EDN: UNTTNT

УДК 512.6

Identities Related to Homo-derivation on Ideal in Prime Rings

Nadeem ur Rehman* Hafedh Alnoghashi ${ }^{\dagger}$
Department of Mathematics Aligarh Muslim University
Aligarh, India

Received 20.11.2022, received in revised form 25.12.2022, accepted 20.02.2023

Abstract

This study aims to investigate the commutativity of a prime ring \mathscr{R} with a non-zero ideal \mathscr{I} and a homo-derivation ϑ that satisfies certain algebraic identities. We also provided some examples of why our results hypothesis is essential.

Keywords: prime ring, homo-derivation.
Citation: N. ur Rehman, H. Alnoghashi, Identities Related to Homo-derivation on Ideal in Prime Rings, J. Sib. Fed. Univ. Math. Phys., 2023, 16(3), 370-384. EDN: UNTTNT.

1. Introduction

Throughout this article, \mathscr{R} denotes a ring with centre Z. A ring \mathscr{R} is said to be a prime ring if $\forall a, b \in \mathscr{R}, a \mathscr{R} b=\{0\}$ implies $a=0$ or $b=0$. For $a, b \in \mathscr{R}$, the symbol $[a, b]$ (resp. $a \circ b$) denotes the (resp. anti-) commutator $a b-b a$ (resp. $a b+b a$). An additive mapping $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ is said to be a homo-derivation if $\vartheta(a b)=\vartheta(a) \vartheta(b)+\vartheta(a) b+a \vartheta(b) \forall a, b \in \mathscr{R}$, [14]. The only additive map which is both derivation and homo-derivation on prime ring is the zero map. If $\mathscr{D} \subseteq \mathscr{R}$, then a mapping $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ preserves \mathscr{D} if $\vartheta(\mathscr{D}) \subseteq \mathscr{D}$. A map $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ is called zero-power valued on \mathscr{D} if ϑ preserves \mathscr{D} and if for all $a \in \mathscr{D}$, there is a positive integer $m(a)>1$ such that $\vartheta^{m(a)}=0$, El Sofy [14].

In 2001, Ashraf and Rehman [13] showed that if \mathscr{R} is a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R} and $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ is a derivation of \mathscr{R}, then \mathscr{R} is commutative if \mathscr{R} satisfies any one of the following: $\vartheta(a b) \pm a b \in Z, \vartheta(a b) \pm b a \in Z, \vartheta(a) \vartheta(b) \pm a b \in Z, \vartheta(a) \vartheta(b) \pm b a \in Z$, for all $a, b \in \mathscr{I}$.

In 2016, Asmaa Melaibari et. al. [2] showed that if \mathscr{R} is a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R}, and $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ is a non-zero homo-derivation of \mathscr{R}, then \mathscr{R} is commutative if $\vartheta([a, b])=0$ for all $a, b \in \mathscr{I}$. Moreover, if $\operatorname{char}(\mathscr{R}) \neq 2, \vartheta$ is zero-power valued on \mathscr{R}, and $\vartheta([a, b]) \in Z$ for all $a, b \in \mathscr{R}$, then \mathscr{R} is commutative.

In 2018, Alharfie and Muthana [7] showed that if \mathscr{R} is a prime ring of characteristic $\neq 2, \mathscr{I}$ a non-zero left ideal of \mathscr{R}, and ϑ a homo-derivation of \mathscr{R}, which is a zero-power valued on \mathscr{I}, then \mathscr{R} is commutative if \mathscr{R} satisfies any one of the following: $a \vartheta(b) \pm a b \in Z, a \vartheta(b) \pm b a \in Z$, $a \vartheta(b) \pm[a, b] \in Z, \vartheta(b) a \pm[a, b] \in Z,[\vartheta(a), b] \pm a b \in Z,[\vartheta(a), b] \pm b a \in Z$, for all $a, b \in \mathscr{I}$.

[^0]In 2019, they showed that if \mathscr{R} is a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R} and $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ is a zero-power valued homo-derivation on \mathscr{I}, then \mathscr{R} is commutative if $\vartheta(a b)-a b \in Z$ for all $a, b \in \mathscr{I}$ [6, Theorem 3.1], or $\vartheta(a b)+a b \in Z$ for all $a, b \in \mathscr{I}$ [6, Theorem 3.2]. In fact, we will prove the same result in [6, Theorem 3.1] by replacing the condition " ϑ is zero-power valued" by $" \operatorname{char}(\mathscr{R}) \neq 2,^{\prime \prime}$ as in Theorem 1.2(ii). For ([6, Theorem 3.2]), they made a mistake in the proof because they replaced ϑ by $-\vartheta$, given that $-\vartheta$ is homo-derivation, but this is not true in general, take $\vartheta(a)=-a$ of any ring of characteristic $\neq 2$. So, we will prove the previous result as in Theorem 1.2(i) again. Additional references may be found at $[1,3-5,9,10,12,15-19]$.

Motivated by these results, we will investigate the commutativity of prime ring \mathscr{R} with homoderivation ϑ and a non-zero ideal of \mathscr{I} that fulfills specific algebraic identities. We also provided some examples of why our results hypothesis is essential.

Theorem 1.1. Let \mathscr{R} be a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R} and ϑ a homo-derivation of \mathscr{R} preserves \mathscr{I}. If any one of the following holds, then \mathscr{R} is commutative.
(i) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a) \vartheta(b)+a b \in Z \forall a, b \in \mathscr{I}$;
(i) $\vartheta(a) \neq-a$ and $\vartheta(a) \vartheta(b)-a b \in Z \forall a, b \in \mathscr{I}$;
(ii) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a) \vartheta(b)+b a \in Z \forall a, b \in \mathscr{I}$;
(iii) $\vartheta(a) \vartheta(b)-b a \in Z \forall a, b \in \mathscr{I}$.

