] the Green function was studied
for the elliptic domain. The quantum problem relative to the scattering in two dimensions was
also treated in [8], and the problem of the Dirac particle in a spherical scalar potential well in
3-D was treated by [9,10]. In [11-14] the Green function problem is treated in an approximative
context. In our work, we address the problem of the Schrodinger equation in two dimensions:
the Shrodinger operator is defined to be piecewise operator on three connected circular domains
(0<r<bb<r<aa<r<oo)but with new boundary conditions. These boundaries
conditions are useful in quantum mechanics to solve the diffusion problems and also the bound
states. In quantum mechanics, if the potential is constant in the crown and is zero outside (or vice
versa) the solution of the Schroedinger equation and the derivative of the solution are continuous
on the boundary (the edge) of the crown. Specify clearly our problem: the Schrodinger equation
takes different forms depending on whether it is inside the crown (b < r < a) or outside. This
type of problem matches in quantum mechanics to the study of a particle subjected to a potential
which is a positive constant inside the crown (b < r < a) and zero outside the crown. None of the
cited works, in our knowledge, the explicit Green’s function for a piecewise continuous potential
has been calculated in two dimensions for this type of problem. The physical phenomenon that
we want to describe in this work is related to the well-known tunnel effect in one dimension, by
extending it to two dimensions. It is therefore, a question of studying the propagation of the
waves associated with particles (electrons for example) emitted from a source that is located at
the space origin, in a homogeneous two-dimensional medium. During propagation, the particles
(waves) enter a coronal region (barrier) in which they are subjected to a constant potential Vj.
Then they cross this region to go to infinity (r tends to infinity). To be clear and more precise,
the particles cannot cross this region where the potential Vj reigns if their energy F is less than
Vo. This reasoning is purely classical. In quantum mechanics, we show that the particle, even
for E < Vj, has a non-zero probability (which is proportional to the Green function) to cross
this coronal region. So our paper will be organized as it follows: in the next section (Sec. 1), we
expose the problem we will solve. In section four (Sec. 2), we will calculate the Green function
for the bounded states. It turns out that the energies spectra is obtained from the poles of the
Green function in the region r < b. We end our paper by a conclusion in Sec. 3.

1. Axi-symmetric two dimensional quantum problem

Consider a quantum particle moving in a symmetrical potential (independent of the angle 6)
defined as (see Fig. 1):

0 0<r<b regionl
Virg) =<1 W b<r<a region2 . (1)
0 r > a region3
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Fig. 1. A scheme of the coronal potential in two dimensions

The dynamics of this particle is governed by the time-independent Schroedinger equation:
H(r,0)Y(r,0) = EV (r,0) (2)

which is written in the natural polar coordinates (r,6) and where H (r,6) is the hamiltonien of
the particle with a mass M, moving in this potential. The equation (2) is merely an eigenvalues
E and eigenfuntions equation W (r,6). The explicit form of the hamiltonien of the system is:

h2

H = —mﬁr,e +V(r,0) (3)

where
6_2 + 12 + ia_z (4)
or2  ror r2002

is the well known laplacian in polar coordinates. The equation (2) writes as:

AT,G =

<_2h_MAT’0+V(T’ 0) —E) W (r,0) =0 (5)

or, with respect of the definition of V (r,0) in the formula (1)

2

(%Ana + E) Vs (r,0) =0 r>a
h2

(mAryg—%—l-E)\Ilg(r,@):O b<r<a . (6)
h2

(mAr,a—i—E)\I/l(r,ﬁ):O O<T<b

d
This system is subjected to the boundary conditions defined as ¥ (r, ) and e U (r,0) are to be
r

continous at » = b and r = a for all values of the azimutal angle §. The separation variables
method leads to transform the last equations (6) as

d d 2M 12

ar (T—dr‘l’3> + (_h2 Er — ?> Us(r)=0 r>a

d { d oM 12

o <rdr\112> + ( 2 (E—Vy)r . > Uy(r)=0 b<r<a (7)
d d 2M 2

—\r= —Er— — = <r<

dr <Tdrq}1>+<h2 Er r)qjl(r) 0 O<rs<b
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whose solutions are combination of two linear independent Bessel’s functions of order [ (I € Z).
The solution must obey to the boundary conditions at r = b and r = a

