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Abstract. In this article, the power of common goodness-of-fit (GoF) statistics is based on the em-
pirical distribution function (EDF) where the critical values must be determined by simulation. The
statistical power of Kolmogorov–Smirnov Dn, Cramér-von Mises W 2, Watson U2, Liao and Shimokawa
Ln, and Anderson–Darling A2 statistics were investigated by the sample size, the significance level, and
the alternative distributions, for the generalized Rayleigh model (GR). The exponential, the Weibull,
the inverse Weibull, the exponentiated Weibull, and the exponentiated exponential distributions were
considered among the most frequent alternative distributions.
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Introduction
Statistical analysis means investigating trends, patterns, and relationships using quantitative

data. It is an important research tool used by scientists, governments, businesses, and other
organizations. Many statistical analysis tools rely on assumptions of underlying distributions.
The goodness-of fit problem is to validate such assumptions before applying those tools to data,
therefore it arises in applications of many statistical approaches. Many goodness of-fit tests
(GoF) have been developed, and most of them are based on the empirical distribution functions
(EDF), the old one, being the Kolmogorov–Smirnov (K-S) statistic Dn (Kolmogorov 1933).
Later, Cramér-Von Mises W 2 statistics have been shown to be more powerful than a K-S test
statistic (Dn) against a large class of alternative hypotheses. The Anderson–Darling statistic
A2 (Anderson and Darling 1954) can be considered as a limiting distribution of W 2 and it gives
more weight to the tails than the statistic (Dn) does (see Darling 1957). Watson (1961a, 1962b)
proposed a new test statistic U2 as a generalization of Cramér-Von Mises test statistic W 2.
Another new test statistic Ln, is developed by Liao et Shimokawa (1999) and applied for testing
the GoF.

Let (X1, . . . , Xn) be a random sample from the distribution F (x) = P (X 6 x). The main
problem is that of testing hypotheses about F of the form:{

H0 : F (x) = F0(x)
H1 : F (x) ̸= F0(x)

,

where F0(x) is a known distribution function.
The EDF is defined as

Fn(x) =
number of observations 6 x

n
=

1

n

n∑
i=1

I(Xi 6 x), (1)
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where I is an indicator function. Almost surely, the EDF Fn(x) converges uniformly to the
distribution function F (x) (more detail, see the Glivenko-Cantelli theorem).

Many authors have addressed the problem of testing the null hypothesis in (1) when X follows
a specified model, The EDF statistics are not distributed, but in the case of unknown param-
eters, their distribution will depend not only on the sample size but also on the hypothetical
distribution. Using numerical methods, they developed modified test statistics, replacing the
unknown parameters with their estimates. We find, for example, both Hassan from generalized
exponential distribution (2005) and Al-Zahrani from Top-Leone distribution (2012) are obtained
critical values for GoF tests based on a random sample and on the EDF tests. According to the
critical tables which have been obtained by certain authors such as for example (for the two-
and three parameter Weibull distributions (Evans, Johnson, and Green 1989), for the general-
ized Frechet distribution (Abd-Elfattah, Fergany, and Omima 2010) for the double Exponential
distribution (Lemeshko and Lemeshko 2011a), it is particular that the statistic A2 of AD test is
the most powerful EDF test.

The generalized Rayleigh (GR) distribution plays an important role in the analysis of reli-
ability and survival data (see, Kundu and Raqab 2007, Rao and Gadde Srinivasa 2014). This
distribution was introduced by Surles and Padgett (2001). Originally, Mudholkar and Srivastava
(1993), Mudholkar and al. (1995) proposed several distributions called the Burr distributions,
whose generalized Rayleigh (GR) distribution is a special case of those of Burr Type X. Depend-
ing on the values of the parameters, Kundu and Raqab (2005) used different estimation methods
for simple data so that Al-Khedhairi et al. (2007) calculated the estimators on grouped data and
censored data. Fathipour et al. (2013) and Rao (2014) interested in estimating the weakness
of the components described by GR distributions. Note that modified chi-square goodness-of-fit
tests for this distribution have been developed for complete data and for censored data (D. Tilbi
and Seddik-Amour 2017).

In this article, we explore the GoF for the generalized Rayleigh model with unknown param-
eters. After replacing the unknown parameters by their maximum likelihood estimates, we use
R software and Monte Carlo methods, to provide tables of GoF critical values of the modified
statistics Dn, Ln,W

2
n , U

2
n and A2

n based on the FDE for this model. Finally, the power of these
statistics is studied using alternative distributions (Weibull and exponential).