Theorem 1.2. Let \mathscr{R} be a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R} and ϑ a homo-derivation of \mathscr{R} preserves \mathscr{I}. If any one of the following holds, then \mathscr{R} is commutative.
(i) ϑ is zero-power valued on \mathscr{I} and $\vartheta(a b)+a b \in Z \forall a, b \in \mathscr{I}$;
(ii) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-a b \in Z \forall a, b \in \mathscr{I}$;
(iii) $\vartheta(a b)+b a \in Z \forall a, b \in \mathscr{I}$;
(iv) $\vartheta(a b)-b a \in Z \forall a, b \in \mathscr{I}$.

The next example demonstrates that the hypothesis ϑ is zero-power valued on \mathscr{I} in Theorem $1.2(\mathrm{i})$ is essential.
Example 1.1. Let \mathbb{Z} be the ring of all integers, $\mathscr{R}=M_{2}(\mathbb{Z}), \mathscr{I}=2 \mathscr{R}$, and define $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ by $\vartheta(a)=-a$. Then it is easy to see that ϑ is a homo-derivation such that $\vartheta(a b)+a b \in Z \forall$ $a, b \in \mathscr{I}$, but ϑ is not zero-power valued on \mathscr{I} and \mathscr{R} is not commutative.

The next example shows that $\operatorname{char}(\mathscr{R}) \neq 2$ cannot be omitted in the hypothesis of Theorem 1.2(ii).

Example 1.2. Let $\mathscr{R}=M_{2}\left(\mathbb{Z}_{2}\right), \mathscr{I}=\mathscr{R}$, and define $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ by $\vartheta(a)=-a$. Moreover, ϑ is a homo-derivation such that $\vartheta(a b)-a b \in Z \forall a, b \in \mathscr{I}$, but char $(\mathscr{R})=2$ and \mathscr{R} is not commutative.

Theorem 1.3. Let \mathscr{R} be a prime ring, \mathscr{I} a non-zero ideal of \mathscr{R} and ϑ a non-zero homo-derivation of \mathscr{R} preserves \mathscr{I}. If any one of the following holds, then \mathscr{R} is commutative.
(i) $\vartheta(a) \neq-a$ and $\vartheta(a b)+\vartheta(a) \vartheta(b) \in Z \forall a, b \in \mathscr{I}$;
(ii) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-\vartheta(a) \vartheta(b) \in Z \forall a, b \in \mathscr{I}$;
(iii) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)+\vartheta(b) \vartheta(a) \in Z \forall a, b \in \mathscr{I}$;
(iv) $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-\vartheta(b) \vartheta(a) \in Z \forall a, b \in \mathscr{I}$.

The next example demonstrates that Theorem 1.3(ii) cannot be satisfied without $\operatorname{char}(\mathscr{R}) \neq 2$.
Example 1.3. As in Example 1.2, we see that $\vartheta(a b)-\vartheta(a) \vartheta(b) \in Z, \mathscr{R}$ is prime and char $(\mathscr{R})=2$, but \mathscr{R} is not commutative.

The next example demonstrates how essential primeness is to our results.
Example 1.4. Let $\mathscr{R}=\left\{\left(\begin{array}{cc}r & s \\ 0 & t\end{array}\right): r, s, t \in \mathbb{Z}\right\}, \quad \mathscr{I}=\left\{\left(\begin{array}{cc}0 & s \\ 0 & 0\end{array}\right): s \in \mathbb{Z}\right\}$, and let us define $\vartheta: \mathscr{R} \rightarrow \mathscr{R}$ by $\vartheta(a)=-a$. Then it is easy to see that ϑ is a homo-derivation on \mathscr{R}, which satisfies the next conditions $\vartheta(a) \vartheta(b)+a b \in Z, \vartheta(a) \vartheta(b)+b a \in Z, \vartheta(a b)-a b \in Z, \vartheta(a b)+b a \in Z$, $\vartheta(a b)-b a \in Z, \vartheta(a b)-\vartheta(a) \vartheta(b) \in Z, \vartheta(a b)+\vartheta(b) \vartheta(a) \in Z$, and $\vartheta(a b)-\vartheta(b) \vartheta(a) \in Z, \forall a, b \mathscr{I}$, but \mathscr{R} is not commutative.

2. Preliminaries

The following fundamental identities that satisfy $\forall a, b, c \in \mathscr{R}$:

$$
\begin{gathered}
{[a b, c]=a[b, c]+[a, c] b} \\
{[a, b c]=b[a, c]+[a, b] c} \\
a \circ b c=(a \circ b) c-b[a, c]=b(a \circ c)+[a, b] c \\
a b \circ c=a(b \circ c)-[a, c] b=(a \circ c) b+a[b, c]
\end{gathered}
$$

will be applied without being mentioned.
To achieve our aim, we will use the next lemmas.
Lemma 2.1 ([8], Lemma 4). Let \mathscr{R} a prime ring and $\{b, a b\} \subseteq Z$. Then $a \in Z$ or $b=0$.
Lemma 2.2 ([13], Lemma 2.2). Let \mathscr{R} be a prime ring. If \mathscr{R} contains a non-zero commutative right ideal, then \mathscr{R} is a commutative ring.

Lemma 2.3 ([11], Lemma 2.5). Let \mathscr{R} be a prime ring and \mathscr{I} a non-zero ideal of \mathscr{R}. If
(i) $[a, b] \in Z$;
(ii) $a \circ b \in Z \forall a, b \in \mathscr{I}$.

Then \mathscr{R} is commutative.
Lemma 2.4. Let \mathscr{R} be a prime ring and \mathscr{I} a non-zero ideal of \mathscr{R}. For $a, b \in \mathscr{R}$, if $a \mathscr{I} b=\{0\}$, then $a=0$ or $b=0$.

Proof. Let $a, b \in \mathscr{R}$ and $a \mathscr{I} b=\{0\}$. Then $a \mathscr{I} \mathscr{R} b=\{0\}$, and so $b=0$ or $a \mathscr{I}=\{0\}$. Now, if $a \mathscr{I}=\{0\}$, then $a \mathscr{R} \mathscr{I}=\{0\}$. Hence, $a=0$ or $\mathscr{I}=\{0\}$. Since $\mathscr{I} \neq\{0\}$, we get $a=0$.