where [ = --- —2,—1,0,+1,42,... . The Green function of the problem (7) augmented by the
boundary conditions (8-11) is given by

and

+oo
G(7, 7, E)=G(r,0,r',0/,E)= > G(l;r,r', E) exp(il(6 — 0")) (10)

l=—00

where G(I;r,r', E) = G(I;7,7") is the radial Green function that we shall calculate in the sub-
sequent sections. To calculate the Green function we will study the case 0 < E < Vj for which
corresponds the bounded states regime. In our next investigation, we follow the Krasnov ap-
proach to calculate Green function [15,16].

2. The bounded states regime 0<E<V

We consider in this work that the particle is described by a wave that comes from the origin
O (source O) and spreads out in two dimensions space. It crosses a coronal region (region2) and
escape to infinity (region3).

1. The region a < (r,7) < 00

By using the first equation of (7), in the region3 (r > a), the corresponding radial Green
function can be written as the following

: Cs(r[Yi(kr) — Bs(r') Ji(kr)] a<r <7’
B3 (iry=¢ 73 11
G As (") J; (kr) r<r<oo (11)
where k% = FE the continuity of the Green function at r = 1’/
G2 (Ll ") = G*2 (e 1) =0
gives
[A3 (r") + Bs(r")Cs (7)) J; (kr') — C3 (r') Y, (k') = 0 (12)
and the discontinuity of the first derivative with respect r at r =7/, gives:
d 33 d 33 2
%G Sl ') - %G S(Lrlr') = —
therefore 5
—C () Y (kr') + [A3 (') + Ba(r')Cs ()] Jy (k') = ——. (13)
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By following (12) and (13) we check that

As (') + Bs(r')Cs (r') = =Y1 (kr') . (14)
After substituting (14) in (12):

Cs (1) Yy (kr') + Y (kr') Jy (k') = 0 (15)

we find:
C3(r') = —J; (kr") (16)

and after replacing (16) in (14) we check that
Az (r") = Bs(r')J, (kr') = Y, (kr") (17)
and after substituting (16) and (17) in (11) we find

Jy (kr") [Y; (kr) — Bs(r')J; (k)] a<<r<r

G (limr’) =~ { Vi (k') — By(')Jy (ke')] Jy (k1) ' <7 < oo (18)

It remains to determine the coefficient B3(r’). To do this, we use the symmetry properties
of G(I : r,r") which states that, by reversing the roles of r and r’ in the first expression of
G33(1 : r,7"), we must find the second expression that is to say

[Yi(kr") — Bs(r") Jy(kr")] Ji(kr) = Jy(kr)[Yi(kr") — Bs(r)J;(kr'")]. (19)
By identifying in the last equation we find
Bs(r’) = Bs(r) = Bs = constant. (20)
Then the Green function in this region (r > a) is given by:

G2 (L) = — { Jilkr) i (kr) = B Ju(kr)] - asr <’ (21)
i (kr') = BoJy (k")) i (k) ' <7< o0

The constant B3 will be determined later.

2. The region b < (r,7') < a

To highlight, in the region 2, that there are forward and backward waves, the Green’s function

in the region2 is written as
Ey (r') [ (pr) = S2(r") I (pr)] b < <o
G*2 (lyr,r') = { [ ]
Fy (r") [Ky (ur) — 2 (") L (pr)] 7' <r<a

2M
?(V{) — E). To calculate the coeflicients Eq (1), Fs ('), v2(r") and d(r") we use

the continuity of the Green function at r = r':

where: p? =

G?*? (l; rfi_,rl) — G*? (l;r'_,r') =0

then
Ky (pr') [F2 (r') = Ba (")) = L (ur") [y2 () Fa (r") = d2(r") B ()] = O (22)

- 602 -



Brahim Benali. .. Green Function Of Quantum Particle Moving In Two. ..

and the use of the discontinuity of the first derivative with respect r at r = r’ gives

i 2.2 (1.1 AN i 2,2 (7., 7y — l
S GPE () = 2GR (L) =
then 2
K (') [ () = B (7)) = 1f (ur') [z (1) 2 (1) = 02(0") B ()] = .

