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1. Introduction and preliminaries

The paper is devoted to the solutions of the Beltrami equation

Daf(z) =2 4 2B 1)
which is directly related to the theory of quasi-conformal mappings (see [1,13]). The function A(2)
in general is assumed to be measurable with the condition |A (z)| < C < 1 almost everywhere
in the domain D C C. Solutions of equation (1) are often called A(z)-analytic functions. The
most interesting case is dA = 0, i.e. A(z) is an anti-analytic function in D and such that
|A(2)] < C < 1Vz € D. Then according to (1) the class f € O4 (D) of A (z)-analytic functions
in D is characterized by the fact that D4 f = 0. Since any anti-analytic function is smooth, it
follows that O4 (D) C C°° (D) (see [13]).

Here we study the analogs of the well-known Weierstrass and Blaschke theorems for A (z)-
analytic functions in convex domains, when A (z) is an anti-analytic function. The requirement
for the convexity of the domain is due to the fact that for non-convex domains the required
kernel of the integral formula, which is involved in the proof of the main results, may not exist.
For analytic functions, the Weierstrass and Blaschke factorizations are well studied (see [7,8]).

Let us present some facts from the theory of A (z)- analytic functions that we will need below.
Consider the integral

P (z,8)=2—&+ / A(r)dr € O5 (D),
v(&:2)
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where 7 (&, z) is a smooth curve connecting points £, z € D. If the domain D simply connected,
then the integral

I1(2)= / A(r)dr

7(&:2)
does not depend on the integration path; it coincides with the primitive, I’ (z) = A(z). The
function ¢ (2, &) for convex domains has a single zero at the point z = £. In particular, the set
L({,r)—{zeD: P (2,8) z—&+ [ A(r)dr

7(€,2)
For sufficiently small » > 0 it belongs compactly to D and contains the point . This set is called

the A (z)-lemniscate centered at £ and denoted as L (&, ). Put
1 1

B TM.Z—E—}- i A(’T)d’r.
v(&:2)

< r} is an open connected set in D.

K (z,¢)

2)

Theorem 1.1 (analog of Cauchy’s formula, see [4,9]). Let D C C be a convex domain and
G CC D be its subdomain with a piecewise smooth boundary OG. Then for any function f(z) €
04 (G)NC (G) we have

z :i L dE+ A(€)d z € G. 3
e m@éZH et 4(909) = Q
7(§,:2)

2. Generalized Weierstrass theorem for A (z)-analytic
functions.

The main result of the section is following theorem.

Theorem 2.1. Let D C C be a convex domain and G CC D its compact subdomain. Then,
whatever sequence of points a, € G that has no limit points in G, there exists an A (z)-analytic
in G function f that has zeros at all points of a,, and only at these points.

Proof. Note that if the set {a,} = {a1,as,...,a,} is finite, then the product [] ¥(z,a,) can be
=1

n=
taken as the function f (z). However, when the set {a,} is countable this product may diverge.
In this case, the function f (z) is constructed in the form of an infinite product, also with the help
of ¥ (z,£), which for convex domains has a single zero z = £. But the 1(z, a,,) is multiplied by
some additional function, that do not vanish, so that the considered infinite product converges
uniformly.

For each point a,, we find a point b,, € G, which is closest to the point a,,. Then the value
of r, = Y(bn,a,) = 0 at n — oo. Since

U(z,by) — W(an,by) =2 — by + / A(r)dr — (an — by) — / A(r)dr =
Y(bn,2) Y (b an)
=z—a,+ / A(T)dr =(z,a,),
V(G'nvz)

we get

Y(z,an) _ Y(2,bn) — Y(an, by) -1 Y(an, bn)
Y(z,b,) Y(z,bn) (2, 0n)
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We fix n € N and consider the decomposition

ortn) _y () sty V(o
i (S ) - kakzb .