Remark 2.1. Let \mathscr{R} be a prime ring, \mathscr{I} an ideal of \mathscr{R} and ϑ a homo-derivation of \mathscr{R}. If $\vartheta(a)=a$ $\forall a \in \mathscr{I}$, then $\operatorname{char}(\mathscr{R})=2$ or $\mathscr{I}=\{0\}$.

Proof. Suppose that $\operatorname{char}(\mathscr{R}) \neq 2$. From definition of ϑ, we infer that $\vartheta(a b)=\vartheta(a) \vartheta(b)+\vartheta(a) b+$ $a \vartheta(b) \forall a, b \in \mathscr{I}$ and so $a b=a b+a b+a b$ and hence $2 a b=0$ thus $a b=0$, that is, $\mathscr{I}^{2}=\{0\}$ and since \mathscr{R} is prime, we see that $\mathscr{I}=\{0\}$.

3. The main result

Lemma 3.1. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a) \vartheta(b)+a b \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a) \vartheta(b)+a b \in Z \quad \forall a, b \in \mathscr{I} . \tag{1}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$.

$$
\begin{equation*}
\vartheta(a) \vartheta(b)+a b=0 . \tag{2}
\end{equation*}
$$

Replacing b by $b t$ in (2) and using it, where $t \in \mathscr{I}$, we have

$$
\begin{equation*}
\vartheta(a) \vartheta(b) \vartheta(t)+\vartheta(a) b \vartheta(t)=0 . \tag{3}
\end{equation*}
$$

Adding $\pm \vartheta(a) b t$ in (3) and applying (2), we get $\vartheta(a) b(\vartheta(t)-t)=0$, that is, $\vartheta(a) \mathscr{I}(\vartheta(t)-t)=\{0\}$ and by Lemma 2.4, we infer that $\vartheta(a)=0$ or $\vartheta(t)-t=0$. If $\vartheta(t)-t=0$, then $\vartheta(t)=t$ and by Remark 2.1 a contradiction. Now, in case $\vartheta(a)=0$. Using the last expression in (2), we infer that $a b=0$, and so $\mathscr{I}=\{0\}$, a contradiction.

So $\mathscr{I} \cap Z \neq\{0\}$. Substituting $b z$ for b in (1) and applying it, where $0 \neq z \in \mathscr{I} \cap Z$, we obtain

$$
\begin{equation*}
\vartheta(a) \vartheta(b) \vartheta(z)+\vartheta(a) b \vartheta(z) \in Z . \tag{4}
\end{equation*}
$$

Adding $\pm \vartheta(a) b z$ in (4), we conclude that $\vartheta(a)(\vartheta(b) \vartheta(z)+b z)+\vartheta(a) b(\vartheta(z)-z) \in Z$ and by using (1) in the last relation, we see that $[\vartheta(a) b(\vartheta(z)-z), \vartheta(a)]=0$. That is,

$$
[\vartheta(a), \vartheta(a)] b(\vartheta(z)-z)+\vartheta(a)[b(\vartheta(z)-z), \vartheta(a)]=0 .
$$

Hence,

$$
\begin{equation*}
\vartheta(a)[b(\vartheta(z)-z), \vartheta(a)]=0 \tag{5}
\end{equation*}
$$

Writing z instead of a and b by z^{\prime} in (1), respectively, where $z, z^{\prime} \in \mathscr{I} \cap Z$, we obtain

$$
\begin{equation*}
\vartheta(z) \vartheta\left(z^{\prime}\right) \in Z \tag{6}
\end{equation*}
$$

Taking z by z^{2} in (6) and applying it, we get $\vartheta(z) \vartheta(z) \vartheta\left(z^{\prime}\right) \in Z$ and by using (6) in the previous expression, we conclude $\vartheta(z) \vartheta\left(z^{\prime}\right)=0$ or $\vartheta(z) \in Z$. If $\vartheta(z) \in Z$, then from (5), we see that $(\vartheta(z)-z) \vartheta(a)[b, \vartheta(a)]=0$, that is, $(\vartheta(z)-z) \mathscr{I} \vartheta(a)[b, \vartheta(a)]=\{0\}$ and so $\vartheta(z)-z=0$ or $\vartheta(a)[b, \vartheta(a)]=0$. If $\vartheta(z)-z=0$, then

$$
\begin{equation*}
\vartheta(z)=z \neq 0 \tag{7}
\end{equation*}
$$

Now, from definition of ϑ, we have $\vartheta(z a)=\vartheta(z) \vartheta(a)+\vartheta(z) a+z \vartheta(a)$. Using (7) in the last relation, we get $\vartheta(z a)=2 z \vartheta(a)+z a$. Taking a by $z a$ in (1) and using the previous relation, we infer that $2 z \vartheta(a) \vartheta(b)+z a \vartheta(b)+z a b \in Z$. Applying (1) in the last expression, we find that $z \vartheta(a) \vartheta(b)+z a \vartheta(b) \in Z$. Thus,

$$
\begin{equation*}
(\vartheta(a)+a) \vartheta(b) \in Z \tag{8}
\end{equation*}
$$

Taking $b=z$ in (8) and using (7), we see that $\vartheta(a)+a \in Z$. Using the previous relation and Lemma 2.1 in (8), we arrive at $\vartheta(a)+a=0$ or $\vartheta(b) \in Z$. In case $\vartheta(b) \in Z$. Applying the previous relation in (1), we obtain $a b \in Z$. Putting $b=z$ in the last relation, we have $a \in Z$. Hence, $\mathscr{I} \subseteq \mathscr{R}$, and by Lemma 2.2, \mathscr{R} is commutative. Now, if $\vartheta(a)+a=0$, then $\vartheta(a)=-a$. Taking $a=z$ in the last relation and by (7), we get a contradiction.