1. Generalized Rayleigh model

The Rayleigh distribution is widely used to model events that occur in different fields such
as medicine, social and natural sciences. For instance, it is used in the study of various types
of radiation, such as sound and light measurements. It is also used as a model for wind speed
and is often applied to wind-driven electrical generation. Recently, Surles and Padgett (2001)
considered the two parameter Burr Type X distribution by introducing a shape parameter and
correctly named it as the generalized Rayleigh (GR) distribution. This distribution was studied
by Mohammad Z. Raqab and Mohamed T. Madi (2011). If the random variable X has a two
parameter GR distribution, then it has the cumulative distribution function (cdf)

F (x;α, λ) = (1− e−(λx)2)α, x > 0, α > 0, λ > 0, (2)

and probability density function (pdf)

f(x;α, λ) = 2αλ2xe−(λx)2(1− e−(λx)2)α−1, x > 0, α > 0, λ > 0, (3)

where α and λ are shape and inverse scale parameters, respectively. We denote the GR dis-
tribution with shape parameter α and inverse scale parameter λ as GR(α, λ). Its hazard and
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reliability functions are

h(x;α, λ) =
2αλ2xe−(λx)2(1− e−(λx)2)α−1

1− (1− e−(λx)2)α
. (4)

S(x;α, λ) = 1− (1− e−(λx)2)α. (5)

1.1. Maximum likelihood estimates
Suppose that X1, X2,∆∆∆, Xn is a random sample from GR(α, λ). Then the log-likelihood

function of the observed sample is

L(x;α, λ) = n ln 2 + n lnα+ 2n lnλ+

n∑
i=1

lnxi − λ2
n∑

i=1

x2
i + (α− 1)

n∑
i=1

ln(1− e−(λx)2). (6)

The MLEs of α and λ say α̂ and λ̂, respectively, can be obtained as the solutions of the following
equations

∂L

∂α
=

n

α
+

n∑
i=1

ln(1− e−(λx)2) = 0. (7)

∂L

∂λ
=

2n

λ
− 2λ

n∑
i=1

x2
i + 2λ(α− 1)

n∑
i=1

x2e−(λx)2

1− e−(λx)2
= 0. (8)

We obtain
α̂ = − n∑n

i=1 ln(1− e−(λx)2)
, (9)

and λ̂ can be obtained as the solution of the nonlinear equation g(λ) = 0, where

g(λ) =
∂L(x;α, λ)

∂λ
=

2n

λ
− 2λ

n∑
i=1

x2
i − 2λ

(
n∑n

i=1 ln(1− e−(λx)2)
+ 1

)
n∑

i=1

x2e−(λx)2

1− e−(λx)2
.

Therefore, λ̂ can be obtained as solution of the nonlinear equation of the form H(λ) = λ, where

H(λ) = 2n

[
2λ

n∑
i=1

x2
i − 2λ

(
n∑n

i=1 ln(1− e−(λx)2)
+ 1

)
n∑

i=1

x2e−(λx)2

1− e−(λx)2

]−1

. (10)

Since, λ̂ is a fixed point solution of the non-linear equation (10), therefore, it can be obtained
using an iterative scheme as H(λj) = λj+1, where λj is the jth iterate of λ̂. The iteration
procedure should be stopped when |λj − λj+1| is sufficiently small. Once we obtain λ̂, then α̂
can be obtained from (9).

2. GoF statistics based on the EDF
A goodness of fit test based on the empirical function (EDF), when the parameters are

estimated, is called a modified goodness of fit test. The most popular nonparametric goodness-
of-fit tests, namely; the Kolmogorov–Smirnov Dn, Cramér-von-Mises W 2, Anderson–Darling A2,
Watson U2, and Liao–Shimokawa Ln test statistics. The critical values of the modified statistics
did not exist in the statistical literature prior to the last decades. Through simulations, some
authors have provided critical table values for classical models and some of their generalizations
(for more details, see Lemeshko and Lemeshko 2011b). In this paper, using the Monte Carlo
method and the R software, we offer tables of critical values of Dn, W 2, A2, U2, and Ln statistics
for the generalized Rayleigh model when the parameters are unknown.
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2.1. K-S test statistics Dn

The most popular GoF test is the Kolmogorov–Smirnov K-S test. The test statistic Dn is
defined as

Dn = max[D+;D−],

where

D+ = max
16i6n

[
i

n
− F (xi)

]
,

and

D− = max
16i6n

[
F (xi)−

i− 1

n

]
,

with xi is the order statistic. For Rayleigh model GR(α, λ) the Dn statistic becomes

D+ = max
16i6n

[
i

n
− (1− e−(λ̂xi)

2

)α̂
]
, (11)

and

D− = max
16i6n

[
(1− e−(λ̂xi)

2

)α̂ − i− 1

n

]
, (12)

where α̂ and λ̂ are the maximum likelihood parameter estimators of the unknown parameters.