The series converges uniformly on the compact set {z € G: |¢(z,by)| = 2r,}. Therefore, we
can choose a natural number p,, so that

(by, an)
+kakzb <gmo Wb > 2, (n=12,...) (5)
With this choice of p,,, the infinite product
0 g 'l/)k(bnvan)
Y(z,an) 2 ik
= —_— = Yn 6
e =110 (6)

converges uniformly inside the domain G\ {a,}.
Indeed, for any compact set K CC G, there is N such that a, ¢ K, |¥(z,b,)| > 2r, for all
n > N and all z € K. Then the series of A (z)-analytic functions

- o PR ( bn,an
5 (m3 i)

R gk (by.an)

VK (z,bn, .
er=1 "7 =) que to (5) converges on K uni-

and, therefore, the infinite product [[ ———=
n=N (Z7 bn)
formly. Therefore, the product

Pn k naan N—1 Pn )k n.an Pn k n.an
_ lo_o[ Y(z,a,) egl I:wgeb(z,bn; _ H Y(z,an) o= iwgcb(z,bn)) % ﬁ Y(z,an) ek; 1/z;pgcb(z,bn))
Z,0n Z, 0n _ Z, 0n
bz ba) b bo) S STETn
is an A (z)-analytic function in G that vanishes only at points a,, € G. O

Corollary 1. Let D C C be a convex domain and G CC D an arbitrary simply connected
compact subdomain. Then, any function f (z) € O4 (G) admits a factorization

R g (by.an)

2 P(z,an) 2 5 Zbn
= 69( ) H W ek=1 R ( ) , (7)

where {a,} is a set (finite or countable) of zeros of the function f (2) € Oa(G), pn, by the values
defined in the proof of Theorem 2, and g (z) is some A (z)-analytic function in G. Note that if
{an} is finite, then representation (7) is very simple,

f(z) =e9®) Hz/J(z, an) .

Proof. The corollary is easily obtained if we take into account that the ratio

% (bn an)

¢( ) n) E(z,bp
ALy e
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is an A (z)-analytic and non-vanishing function in G. Since G CC D is simply connected, the
logarithm

z,a, fnan)
g(z)ln{ﬂz)/ﬂﬁ((z’bn)’ £ n>}eoA<G>

and

Pn

5 WP (by,an)

f(z) _ eg(z) H w(za an) eh=1 vk (z,b0) )

Y(z,b,)

3. The Blaschke product for A (z)-analytic functions.

In this section, we study the zero densities of an A(z)-analytic function f(z) € Oa(L),
bounded in lemniscate L = L(a, R) = {|¢ (a,2)| < R} in a convex domain D C C. Let us start
with the formulation of the following Jensen formula

Theorem 3.1 (Jensen’s formula). Let f € Oa (L(a, R)). Denote by n (t) the number of zeros,
taking into account the multiplicities of the function f(z) in L(a,t), t < R. Assume that f(a) # 0,
i.e. n(0) = 0. Then, the following formula holds

/M:L / In|f (2)||dz + A(z)dz| — In|f (a)] . (8)

t 27r
0 [¥(z,a)|=r
Proof. Suppose that aj,as,as,... are the zeros of the function f in L (a,R), in the non-
decreasing order of r,, = |9 (a, ay)|, and each a1, a9, as,... zero in the sequence occurs as many

times as its multiplicity. First we show that under the condition r,, < r,41 for r € (r,,,rn4+1) we
have

1
2rr

| f (a)]

————— =In|f(a)|+nlnr —Inrry...7,. (9)
riror3 ... Tn

/ In|f(2)||dz+ A(2)dz| =In

[¢(2,a)|=r
To do this, consider the finite product

- \ Y(ax, a) = P(2,a)
1;[ k:@) 12 = (ag, a)(z,a)

It represents an A (z)-analytic function in the lemniscate L (a,7,+1) that vanishes only at the
points a1, as, ..., a,. Therefore, the following representation is true

T [W(ar,a)| Plag,a) —¢(z,a)

— 9(2) — o9(2)
@ =B = L o a0

9(2) € O(L(a,rnt1)).

From here

| laa) -~ v(z0) e e
e V@I Res @+ 3o

Since Re g (2) is A (z)-analytic function, we have (see [6])

1 / Reg (2)|dz + A (2) dZ| = Reg (a).