Suppose that

$$
\begin{equation*}
\vartheta(a)[b, \vartheta(a)]=0 . \tag{9}
\end{equation*}
$$

Replacing b by $s b$ in (9) and applying it, where $s \in \mathscr{I}$, we get $\vartheta(a) s[b, \vartheta(a)]=0$, that is, $\vartheta(a) \mathscr{I}[b, \vartheta(a)]=\{0\}$ and so $\vartheta(a)=0$ or $[b, \vartheta(a)]=0$. Suppose that $[b, \vartheta(a)]=0$. Substituting $a t$ for a in the last expression and using it, where $t \in \mathscr{I}$, we conclude $\vartheta(a)[b, t]+[b, a] \vartheta(t)=0$. Taking $b=a$ in the previous expression, we see that $\vartheta(a)[a, t]=0$. Writing $b a$ instead of t in the last relation and applying it, where $b \in \mathscr{I}$, we find that $\vartheta(a) b[a, t]=0$, that is, $\vartheta(a) \mathscr{I}[a, t]=\{0\}$ and so $\vartheta(a)=0$ or $[a, t]=0$. If $[a, t]=0$, then $\mathscr{I} \subseteq Z$, and by Lemma 2.2, we get \mathscr{R} is commutative. Now, suppose that

$$
\begin{equation*}
\vartheta(a)=0 \tag{10}
\end{equation*}
$$

Applying (10) in (1), we infer that $a b \in Z$. Putting $0 \neq b=z \in \mathscr{I} \cap Z$ and by Lemma 2.1, we get $a \in Z$, and by Lemma 2.2, we obtain \mathscr{R} is commutative. Now, suppose that $\vartheta(z) \vartheta\left(z^{\prime}\right)=0$. Replacing z^{\prime} by z in the last expression, we get

$$
\begin{equation*}
\vartheta(z) \vartheta(z)=0 \tag{11}
\end{equation*}
$$

Substituting $b \vartheta(z)$ for b in (5) and using (11), we conclude $\vartheta(a)[-b \vartheta(z) z, \vartheta(a)]=0$, that is, $\vartheta(a)[b \vartheta(z), \vartheta(a)]=0$ by applying the last relation in (5), we obtain $\vartheta(a)[-b z, \vartheta(a)]=0$, that is, $\vartheta(a)[b, \vartheta(a)]=0$. As in (9), we have \mathscr{R} is commutative.

Lemma 3.2. If $\vartheta(a) \vartheta(b)-a b \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative or any homo-derivation ϑ is of the form $\vartheta(a)=-a$.

Proof. Assume that

$$
\begin{equation*}
\vartheta(a) \vartheta(b)-a b \in Z \quad \forall a, b \in \mathscr{I} . \tag{12}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$.

$$
\begin{equation*}
\vartheta(a) \vartheta(b)-a b=0 . \tag{13}
\end{equation*}
$$

Writing $b t$ instead of b in (13) and using it, where $t \in \mathscr{I}$, we see that $\vartheta(a) \vartheta(b) \vartheta(t)+\vartheta(a) b \vartheta(t)=0$. Adding $\pm \vartheta(a) b t$ in the previous expression and applying (13), we get $\vartheta(a) b(\vartheta(t)+t)=0$, that is, $\vartheta(a) \mathscr{I}(\vartheta(t)+t)=\{0\}$ and so $\vartheta(a)=0$ or $\vartheta(t)+t=0$. In case $\vartheta(a)=0$ and using it in (13), we obtain $a b=0$ and so $\mathscr{I}=\{0\}$, a contradiction. If $\vartheta(t)+t=0$, then $\vartheta(t)=-t$.

Now, in case $\mathscr{I} \cap Z \neq\{0\}$. Replacing b by $b z$ in (12) and applying it, where $0 \neq z \in \mathscr{I} \cap Z$, we have

$$
\begin{equation*}
\vartheta(a) \vartheta(b) \vartheta(z)+\vartheta(a) b \vartheta(z) \in Z . \tag{14}
\end{equation*}
$$

Adding $\pm \vartheta(a) b z$ in (14), we conclude $\vartheta(a)(\vartheta(b) \vartheta(z)-b z)+\vartheta(a) b(\vartheta(z)+z) \in Z$. Using (12) in the last relation, we obtain

$$
\begin{equation*}
\vartheta(a)[b(\vartheta(z)+z), \vartheta(a)]=0 . \tag{15}
\end{equation*}
$$

Now as Lemma 3.1 in Eq. (5), we have \mathscr{R} is commutative or $\vartheta(z)+z=0$. If $\vartheta(z)+z=0$, then $\vartheta(z)=-z \neq 0$ and by applying the previous expression in (14), we get

$$
\begin{equation*}
\vartheta(a)(\vartheta(b)+b) \in Z \tag{16}
\end{equation*}
$$

Putting $0 \neq a=z \in \mathscr{I} \cap Z$ in (16), this gives $\vartheta(z)(\vartheta(b)+b) \in Z$, that is, $-z(\vartheta(b)+b) \in Z$, and hence $\vartheta(b)+b \in Z$ by Lemma 2.1. Using the previous relation in (16) and by Lemma 2.1, we see that $\vartheta(a) \in Z$ or $\vartheta(b)+b=0$. If $\vartheta(b)+b=0$, then $\vartheta(b)=-b$. In case $\vartheta(a) \in Z$ and by (12), we infer that $a b \in Z$. Putting $0 \neq b=z \in \mathscr{I} \cap Z$ and by Lemma 2.1, we conclude that $a \in Z$, and by Lemma 2.2, we get \mathscr{R} is commutative.