By combining (22) and (23) it is easy to obtain:
_ B () [ (ur) = b5 (') Iy ()]

B ) = =R Gur) =32 () i ()
and
o (B [ ) =8 GV R )] o
K ) | o T T~ B 0] 1)
B () (') 8y () L)) T2
e o B e et 0B ) =

By using the Bessel Wronksian for the pair (I;(pr), Kj(ur))

W (L (') Ko (') = I (') K (') — K (') I (') = %

we get the coefficients:

By (') = 21 (W/)W—g J(Qr /()7"’) I ()]

where
92(x) = 72 (x) — b2 (2)

and
_ 2[Ka(pr') = 62 (') I (pr')].

Tg2(r’)
Then, the Green function in the region b < 7,7’ < a is given by:

F2 (T/)

G*?% (lyr,r') =

wga(r’)

for b<r <7 <aandb<r <r < a respectively.

2 { (K (') = 2 (') Lo ()] [ (ur) = 02 (1) I ()]
[ (') = b (') I ()} K () = 2 (") Iy ()]

(25)

(26)

(27)

(28)

It remains to determine the coefficients d2(1'), v2(r’) and go(r’). To do this, we use the symmetry

properties of G(I;r,7")
G*2(lyr, ") = G22Iy, 7)

then
(K () = vz (') I (")) [KG () = 02 (r") I (pr)] =

= [Ki (ur) = 62 (r) Lo (ur)] [ (ur') — 2 (r) Do (ur')] -

By identifying in the last equation we find

d2 (r) (r')
72 (1) (r') = y2 = constant,

g2 (r) = g2 (") = g2 = constant.

o

do = constant,

2
2

These constants we must to determine later.
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3. The coefficients 7, and ), determination

To find the coefficients v, and §2 we use the continuity of the Green function and the continuity
of its derivative at r = a:

G33 (I;r, a)JTZa = G%2(l;r, a)Jr

=a

then
%92 (K1 (pa) = 6211 (pa)] (K1 (pa) = 2l (pa)] = —Jy (ka) [Yi (ka) — ByJy (ka)]  (32)
and d d
EG&?) (l7 T, a’)JT:a = %GQQ (l’ T, G)Jr:a
then
% (K7 (a) =21} (pa)] [Ki (na) — 8211 (na)] = kJi (ka) [BsJ] (ka) = Y/ (ka)].  (33)

By dividing (33) over (32)

1K (pa) —v21] (pa)] _ k[Y/ (ka) — B3 J] (ka)]

= 34
[ (4a) —7ls (ua)] ¥ (ha) — B (ko) 34
and after simplifications we get the coefficient
T2 = VZ(kv,U’aa7b)/U2(khuaa7b) (35)
such that
Va = KK (ua)[Y; (ka) — BaJ} (ka)] — uK] (ua)[Yi(ka) — BsJi(ka)), (36)
U = kly (na) [Y/ (ka) — BsJ] (ka)] — ul (pa) [Yi (ka) — BsJ (ka)] . (37)
Using the fact go = 2 — 02, and by using (33) we obtain the constant d5 as
_ 2pK (pa) (K (pa) — yo I} (pa)] + kmye i (ka) [Y) (ka) — BsJj (ka)]
g = 7 — 7 7 — 7 (38)
20y (ua) [K] () — 121} ()] + ey (ka) [¥7 (ka) — ByJ] (ka)]
and by replacing (35) in (38) it is easy to see that
20 () (UK} () = Vol ()] + ko (ha) Y (ko) = By (b))

2 Quli (ya) (U] (na) — Val] (pa)] + kaUyJs (ka) [Y; (ka) — Ba] (ka)]

The last formula can be more simplified. To check this statment, it suffices to replace U, and Vo
by their above expressions and the result is straightly obtained
k1YY (ka) — BsJ] (ka)]

UsKK{ (pa) — VoI (ua) = - . (40)

This term factorizes in all terms of d, as

kK, (pa) [Y{ (ka) — BsJ! (ka)] + kaxVaJ; (ka) [Y{ (ka) — BsJ! (ka)]