2mr
[¢(z,a)|=r

In|f ()| = Reg () + > In
k=1
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Since rr;b(_az(cgk’_ai/(j’:i) =1 for ¢ (z,a)] =r, we get
! n|p L@@ =V(=0) |y s = o,
2mr 72 —(ak,a)y(z, a)
[(z,a)|=r
Therefore,
% / In|f(2)||dz+ A(2)dz] =Reg(a) =In|f (a)| + nlnr —lnrirs...7ry,

[P (z,a)[=r

which proves the validity of formula (9).
It is clear that

n
ln|f(a)|—|—nlnr—ln7'1r2...7'n:ln|f(a)\+nlnr—21nrk =ln|f (a)|+

k=1
n—1 n—1 dt " dt
+ ; kE(lnrger —Inrg)+n(Inr —Inr,) =In|f (a)| + ; k " +n " =ln|f (a)| +
- - Tk Tn
S awa e, faw e Pt dt
n n n n n
+Z/ . +/ ; dtf/ ; dt+/ . dt+ln|f(a)|f/f+ln|f(a)|.
k=1 Tk Tn 0 Tn 0
It follows that formula (9) can be written as
[n(t)yd 1 ,
[RO% - [ wlr @+ AR e - nlf @), (10)
0 [¥(z,a)|=r

Note that we proved formula (10) under the condition r, < r < r,41. If we show the
continuous increase of both parts of this formula with the continuous increase of r from 7,11 —0
to 7,41 +0, then this will prove the validity of formula (10) for an arbitrary » < R. For the left side
of (10) this is obvious. For the right side, let r, < rp41 =rpi2 = ... = rogm < Tnemt1, m = L.
Then in some ring L (a,7”")\L (a,7'), 7, <7’ < 7Tpy1 < 7" < Tpimy1, (see [7])

$) =) [T @nsrea) = 6 (0l =0 () [T 6 (aninna) [ 1= 20

k=1 k=1

for all z € L (a,r")\L (a,r"). Therefore,

¥ (20

In|f (=) =Inlg ()] + Y In [W@n%“)' * ‘1 " Ui a)

k=1

| =1+

r 1— r eit

1-— el =Inlg (2)| +mInr, 1 +min
Tn+1

, 0<t< 2.

+Zlnrn+k + Zln
k=1 k=1

From here,

Tn41

1— r eit
Tn+1

1— r eit
Tn+1

In|f(2)]=In|g(z)|+mlnr,11 +mln =n(z) +mln

)

— 424 —



Muhayyo Ne’matillayeva, Shohruh Khursanov Analog of the Weierstrass Theorem. ..

where

n(z) =In|g(2)] +mlnr,

is continuous in a neighborhood of ' < r < r”. Now it is sufficient to prove that the integral

2m
I(r) :/ In |l — — et dt, I(r,)=0,
0 Tn
is continuous at the point r = r,, 4. For
r roo P r 2 2
2‘1 et =1-2 cost + — —sin2t+<cost ) > sin’t.
Tn+1 Tn+1 Tn+1 rn_t,_1 Tn+1
Hence, for fixed € > 0, § € (0,7) we have
2m r )
I(r) =1 (rp41)=1(r) :/ In|l— ——e¢dt =
0 rn+1
J r . r .
:/ In|l — ——e* dt+/ In|l — ——e|dt.
-5 Tn+1 [0,27]\[~8,+3] Tn+1
5 . 5 5
/ In(l - ——e¢|dt| < / (In3 + |In [sint||) dt < / (In3 + |In |t]]) dt <
-5 Tn41 —0 —6
1 1
< (2+1n9)5+261n5 < (4+ln9)6lng.
We fix § so small that the right side is smaller than % The integral
In|l— ——e't| dt
Tn41
[0,27]\[—6,+-4]
is continuous at the point r = r,,. Therefore, for » — 7,11 we have
In|1— ——eit|dt — / In|1— " cit| gt =0
Tn+1 Tn+1
[0,27]\[—0,+4] [0,27]\[—8,+4]

and we get that for sufficiently close r to 7,41 the integral

g
dt| < —.
2

T .
Injl— ——e%
Tn+1

0,27]\[—4,+7]

Hence, |I(r) — I (rp4+1)] <eie. I(r) — I(rpy1) for r — rpypq and the integral

2m
/ In
0

r .
1— 76’“5
TnJrl

dt

is continuous at the point r = r,, 4.
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4. Properties of the Blaschke product for A (z)-analytic
functions

If0 < |9 (an,a)] < R, m=1,2,3,..., and an infinite product

- . |¢(an,a)| 1/)((1”7(1) 77/](27(1)
H R Un, @) R2 —)(an,a)(z,a) (11)

converges uniformly inside {|¢(z,a)| < R}\ {an}, then it represents some A (z)-analytic in the
lemniscate L (a, R) function B (z). It is called the Blaschke product. One can admit a finite
number of zeros in the lemniscate L (a, R). In this case, the number of factors in (11) will be
finite.