Lemma 3.3. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a) \vartheta(b)+b a \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a) \vartheta(b)+b a \in Z \quad \forall a, b \in \mathscr{I} . \tag{17}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$.

$$
\begin{equation*}
\vartheta(a) \vartheta(b)+b a=0 \tag{18}
\end{equation*}
$$

Substituting $b t$ for b in (18) and applying it, where $t \in \mathscr{I}$, we conclude

$$
\vartheta(a) \vartheta(b) \vartheta(t)+\vartheta(a) \vartheta(b) t+\vartheta(a) b \vartheta(t)+b t a=0
$$

Adding $\pm b a t$ in the last expression and using (18), we get

$$
\vartheta(a) \vartheta(b) \vartheta(t)+\vartheta(a) b \vartheta(t)+b[t, a]=0
$$

Adding $\pm \vartheta(a) t b$ in the above relation and applying (18), we obtain

$$
\begin{equation*}
\vartheta(a) b \vartheta(t)-\vartheta(a) t b+b[t, a]=0 \tag{19}
\end{equation*}
$$

Writing $\vartheta(a) b$ instead of b in (19), this gives

$$
\begin{equation*}
\vartheta(a)^{2} b \vartheta(t)-\vartheta(a) t \vartheta(a) b+\vartheta(a) b[t, a]=0 \tag{20}
\end{equation*}
$$

Left multiplying (19) by $\vartheta(a)$, we see that

$$
\begin{equation*}
\vartheta(a)^{2} b \vartheta(t)-\vartheta(a)^{2} t b+\vartheta(a) b[t, a]=0 \tag{21}
\end{equation*}
$$

Comparing (20) and (21), this gives $\vartheta(a)[\vartheta(a), t] b=0$, that is, $\vartheta(a)[\vartheta(a), t] \mathscr{I}=0$ and since $\mathscr{I} \neq 0$, we infer that $\vartheta(a)[\vartheta(a), t]=0$. Now as in Lemma 3.1 in (9), we have $\vartheta(a)=0$ or \mathscr{R} is commutative. If \mathscr{R} is commutative, then $\mathscr{I} \cap \mathscr{R}=\{0\}$, and so $\mathscr{I}=\{0\}$, a contradiction. In case $\vartheta(a)=0$ and from (18), we get $b a=0$ and so $\mathscr{I}=\{0\}$, contradiction.

So, $\mathscr{I} \cap Z \neq\{0\}$. Replacing b by $b z$ in (17) and using it, where $0 \neq z \in \mathscr{I} \cap Z$, we conclude

$$
\vartheta(a) \vartheta(b) \vartheta(z)+\vartheta(a) b \vartheta(z) \in Z
$$

Adding $\pm \vartheta(a) z b$ in the previous expression, we get

$$
\vartheta(a)(\vartheta(b) \vartheta(z)+z b)+\vartheta(a)(b \vartheta(z)-z b) \in Z .
$$

Using (17) in the last relation, we see that $\vartheta(a)[b(\vartheta(z)-z), \vartheta(a)]=0$. Now, as in Lemma 3.1 in Eq. (5), we have \mathscr{R} is commutative.
Lemma 3.4. If $\vartheta(a) \vartheta(b)-b a \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a) \vartheta(b)-b a \in Z \quad \forall a, b \in \mathscr{I} . \tag{22}
\end{equation*}
$$

In case $\mathscr{I} \cap Z=\{0\}$ as Lemma 3.3, we have a contradiction. So, $\mathscr{I} \cap Z \neq\{0\}$. Substituting $b z$ for b in (22) and applying it, where $0 \neq z \in \mathscr{I} \cap Z$, we conclude

$$
\begin{equation*}
\vartheta(a) \vartheta(b) \vartheta(z)+\vartheta(a) b \vartheta(z) \in Z \tag{23}
\end{equation*}
$$

Adding $\pm \vartheta(a) z b$ in (23), we get

$$
\vartheta(a)(\vartheta(b) \vartheta(z)-z b)+\vartheta(a) b(\vartheta(z)+z) \in Z .
$$

Using (22) in the above expression, we obtain $\vartheta(a)[b(\vartheta(z)+z), \vartheta(a)]=0$. Now, as in Lemma 3.2 in Eq. (15), we have \mathscr{R} is commutative or $\vartheta(a)=-a$. Now, in case $\vartheta(a)=-a$. Applying the previous relation in (22), we get $[a, b] \in Z$ and by using Lemma 2.3, we obtain \mathscr{R} is commutative.

Lemma 3.5. If ϑ is zero-power valued on \mathscr{I} and $\vartheta(a b)+a b \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.

Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)+a b \in Z \quad \forall a, b \in \mathscr{I} . \tag{24}
\end{equation*}
$$

Writing $b t$ instead of b in (24), where $t \in \mathscr{I}$, we see that $(\vartheta(a b)+a b)(\vartheta(t)+t) \in Z$ and by applying (24) in the last relation and by Lemma 2.1, we get $\vartheta(a b)+a b=0$ or $\vartheta(t)+t \in Z$. If $\vartheta(a b)+a b=0$, then

$$
\begin{equation*}
(\vartheta(a)+a)(\vartheta(b)+b)=0 . \tag{25}
\end{equation*}
$$

Replacing b by $\vartheta^{n-1}(b)$ in (25), where $\vartheta^{n}(b)=0$, we conclude

$$
\begin{equation*}
(\vartheta(a)+a) \vartheta^{n-1}(b)=0 \tag{26}
\end{equation*}
$$

Substituting $\vartheta^{n-2}(b)$ for b in (25) and using (26), we see that

$$
(\vartheta(a)+a) \vartheta^{n-2}(b)=0
$$

and by repeating the previous steps, we conclude that $(\vartheta(a)+a) b=0$. Now as in Eq. (25), we have $a b=0$ and so $\mathscr{I}=\{0\}$, contradiction. So $\vartheta(t)+t \in Z$. As in Eq. (25), we get $t \in Z$ and by Lemma $2.2, \mathscr{R}$ is commutative.