2.2. C-VM test statistics W 2

The Cramér-von Mises test is an alternative to the Kolmogorov–Smirnov test (1933). C-VM
test statistic W 2 may be considered as the sum of the quadratic differences between the empirical
distribution function (EDF) and the theoretical cumulative distribution function (CDF). It is
defined as

W 2 =
1

12n
+

n∑
i=1

(
F (xi)−

2i− 1

2n

)2

. (13)

So, for the GR(α, λ) distribution, we obtain

W 2
n =

1

12n
+

n∑
i=1

(
(1− e−(λ̂xi)

2

)α̂ − 2i− 1

2n

)2

. (14)

2.3. A-D test statistics A2

The A-D test statistic A2 was developed by Anderson and Darling (1954) as a limiting
distribution of the test of C-VM as in n→ ∞.
The A2 is given by

A2 = −n− 1

n

n∑
i=1

(2i− 1)
(
ln(F (xi)) + ln(1− F (xi))

)
. (15)

We obtain the test statistic for GR(α, λ) as follows

A2
n = −n− 1

n

n∑
i=1

(2i− 1)
(
ln((1− e−(λ̂xi)

2

)α̂) + ln(1− (1− e−(λ̂xi)
2

)α̂)
)
. (16)
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2.4. W test statistics U2

Watson test statistic U2 was developed for distributions which are cyclic and in 1961 it is
based on the empirical distribution function. U2 is a generalization of the C-VM test statistic.
It is defined by

U2 = W2 +

n∑
i=1

(
F (xi)

n
− 1

2

)2

. (17)

The explicit form of this statistic for the GR(α, λ) model is

U2
n =

1

12n
+

n∑
i=1

(
(1− e−(λ̂xi)

2

)α̂ − 2i− 1

2n

)2

+

n∑
i=1

(
(1− e−(λ̂xi)

2

)α̂

n
− 1

2

)2

. (18)

2.5. LS test statistics Ln

The Liao–Shimokawa statistic measures the average of all weighted distances over the entire
range of the data. For more details, we refer to Liao and Shimokawa (1999). The test statistic
is given by

Ln =
1√
n

n∑
i=1

max
i

(
i

n
− F (xi), F (xi)−

i− 1

n

)
√
F (xi)[1− F (xi)]

. (19)

For the distribution of GR(α, λ), Ln becomes

Ln =
1√
n

n∑
i=1

max
i

(
i

n
− (1− e−(λ̂xi)

2

)α̂, (1− e−(λ̂xi)
2

)α̂ − i− 1

n

)
√
(1− e−(λ̂xi)2)α̂[1− (1− e−(λ̂xi)2)α̂]

. (20)

3. Critical values

The purpose of this paper is to provide critical adjustment values of the modified statistics Dn,
A2

n, W 2
n , U2

n and Ln for the generalized Rayleigh distribution when the parameters are unknown
and replaced by their maximum likelihood estimates of the non grouped data. For this, we use
Monte Carlo simulation method and R software to generate 10, 000 samples of different sizes n.

Under the null hypothesis H0 that a sample X = X1, X2, . . . , Xn belongs to generalized
Rayleigh model, we calculated the values of the various fit testing statistics mentioned above.
To this end, the following steps are used to calculate the critical values for each statistic of the
fit tests at different levels of significance α = 0.01, 0.05, 0.10, 0.15 and 0.25 and sample sizes
n = 5, 10, 15, 20, 30, 50 and 100:

Step 1. Generate n random variables U(0, 1) independent U1, U2, . . . , Un.

Step 2. For given values of the parameters α and λ, we set xi = F−1(Ui).
Then (x1, x2, . . . , xn) is the required sample size n of the GR distribution.

Step 3. Use the generated sample to estimate the unknown parameters using the maximum
likelihood estimators given by (9) and (10).

Step 4. The unknown parameter estimators were used to determine the hypothetical cumu-
lative distribution function of the GR distribution.

Step 5. The statistical tests Dn, Ln,W
2
n , U

2
n and A2

n mentioned above are calculated for each
generation random sample of different sizes.
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Step 6. This procedure was repeated 10, 000 times independently. Therefore, we got 10, 000
values for each proposed test statistic. These values have been classified at different levels of
significance 0.01, 0.05, 0.10, 0.15 and 0.25 are shown in the Tab. 1.