Now we study the convergence of the Blaschke product (11).We have

)
R |'l/)(an7a)| R2 —w(an,a)¢(zva)1 B

(0] Vo)~ bza)
1/J(an,a) R? — 1/1(%, a)¢(27a)

Y (an, a)| +

(Pan,a) - M%@)w%ﬁnwa@]
B2~ §(an, a)i(z,a)

Y (an, @) = R?  |¢(an,a)| (2, a)
R2 *E(anaa)w(zaa) w(a"’a) .

[¥(an, a)| +

Here

(@ a)] lana) = v(za) _

w(an, a) R? — Z/}(ana a’)/l/}(zﬂ a)

1 o (1 (an, @) + B o)
- R {R—i_(d}( n )| R){1+w(an7a) [Rz—@(ama)d)(z,a)] 1/J( ’ )}}

Therefore, the considered infinite product converges uniformly inside {|¢(z,a)| < R} \ {an}
if and only if

> (R = [¢(an,a)]) < oco.

n=1
Note that
2 2
R Qf(_an;a)_w(zﬂa) — |,(/J(a’n7z)|2 5 <1VZ€L(G,R)
R Y(an,a)y(z,a) ¥ (an, )‘ +|R = P(an,a)|” + |R = (an, a)l

Under the condition -

> (R~ [(an, a)]) < o0,

n=1
the A (z)-analytic Blaschke product B (z) in L (a, R) does not exceed 1 in absolute value, i.e.,
[B(z)] <1
Let > (R — |[¢ (an,a)]) < o0, so that
n=1

N |’(/)(CL7HCL)| w<an7a) _1/’('37‘1)
H R 1/1(%, a) R2 — E(awua)w(zv CL)

n=1
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converges in L (a, R) and represents the Blaschke product B (z), which is A(z)-analytic in
L(a,R), |B(z)| < 1.

The following assertion implies that at almost all points of the boundary OL (a, R) the
Blaschke product has radial limits

Lemma 4.1. If o function f € Oa(L(a, R)) and is bounded in L(a,R), |f| < M, then it has

the radial limit lim  f(z) almost everywhere on OL (a, R).
2£€0L(a,R)

Proof. We expand the function f (z) into a series: f(z) = Y. ¢cp¥™ (z,a),2z € L(a, R) (see [9]).
n=0

x .
First we show that 3 |¢,|*R2" < co. Setting ¢ (z,a) = re't, we have
n=1

FEP=F()FE) =D car™e™ Y e ™ =3 "> ¢ieae™™@ | " r <R
n=0 n=0 n=0 \7=0

The series

oo n
— it(2j—n)t n
E E CjCn_je r
n=0

converges uniformly in [0, 27r] and integrating it, we get

/ F ()P |dz+ A(z)dz| = Z|cn|2 .
[(z,a)|=r

That is why
Z eal?r" < M.

Since this inequality is true for all r < R, we have
o
Z |cn|2R2'rL < M2
n=0

&)
According to the Riesz—Fischer theorem, it follows from the condition Y \R"cn|2 < oo that
n=1

00 . x . 2

> cpR™e"™ = p(t) € Lo[0;27] is a Fourier series. So that [ | Y ¢, R™e"™ — (t)| dt = 0.
n=-—00 [0;27] ' n=1
This means that the series is Cesaro summable and converges to ¢ (t) for almost all ¢ € [0; 27].
But then it is Abel summable (see [8,12]), i.e

lim f(z)= lim Zc rietnt
z—E€€0L(a,R) r—R—0

for almost all ¢ € [0, 27]. O
The Lemma just proven states that for almost all £ € 9L (a, R) the limit function

li B = B*
z~>§€g£1(a,R) (Z) (5)

exists.
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Theorem 4.2. |B*(z)] % 1 holds almost everywhere on L (a, R).