Lemma 3.6. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-a b \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)-a b \in Z \quad \forall a, b \in \mathscr{I} . \tag{27}
\end{equation*}
$$

Writing $b t$ instead of b in (27), where $t \in \mathscr{I}$, we conclude

$$
\begin{equation*}
(\vartheta(a b)-a b)(\vartheta(t)+t)+2 a b \vartheta(t) \in Z \tag{28}
\end{equation*}
$$

Thus $2[a b \vartheta(t), \vartheta(t)+t]=0$, that is, $[a b \vartheta(t), \vartheta(t)+t]=0$. Replacing a by $s a$ in the previous expression and applying it, where $s \in \mathscr{I}$, we get $[s, \vartheta(t)+t] a b \vartheta(t)=0$, that is, $[s, \vartheta(t)+t] \mathscr{I} b \vartheta(t)=\{0\}$ and so $[s, \vartheta(t)+t]=0$ or $b \vartheta(t)=0$. If $b \vartheta(t)=0$, then $\mathscr{I} \vartheta(t)=\{0\}$ and hence $\vartheta(t)=0$. Using the last relation in (27), we obtain

$$
\begin{equation*}
a b \in Z \tag{29}
\end{equation*}
$$

Replacing a by b and b by a in (29), we see that $b a \in Z$. From the last expression and (29), we have $[a, b] \in Z$ and by Lemma 2.3(i), \mathscr{R} is commutative. Suppose that $[s, \vartheta(t)+t]=0$. Substituting $s r$ for s in the previous relation and applying it, where $r \in \mathscr{R}$, we get $s[r, \vartheta(t)+t]=0$, that is, $\mathscr{I}[r, \vartheta(t)+t]=\{0\}$ and so $[r, \vartheta(t)+t]=0$ thus $\vartheta(t)+t \in Z$. Again writing $a b$ instead of t in the last expression, we see that $\vartheta(a b)+a b \in Z$. Comparing the last relation and (27), we conclude $a \circ b \in Z$, and by Lemma 2.3(ii), \mathscr{R} is commutative.

Lemma 3.7. If $\vartheta(a b)+b a \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)+b a \in Z \quad \forall a, b \in \mathscr{I} . \tag{30}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$.

$$
\begin{equation*}
\vartheta(a b)+b a=0 \tag{31}
\end{equation*}
$$

Replacing b by $b t$ in (31), where $t \in \mathscr{I}$, we conclude $(\vartheta(a b)+a b) \vartheta(t)+b[t, a]=0$. Adding $\pm b a \vartheta(t)$ in the previous expression and using (31), we get $b([t, a]-a \vartheta(t))=0$ and since $\mathscr{I} \neq\{0\}$, we infer that

$$
\begin{equation*}
[t, a]-a \vartheta(t)=0 \tag{32}
\end{equation*}
$$

Substituting $s a$ for a in (32), where $s \in \mathscr{I}$, we obtain

$$
\begin{equation*}
s[t, a]+[t, s] a-s a \vartheta(t)=0 \tag{33}
\end{equation*}
$$

Left multiplying (32) by s, we see that

$$
\begin{equation*}
s[t, a]-\operatorname{sa\vartheta }(t)=0 \tag{34}
\end{equation*}
$$

Comparing (33) and (34), this gives $[t, s] a=0$, that is, $[t, s] \mathscr{I}=\{0\}$ and since $\mathscr{I} \neq\{0\}$, we infer that $[t, s]=0$ and so $\mathscr{I} \subseteq Z$ and by Lemma $2.2, \mathscr{R}$ is commutative.

Suppose that $\mathscr{I} \cap Z \neq\{0\}$. Writing $b z$ instead of b in (30) and applying it, where $0 \neq z \in$ $\mathscr{I} \cap Z$, we conclude

$$
\begin{equation*}
(\vartheta(a b)+a b) \vartheta(z) \in Z \tag{35}
\end{equation*}
$$

Putting $a=b=z$ in (30), where $0 \neq z \in \mathscr{I} \cap Z$, we get

$$
\begin{equation*}
\vartheta\left(z^{2}\right) \in Z \tag{36}
\end{equation*}
$$

Taking z by z^{2} in (35), we have $(\vartheta(a b)+a b) \vartheta\left(z^{2}\right) \in Z$ and by using (36) in the last relation, we see that $\vartheta(a b)+a b \in Z$ or $\vartheta\left(z^{2}\right)=0$. If $\vartheta(a b)+a b \in Z$ and by applying (30), then $[a, b] \in Z$ and so \mathscr{R} is commutative. Suppose that

$$
\begin{equation*}
\vartheta\left(z^{2}\right)=0 \tag{37}
\end{equation*}
$$

Replacing b by $b t$ in (30), we conclude $\vartheta(a b) \vartheta(t)+\vartheta(a b) t+a b \vartheta(t)+b t a \in Z$, where $t \in \mathscr{I}$. Putting $a=b=z$ in the last expression and using (37), where $0 \neq z \in \mathscr{I} \cap Z$, this gives $\vartheta(t)+t \in Z$. Taking t by $a b$ in the previous relation where $a, b \in \mathscr{I}$, we get $\vartheta(a b)+a b \in Z$. Using the last expression in (30), we conclude $[a, b] \in Z$ and so \mathscr{R} is commutative.

Lemma 3.8. If $\vartheta(a b)-b a \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Let $\mathscr{I} \cap Z=\{0\}$. As in Lemma 3.7. Suppose that $\mathscr{I} \cap Z \neq\{0\}$. As in Lemma 3.7 and applying Lemma 2.3(ii).

Lemma 3.9. If $\vartheta \neq 0$ and $\vartheta(a b)+\vartheta(a) \vartheta(b) \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative or any homo-derivation ϑ is of the form $\vartheta(a)=-a$.

Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)+\vartheta(a) \vartheta(b) \in Z \quad \forall a, b \in \mathscr{I} \tag{38}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$.

$$
\begin{equation*}
\vartheta(a b)+\vartheta(a) \vartheta(b)=0 \tag{39}
\end{equation*}
$$

Substituting $b t$ for b in (39) and using it, where $t \in \mathscr{I}$, we see that $(\vartheta(a)+a) b \vartheta(t)=0$, that is, $(\vartheta(a)+a) \mathscr{I} \vartheta(t)=\{0\}$ and so $\vartheta(a)+a=0$ or $\vartheta(t)=0$. In case

$$
\begin{equation*}
\vartheta(t)=0 \quad \forall t \in \mathscr{I} . \tag{40}
\end{equation*}
$$

Writing $r t$ instead of t in the last relation and applying it, where $r \in \mathscr{R}$, we get $\vartheta(r) t=0$, that is $\vartheta(r) \mathscr{I}=\{0\}$ and so $\vartheta(r)=0 \forall r \in \mathscr{R}$, a contradiction. In case $\vartheta(a)+a=0$, we infer that $\vartheta(a)=-a$.

Suppose that $\mathscr{I} \cap Z \neq\{0\}$. Replacing b by $b z$ in (38) and using it, where $0 \neq z \in \mathscr{I} \cap Z$, we conclude

$$
\begin{equation*}
(\vartheta(a b)+\vartheta(a) \vartheta(b)) \vartheta(z)+(a+\vartheta(a)) b \vartheta(z) \in Z \tag{41}
\end{equation*}
$$

Using (38) in (41), we obtain

$$
\begin{equation*}
[(a+\vartheta(a)) b, \vartheta(z)] \vartheta(z)=0 \tag{42}
\end{equation*}
$$

Substituting $(z+\vartheta(z)) b$ for b in (42) and applying it, where $0 \neq z \in \mathscr{I} \cap Z$, we conclude $[a+\vartheta(a), \vartheta(z)] z b \vartheta(z)=0$ implies that $[a+\vartheta(a), \vartheta(z)] b \vartheta(z)=0$, that is, $[a+\vartheta(a), \vartheta(z)] \mathscr{I} \vartheta(z)=$ $\{0\}$ and so $[a+\vartheta(a), \vartheta(z)]=0$ or $\vartheta(z)=0$. In case

$$
\begin{equation*}
\vartheta(z)=0 . \tag{43}
\end{equation*}
$$

Putting $b=z$ in (38) and using (43), where $0 \neq z \in \mathscr{I} \cap Z$, we see that $\vartheta(a) z \in Z$ and hence

$$
\begin{equation*}
\vartheta(a) \in Z \tag{44}
\end{equation*}
$$

Writing $a b$ instead of a in (44) and applying it, where $b \in \mathscr{I}$, we get $\vartheta(a) b+a \vartheta(b) \in Z$ and by using (44) in the previous expression, we have $\vartheta(a)[b, a]=0$. Replacing b by $s b$ in the last relation and applying it, where $s \in \mathscr{I}$, we obtain $\vartheta(a) s[b, a]=0$, that is $\vartheta(a) \mathscr{I}[b, a]=\{0\}$ and so $\vartheta(a)=0$ or $[b, a]=0$. If $[b, a]=0$, then $\mathscr{I} \subseteq Z$ and so \mathscr{R} is commutative. In case $\vartheta(a)=0$ the same as in (40), we infer that $\vartheta=0$, a contradiction. Now, suppose that $\vartheta(z) \neq 0$ and $[a+\vartheta(a), \vartheta(z)]=0$. By using the last expression in (42), this gives $(a+\vartheta(a))[b, \vartheta(z)] \vartheta(z)=0$. Substituting $b s$ for b in the previous relation and applying it, where $s \in \mathscr{I}$, we conclude $(a+\vartheta(a))[b, \vartheta(z)] s \vartheta(z)=0$, that is, $(a+\vartheta(a))[b, \vartheta(z)] \mathscr{I} \vartheta(z)=\{0\}$ and so $(a+\vartheta(a))[b, \vartheta(z)]=0$ or $\vartheta(z)=0$. But $\vartheta(z) \neq 0$ and hence $(a+\vartheta(a))[b, \vartheta(z)]=0$. Writing $s b$ instead of b in the last expression and using it, where $s \in \mathscr{I}$, we get $(a+\vartheta(a)) s[b, \vartheta(z)]=0$, that is, $(a+\vartheta(a)) \mathscr{I}[b, \vartheta(z)]=\{0\}$ and so $a+\vartheta(a)=0$ or $[b, \vartheta(z)]=0$. If $a+\vartheta(a)=0$, then $\vartheta(a)=-a$. Now, suppose that $[b, \vartheta(z)]=0$. Replacing b by $b r$ in the last relation and applying it, where $r \in \mathscr{R}$, we have $b[r, \vartheta(z)]=0$, that is, $\mathscr{I}[r, \vartheta(z)]=\{0\}$ and so $[r, \vartheta(z)]=0$ this implies that

$$
\begin{equation*}
\vartheta(z) \in Z \tag{45}
\end{equation*}
$$

Using (45) and (38) in (41), we see that $(a+\vartheta(a)) b \vartheta(z) \in Z$ and by applying (45) in the previous expression, we get $(a+\vartheta(a)) b \in Z$ or $\vartheta(z)=0$. In case $\vartheta(z)=0$ as (43). Now, suppose that $(a+\vartheta(a)) b \in Z$. Substituting $b r$ for b in the last relation and using it, where $r \in \mathscr{R}$, we obtain $(a+\vartheta(a)) b=0$ or $r \in Z$. If $r \in Z$, then \mathscr{R} is commutative. If $(a+\vartheta(a)) b=0$, then $(a+\vartheta(a)) \mathscr{I}=\{0\}$ and so $a+\vartheta(a)=0$, and hence $\vartheta(a)=-a$.