Table 1. Critical values for K-S, C-VM, A-D, W and LS tests

Sample test Significance level α
size n statistics 0.01 0.05 0.10 0.15 0.25

5 Dn 0.0000 0.0006 0.0020 0.0053 0.0300
W 2

n 0.0006 0.0061 0.0185 0.0312 0.0593
A2

n 0.0187 0.0700 0.1400 0.1990 0.3590
U2
n 0.0005 0.0044 0.00102 0.0199 0.0412

Ln 0.0138 0.0449 0.0655 0.1022 0.1114
10 Dn 0.0000 0.0004 0.0017 0.0050 0.0111

W 2
n 0.0004 0.0054 0.0182 0.0309 0.0587

A2
n 0.0156 0.0706 0.1359 0.1986 0.3840

U2
n 0.0004 0.0031 0.0099 0.0185 0.0391

Ln 0.0125 0.0395 0.0592 0.0965 0.1072
15 Dn 0.0000 0.0004 0.0016 0.0049 0.0101

W 2
n 0.0003 0.0048 0.0163 0.0305 0.0575

A2
n 0.0152 0.0762 0.1293 0.1836 0.3570

U2
n 0.0004 0.0029 0.0079 0.0178 0.0352

Ln 0.0120 0.0345 0.0522 0.0960 0.1066
20 Dn 0.0000 0.0004 0.0015 0.0047 0.0100

W 2
n 0.0003 0.0043 0.0140 0.0304 0.0569

A2
n 0.0147 0.0657 0.1297 0.1788 0.3470

U2
n 0.0004 0.0026 0.0072 0.0174 0.0332

Ln 0.0115 0.0338 0.0452 0.0865 0.0987
30 Dn 0.0000 0.0003 0.0011 0.0045 0.0100

W 2
n 0.0003 0.0042 0.0133 0.0289 0.0565

A2
n 0.0145 0.0700 0.1150 0.1755 0.1986

U2
n 0.0003 0.0020 0.0063 0.0170 0.0325

Ln 0.0111 0.0332 0.0434 0.0799 0.0977
50 Dn 0.0000 0.0003 0.0009 0.0034 0.0079

W 2
n 0.0002 0.0039 0.0126 0.0286 0.0559

A2
n 0.0129 0.0561 0.1132 0.1707 0.2590

U2
n 0.0002 0.0014 0.0039 0.0143 0.0291

Ln 0.0101 0.0245 0.0398 0.0592 0.0923
100 Dn 0.0000 0.0001 0.0006 0.0030 0.0067

W 2
n 0.0001 0.0032 0.0120 0.0284 0.0530

A2
n 0.0125 0.0524 0.1087 0.1585 0 .2500

U2
n 0.0001 0.0012 0.0036 0.0137 0.0278

Ln 0.0097 0.0231 0.0341 0.0564 0.0878

From the table, we noticed that:
•For each statistical test, the power increases monotonically as the sample size increases and

the level of significance increases.
•The Anderson-Darling A2

n statistical test is the most powerful of the proposed fit tests.
•The statistical test of Komogorov-Smirnov Dn is the least powerful among the fit tests

proposed.
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4. Simulation study
In this section, we performed a power comparison between Dn, Ln,W

2
n , U

2
n and A2

n statistics
for the GR model with unknown parameters. For this, we simulated 10, 000 random samples of
different sizes n = 10, 20, 50 and 100, for each test at the significance level α = 0.05 and from
each of the alternative distributions:

1. The Exponential distribution Exp(λ), with probability density function

fX(x, λ) = λ exp(−λx),

and its cumulative distribution function is

FExp(x, λ) = 1− exp(−λx). (21)

2. The Weibull distribution Wei(γ, α), with probability density function

f(x; γ, α) =
γ

α

(x
α

)γ−1

exp(−(
x

α
)γ),

and its cumulative distribution function is

FWei(x; γ, α) = 1− exp
(
−
(x
α

)γ)
. (22)

3. The Inverse Weibull distribution InWei(α, γ), with probability density function

f(x; γ, α) = γαγx−(γ+1) exp
(
−
(

α
x

))−γ

,

and its cumulative distribution function is

FInWei(x; γ, α) = exp
(
− α

( 1
x

)−γ)
. (23)

4. The Exponentiated Weibull distribution ExpWei(α, γ, λ), with probability density function

f(x; γ, α, λ) = αγλγxγ−1(1− exp(−λxγ))α,

and its cumulative distribution function is

FExpWei(x; γ, α, λ) = (1− exp(−λxγ))α. (24)

5. The Exponentiated Exponential distribution EE(α, λ), with probability density function

fEE(x;α, λ) = αλ(1− exp(−λx))α−1 exp(−λx),

and its cumulative distribution function is

FEE(x;α, λ) = (1− exp(−λx))α. (25)

The power results of tests statistics Dn, Ln,W
2
n , U

2
n and A2

n, for each alternative distribution at
significance level α = 0.05 are presented in Tab. 2.