(a,R
Proof. Without loss of generality, we can assume that all points a, # a (otherwise we would

B
consider the function B* (z) = _B() where N is the order of zero of the function B(z) at the

N (z,a)’
point a). Then In|B(a)| = > In W} ( R )] and the fact that > (R — |¢ (an,a)|) < oo implies
n=1

n=1
1 [¥ (an, )]
1
; nc—o 00

Take r € (0; R) not equal to any of the values |¢(an,a)|. Then, according to the analogue of the
Jensen formula

1
2rr

/ In|B(2)||dz + A(2)dz] = |B(a)| = ) [ (@ )

r
Iw(zva):Tl W(an7a)|<r
Substituting
In|B(a)| = Z] a”’

we get
> n ny 1
Z L: > 1HM+— / In|B (z)||dz + A(z) dz|,
n=1 [¥(an,a)|<r [ (z,a)=r|

or

an, % (an, a)|
In|B(z)||dz + A(2)dz| = Zl > In ==

2mr
[¢(z,a)|=r [¢(an,a)|<r

We fix some number ng such that

n=ng+1
and take r < R so large that for n € {1,2,...,no} all points of z, lie in L (a,r). Then from the
previous relation we get

n

1 ana . ‘17& (anva)l

% (2.0)|=r n=t

From here it follows that

1

—_— zZl > —

o / In|B (2)||dz + A (z) dz| > —2e,
[¢(z,a)|=r

if we take r < R close enough to R. Due to the arbitrariness of the number € > 0, we obtain
1
lim / In|B ()] |dz + A (=) dz| > 0. (12)

r—R—0 27T
[¢(z,a)|=r
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But from the conditions lim  B(z) = B*(¢) almost everywhere and In|B(z)| < 0,
z—E&€0L(a,R)

1
z € L(a,r) according to (12) we get —— [ In|B(z)||dz + A(z)dz| = 0. This means
278 1y (a0 =R
that |B* (z)] % 1. O
OL(a,R)

Theorem 4.3 (An analogue of Blaschke’s theorem). Let the function f(z) € Oa(L(a, R)) and
ai,asas,... be the zeros of the function f in L(a,R) , rn = |¥(a, an)|. If

1
M= sup —— / In|f(2)] |dz + Adz| < 0o
0<r<R 2777°|w( e

then
> (R—[¢(an,a)]) < oo

n

and the Blaschke product

_ . |¢(a7an)| w(aaa/n) _w(27a')
B(Z) - ];[ r ’l/)(a, a”) R? — J(CL, an)w(zv a)
is A (z)-analytic in {|Y(z,a)| < R}, f(z) = B(z)-G(z), where the function G(z) is A (z)-analytic
and has no zeros at {|(z,a)| < R}.

Proof. Without loss of generality, we can assume that f(a) # 0. Then by the Jensen formula

1 n
— / ln|f(z)\|dz—|—Acﬁ|:lan), r <R,
2mr T1r2...Tn
[9(z,a)|=r
it follows, that
r
In|—| < —In|f(a)].
wanm<r 19(@n:0)

Letting r tend to R, we get that

S <
— " |(an,a)| '
Note that the convergence of this series is equivalent to the convergence of the series

> (R—[i(an,a)]) < oo.

The existence of the Blaschke product B(z) now follows according to Theorem 3.
Finally, if we define a function G(z) in {|¢(z,a)] < R} by the formula G(z) = B
Oa(L(a, R)), then G(z) # 0 and f(z) = B(z) - G(»).
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O6o61mennas TeopeMa Beiliepimrpacca n mpou3BejieHue
Busimike nis A(z)-anamurudeckux GyHKIHAR

Myxaite HemaTustaesa
IHIoxpyx XypcaHnos

HanmonaneHsblit yHuBEepCHTET Y306eKHnCTaHA
Tamxkent, Y3bekucran

Amnnporanusi. Mbl paccmarpusaeM A(z)-ananurudeckue GyHKIuU B ciydae, korjga A(z) sBisercsa aH-
turonomopduoit dynkuumeit. B crarbe s A(z)-anamurmaeckux QyHKIUN TOKA3aHBI AHAJIOT TEOPEMBI
Beitepmrpacca u anajior reopeMbl Bursiike.

KuroueBbie cioBa: A (z)-aHanunrudeckast QyHKIMsI, HHTerpajbHas TeopeMma Ko, Teopema Beitep-
mrpacca, TeopeMa llencerna, Teopema Bisankn.
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