09 = 41
> 7 2k1, (pa) Y/ (ka) — BsJ| (ka)] + kanUsJ; (ka) [Y/ (ka) — BsJ] (ka)] (41)
and we get the wanted expression of d,
2K,
b2 = 8ol 0, 1) = L) £ 0k o 0. ) (12)

2I; (pa) + wad; (ka) Uz(k, p, a, b)
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from which we find the Green function in the region2

2K; (pa) + wad; (ka) Va(k, i, a,b)
K N — I !
) [ () 2I; (pa) + waJ; (ka) Us(k, p, a, b) )| x
G2 (lyr,r') = ————— _ Yok p,0,b) (43)
WQQ(/{,,U,,Q,I)) x Kl (/1,7‘) Uz(k,u,a,b) Il ( T)
re— 1!

4. The region 0< (r,7") <b

In this region, there are forward and backward waves. Then, the Green function can be
written as:

A(r)(Yikr) + q (') Ji (kr)) 0

1,1 ’ <r<r
G (Lryr') = B (s )
1 (M) [V (kr) —ar (W) Jy (kr)] ' <r<b

Because Y (kr) diverges at r = 0, we must discard it from the first combinaison, then the Green’s
function is

Ay (") Ty (kr) O<r<r

) (4
By (r") [Yi (kr) — o (r)Jy (k)] 7" <r<b

G (L) = {

2M
where: k* = ——E. To calculate the coefficients A; ('), By (') and a1 (1), we use the continuity

of the Green function at r = r':
GV (L") = GV (L) =0

then
By ()Y, (kr") — [A1 (7") + a1 (r") By (r")] Jy (kr') = 0 (45)

and we use the discontinuity of the first derivative with respect r at r = r':

il,l,//iil,l,//_l
er (l,r+,r) er (l,r_,r)fma/
then 5
By (M"Y (kr") = [A1 (") + an (r") By (")) J1 (kr") = 7 (46)
By combining (45) and (46) we obtain
n_ B () Vi (k') — o (r') i (kr')]
A () = 71 (o) (47)
wd Y] (k) Ju k') — ¥i (k') JL )] 2
B / = . 4
1 () Jy (kr") wkr! (48)
Using the Bessel Wronksian for the pair (J;(kr),Y;(kr))
2
W (J; (kr"), Y, (kr")) = Jy (k") Y] (kr") = Y, (k") J] (kr') = — (49)
wkr
we get the coefficients
By (") = J; (kr") (50)
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and
Ay (r") = Y1 (k") — ar (7') Iy (k7). (51)

Then, the Green function in this region (r < b) is given by:

/

r r

Y, (kr') — ar (v")Jy (kr")] J; (kr) 0

<r<
(52)
[Y; (kr) — ar (r")Jy (kr)] J; (kr') r<r<b

GH! (I;r,r") = {

It remains to determine the coefficient (). To do this, we use the symmetry properties of
G(lyr,r")
GUL(l;r ey = GVl ),

[Yi(kr') — ay (r") Sy (k)| i (kr) = [Yi(kr') — ay (r) Ty (k)] J (k).

By identifying in the last equation we find
al(r/) = a1(r) = aq = constant. (53)

Then the Green function in the regionl is given by:

=
~

[Y; (k') — ar J; (kr')] J; (kr) 0<
[Y; (kr) — aq J; (kr)] J; (kr') r<r

NN
SF

GH (L) = {
the constant a; must be determined in the following subsection.

5. The coefficient «; determination

To find the coefficient 1, we use the continuity of the Green function and the continuity of
its derivative at r = b:
G (lyr,b) = G** (I;1,b)

then
2Y] (ia) + ma; (ka) Va(ky 1, 0,b)
K (ub) — I (ub
{ L) = ) T+ mady (k) Ta e, 0, b) 1 D) | o)
Kl (‘Ll,b) VQ(ka o, a, b) Il (Mb)
— = —|Y; (kb) — kb kb
. |:g2(ka,uﬂa/7b> UQ(kalj/7a’7b> 92<k?,u,a7b) [ l( ) alJl( )] Jl( )
and
4 g (1;7,0) | r—p = e (I;7,0) | r=p
d’," » 0 r= d"" 20 r=
(ua) + ma.J (ka) Vo(k, 1, )
1 , 2K, (ua) + wad; (ka) Va(k, u, a) , }
T — b) — I (ub)| x
) | )~ S e e T ) (55)
x (K (ub) = v2(k, py a,0) 1y (ub)] = —k [Vy (kb) — ar Jy (kb)) J; (kD).
By dividing ( 55 ) and ( 54 ) we obtain
2K, (pa)+mad (ka)Va(k,p,a,b)
K |:Kl/ (,U,b) - 2]1(:a)+7raJl(ka)Ug(k,//j,a,b) Il/ (Mb)] _ ]{IJII (kb) (56)