From the table, we notice that:
•According to the test power values for the different statistics, are indicating that the gener-

alized Rayleigh model is distinct from competing distributions of all sizes of the sample.
•The power of the test statistic increases as the sample size increases.
The modified test statistics Dn, Ln,W

2
n , U

2
n and A2

n provided in this work and their critical
values can detect the difference betwen the GR model and different alternatives with high Power.
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Table 2. Power of statistics tests for GR distribution where Exp,Wei, InWei,ExpWei and EE
are the alternative distributions

Alternatives test Sample size n
statistics 10 20 50 100

Dn 1.0000 1.0000 1.0000 1.0000
W 2

n 0.1016 0.3653 0.9119 0.9997
Exponential A2

n 0.4158 0.7834 0.9976 1.0000
Exp(1) U2

n 0.1004 0.3202 0.9164 0.9786
Ln 0.1059 0.3728 0.9993 1.0000
Dn 1.0000 1.0000 1.0000 1.0000
W 2

n 0.0995 0.3542 0.9080 0.9998
Weibull A2

n 0.0644 0.0603 0.0539 0.0495
Wei(1, 2) U2

n 0.0244 0.0282 0.0393 0.0450
Ln 0.0159 0.0228 0.0324 0.0445
Dn 0.9249 0.9992 1.0000 1.0000
W 2

n 0.1059 0.3101 0.9463 0.9459
Inverse Weibull A2

n 0.8286 0.9324 0.9981 1.0000
InWei(1, 2) U2

n 0.1083 0.3089 0.9059 0.9228
Ln 0.1055 0.3076 0.9034 0.9210
Dn 0.9999 0.9996 1.0000 0.9999
W 2

n 0.1035 0.3588 0.9997 0.9995
Exponentiated Weibull A2

n 0.9999 0.9998 0.9992 0.8853
ExpWei(1, 2, 3) U2

n 0.1030 0.3438 0.9127 0.9960
Ln 0.1011 0.3298 0.9037 0.9860
Dn 1.0000 1.0000 1.0000 1.0000
W 2

n 0.1055 0.3676 0.9087 0.9994
Exponentiated Exponential A2

n 0.0592 0.0726 0.0639 0.0597
EE(1, 2) U2

n 0.0548 0.0526 0.0611 0.0684
Ln 0.0539 0.0523 0.0601 0.0672

Conclusion

We have provided critical values for the statistics Dn, Ln,W
2
n , U

2
n and A2

n for the generalized
Rayleigh model when the parameters are unknown. The 1 and 2 tables given in this manuscript
can be used to check whether the sample data fits this pattern which helps practitioners to choose
the appropriate pattern for their analysis.

We would like to thank the editorial board and referees for their suggestions useful which
improved this manuscript greatly.
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Сравнение мощностей тестов согласия EDF
Джахида Тилби

Кафедра математики
Лаборатория вероятностей и статистики LaPS

Скикда, Алжир

Аннотация. В этой статье сила общей статистики согласия (GoF) основана на эмпирической функ-
ции распределения (EDF), где критические значения должны быть определены путем моделиро-
вания. Статистическая мощность Колмогорова–Смирнова Dn, Краме́р-фон Мизеса W 2, Ватсона
U2, Ляо и Симокавы Ln , и статистика Андерсона–Дарлинга A2 исследовалась по размеру выбор-
ки, уровню значимости и альтернативным распределениям для обобщенной модели Рэлея (GR).
Экспоненциальное, Вейбулла, обратное Вейбулла, экспоненциальное Вейбулла и экспоненциальное
распределения были рассмотрены среди наиболее частых альтернативных распределений.

Ключевые слова: обобщенное распределение Рэлея, критерий Колмогорова–Смирнова, крите-
рий Крамера-фон Мизеса (C-VM), критерий Андерсона–Дарлинга (AD), критерий Ватсона (W),
критерий Ляо и Симокавы (LS).
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