2K (pa)+madi(ka)Va(k,p,a,b) J (kb
[Kz (1) = 7 ia) Trads o) O (ke ) 1 (“b)} (kD)
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after replacing Us and V3 in (56) by their expressions (36) and (37), we find

B3(k7 u, a, b) = F(k’ w, a, b)/q)(kv w, a, b)

where
U(k,p,a,b) = urady(ka)Y;(ka)[pJ,(kb)®s(k, i, a,b) + kJ] (kb)Ta(k, u, a, b)]+
+ udy(kb)[2 + kraJi(ka)Y] (ka)|Ty1(k, p, a,b)+
+ kJ](kb)[2 + krad,(ka)J]| (ka)|®1(k, 1, a, b)
and

O(k, p,a,b) = wakud; (ka) x
x [J] (ka) J; (kb) Ty (k, u,a,b) — J; (ka) J] (kb) Ta(k, 1, a,b)] — waJ; (ka) x
X [/’Lle (ka) Jl (kb) (I)Q(ka w, a, b) + kz‘]l/ (ka) Jl, (kb) (bl(k? w,a, b)]

such that
Li(k,p,a,0) = I (pa) K (ub) — K (pa) I (ub) ,
Lok, pya,0) = I (ub) K (pa) — K; (ub) I} (pa) ,
(K, pya,0) = I (pa) K (ub) — Ky (pa) I (ub) ,
Dy (a,b,k, 1) = I (ub) K (na) — Kj (ub) 1] (na)

After a minor simplifications we get the coefficient «; equal to

K; (/J/b) VQ(k7 M, @, b) I (,U,b) :|
k,p,a,b) = — X
al( pha ) |:92(ka,u7a7b) UQ(kaM7a7b) 92(k7/~1'aa7b)
[K (ub) — ba(k, pi,a,b) 11 (ub)] | Yi(kb) Y, (kb)
X ‘]12 (/{b) J; (kb) - ¢1(7f>/h a7b) + J; (k}b)
such that
Kiub)  Valk,mab) I (ub) }
kv ) 7b = -
wl( e ) |:g2(k7:u7a7b) UQ(k7M7a7b) 92(k7ﬂ7a7b)

o L (pb) = b2(k, p,a, 0) Ty ()]
J7 (kb) '

Finally, the Green function in this region (r < b) is given by:

Y, (kb)
Ji (kb)
Yy (kb)
Ji (kb)

[Yz (kr') — [wl (a,b,k, p) + ] Ji (k:r’)} Ji(kr) 0<r <o

GH (L) =

[Yl (kr) — [wl (a,b, k, 1) + } Ji (k:r)} Ji(kr'y ' <r<b

(59)

(66)

The energies spectra corresponding to this case (F < V}) is determined by the poles (see Fig. 2)
of Green’s function in this region, that is to say by the poles of 1 (k,u,a,b) that is to say

92(]97/%@7[9) =0or
’72(]6’/*‘7a7b) = 62(1@,,&,@,1)).
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From (35,42) and (36,37) we respectively get
K; (,ua) UQ(k7 My @,y b) = I (Ma) %(ka w, a, b)7

BS ((L, bv ka M) = Yi(ka)/Jl(ka)

and from (57) we obtain

Y, (ka) ®(k, p, a,b) = J, (ka) T(k, p, a, b)

(70)

where T'(k, i, a,b) and ®(k, i, a,b) are given above (58) and (59). Finally, once we have find Bs,

the Green’s function in the region (r > a) is given by:

Y (k
Jy (k') | Y (kr) — L (ka) Jy (kr) a<r<r
3.3 ([ o) — Ji (ka)
G> (lyryr')y = — Y; (ka)
{Yl (kr') — 71 (ka) J; (kr')} Ji (kr) r<r<oo
6000
5500
5000 =2
4500 =0
S 4000+ =1
_g 3500
€ 30004
2 2500
[0}
T 20004
cC
S 15004
2 1000 - N
2 500 /
= - =l | e B
&G -500 4 .
1000 - \
1500 -] \,/
-2000 -
1 LS ] L ] ¥ ] v ]
2,0 2,5 3,0 3,5 4,0

wave-number k

Fig. 2. The energies spectra, given by the intersection ef the curve with k-axis for different

angular momentum 1=0,1,2

Conclusion

In this work, we have calculated the Green function for the time-independent Schrodinger
equation in two dimensional space. The system considered in this work is a particle that have
an energy I/ and moves in an axi-symmetrical potential. We have assumed that the Hamiltonian
operator is a piecewise continue operator: the potential V' (r), in which the particle moves, is
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equal to zero in the regions (r < b and r > a) and equal a positive constant Vj in a crown of
internal radius b and external radius a (b < a). Our study was focused on the bounded states
regime for which £ < V{. We have used, to derive the Green funtion, the continuity of the
solution and of its first derivative at »r = b and » = a. We have obtained the associate Green
function and the discrete spectra (for the case E < V;) of the Hamiltonian in the region r < b.
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Oynknuga ['pyuHa KBaHTOBOII 4YacCTUIIbI, JABUXKYIIECs
B JIBYMEPHOM KOJIBIIEBOM IOTEHIIAJIE
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Kadenpa maremaruku, Jlaboparopus LRPPS
DakyabTeT TOYHBIX HAYK

Yuusepcurer Xamma Jlaxmap

Dub-Yar 39000, Asxup

Caunpg dym
Qusuueckuii dpakysbrer, Jlaboparopus LRPPS

dakysbreT MATEMATHKU U HAYK O MATEPUU
Yuusepcurer Kacaun Mepbax

Dnb-Yau 39000, Asxup

Moxammen Taited6 MedrTax
Quznuecknit pakysbret, Jlaboparopus LRPPS

Yuusepcurer Kacan Mepbax
Vapruia, 30000, Amxup

Awnnoranys. B aroit paGore MBI IIpeCTAB/IAEM HOBBI Pe3y/IbTaT, KOTOPBIA KacaeTcst IOy deHust hyHK-
uu ['prHA OTHOCHTEIBHO He 3aBUCHIIErO OT BpeMeHH ypasHenusi I1IpeuHrepa B IByMEpHOM IIPOCTPAH-
crBe. Cucrema, paccMarpuBaeMasi B 9Toi paboTe, npecrasiisier coboii yacTuily, 06JiaJamolyo SHepruei
E n ABmKyIiyiocsi B 0CECUMMETPHYIHOM HoTeHmaste. Tounee, Mbl npezmotoxuny, uro norermmar (V (r)),
B KOTOPOM JIBHKETCsI JaCTHUIA, PABEH HyJII0 BHYTDH KOJIbLeBOH obsactu (paguyc b) U paBeH IOJIOXKHU-
TesbHOI mocrostuHoi (Vo) B Koyiblle BHYTpeHHero pajuyca b u BHermHero pagmyca (b < a) u pasen
HYJIIO 3a IIpejiesiaMu Kouiblia (1 > a). MBI uccire10BaiIi pesKiM OrpaHUYeHHbIX COCTOSIHMUIA, JIJIsi KOTOPOTO
(E < Vb). Ons nonyvennst dyHkuun I'puHa MBI HCIIOIB30BAJIM HEIPEPHIBHOCTD PEIIEHUS] M €0 IPOU3-
BoAHOM B Toukax (r = b) u (r = a). Mbr nosyunim acconuupoBannyio dbyuknuio ['puna n aucKpeTHbIE
CIIEKTPBI FaMIJIbTOHMaHa B obiactu (r < b).

KuaroueBbie ciioBa: kBaHTOBasi MexaHuka, ypapHenue [lIpémnunarepa, dyukius ['puna, orpanndeHHbe
COCTOSTHUSI.
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