Lemma 3.10. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-\vartheta(a) \vartheta(b) \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)-\vartheta(a) \vartheta(b) \in Z \quad \forall a, b \in \mathscr{I} . \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
\vartheta(a) b+a \vartheta(b) \in Z \tag{47}
\end{equation*}
$$

Writing $b t$ instead of b in (47), where $t \in \mathscr{I}$, we conclude

$$
(\vartheta(a) b+a \vartheta(b)) t+a(\vartheta(b)+b) \vartheta(t) \in Z
$$

and by applying (47) in the last expression, we get $[a(\vartheta(b)+b) \vartheta(t), t]=0$. Replacing a by $s a$ in the previous relation and using it, where $s \in \mathscr{I}$, we obtain $[s, t] a(\vartheta(b)+b) \vartheta(t)=0$, that is, $[s, t] \mathscr{I}(\vartheta(b)+b) \vartheta(t)=\{0\}$ and so $[s, t]=0$ or $(\vartheta(b)+b) \vartheta(t)=0$. If $[s, t]=0$, then $\mathscr{I} \subseteq Z$ and hence \mathscr{R} is commutative. Suppose that $(\vartheta(b)+b) \vartheta(t)=0$. Substituting at for t in the last expression and applying it, where $a \in \mathscr{I}$, we see that $(\vartheta(b)+b) a \vartheta(t)=0$, that is, $(\vartheta(b)+b) \mathscr{I} \vartheta(t)=\{0\}$ and so $\vartheta(b)+b=0$ or $\vartheta(t)=0$. In case $\vartheta(t)=0$, the same as in (40), we infer that $\vartheta=0$, a contradiction. If $\vartheta(b)+b=0$, then $\vartheta(b)=-b$ and by using the last relation in (46), we conclude $2 a b \in Z$ and so $a b \in Z$. Now as Lemma 3.6 in Eq.(29) we get \mathscr{R} is commutative.

Lemma 3.11. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)+\vartheta(b) \vartheta(a) \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)+\vartheta(b) \vartheta(a) \in Z \quad \forall a, b \in \mathscr{I} . \tag{48}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$. Then

$$
\begin{equation*}
\vartheta(a b)+\vartheta(b) \vartheta(a)=0 \tag{49}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\vartheta(a) \circ \vartheta(b)+\vartheta(a) b+a \vartheta(b)=0 . \tag{50}
\end{equation*}
$$

Writing $a b$ instead of b in (50), we conclude $\vartheta(a) \circ \vartheta(a b)+\vartheta(a) a b+a \vartheta(a b)=0$. Using (49) in the previous expression, we get

$$
-(\vartheta(a) \circ \vartheta(b) \vartheta(a))+\vartheta(a) a b-a \vartheta(b) \vartheta(a)=0
$$

That is,

$$
\begin{equation*}
-(\vartheta(a) \circ \vartheta(b)) \vartheta(a)+\vartheta(a) a b-a \vartheta(b) \vartheta(a)=0 . \tag{51}
\end{equation*}
$$

Right multiplying (50) by $\vartheta(a)$, this gives

$$
\begin{equation*}
(\vartheta(a) \circ \vartheta(b)) \vartheta(a)+\vartheta(a) b \vartheta(a)+a \vartheta(b) \vartheta(a)=0 . \tag{52}
\end{equation*}
$$

Comparing (51) and (52), we obtain

$$
\begin{equation*}
\vartheta(a) b \vartheta(a)+\vartheta(a) a b=0 . \tag{53}
\end{equation*}
$$

Replacing b by $b t$ in (51), where $t \in \mathscr{I}$, we see that

$$
\begin{equation*}
\vartheta(a) b t \vartheta(a)+\vartheta(a) a b t=0 \tag{54}
\end{equation*}
$$

Right multiplying (53) by t, where $t \in \mathscr{I}$, we conclude

$$
\begin{equation*}
\vartheta(a) b \vartheta(a) t+\vartheta(a) a b t=0 \tag{55}
\end{equation*}
$$

Comparing (54) and (55), we get

$$
\begin{equation*}
\vartheta(a) b[\vartheta(a), t]=0, \tag{56}
\end{equation*}
$$

that is, $\vartheta(a) \mathscr{I}[\vartheta(a), t]=\{0\}$ and so $\vartheta(a)=0$ or $[\vartheta(a), t]=0$. Assume that $\vartheta(a)=0$, the same as in (40), we infer that $\vartheta=0$, a contradiction. In case $[\vartheta(a), t]=0$. Substituting $a b$ for a in the last relation and using it, where $b \in \mathscr{I}$, we obtain $\vartheta(a)[b, t]+[a, t] \vartheta(b)=0$. Putting $t=b$ in the last expression, this gives $[a, b] \vartheta(b)=0$. Writing as instead of a in the previous relation and applying it, where $s \in \mathscr{I}$, we see that $[a, b] s \vartheta(b)=0$, that is, $[a, b] \mathscr{I} \vartheta(b)=\{0\}$ and so $[a, b]=0$ or $\vartheta(b)=0$. If $\vartheta(b)=0$, then $\vartheta=0$, a contradiction. In case $[a, b]=0$, we infer that \mathscr{R} is commutative.

Now, suppose that $\mathscr{I} \cap Z \neq\{0\}$. We can write Eq. (48) as

$$
\begin{equation*}
(\vartheta(a) \circ \vartheta(b))+\vartheta(a) b+a \vartheta(b) \in Z . \tag{57}
\end{equation*}
$$

Replacing b by $b z$ in (57) and using it, where $0 \neq z \in \mathscr{I} \cap Z$, we get

$$
\begin{equation*}
(\vartheta(a) \circ \vartheta(b) \vartheta(z))+(\vartheta(a) \circ b \vartheta(z))+a \vartheta(b) \vartheta(z)+a b \vartheta(z) \in Z \tag{58}
\end{equation*}
$$

Putting $a=z$ and adding $\pm \vartheta(z) b \vartheta(z)$ in (58), we have

$$
\begin{equation*}
\{(\vartheta(z) \circ \vartheta(b))+z \vartheta(b)+\vartheta(z) b\} \vartheta(z)+b\left\{\vartheta(z)^{2}+z \vartheta(z)\right\} \in Z . \tag{59}
\end{equation*}
$$

Taking $a=b=z$ in (57) and since $\operatorname{char}(\mathscr{R}) \neq 2$, we infer that

$$
\begin{equation*}
\vartheta(z)^{2}+z \vartheta(z) \in Z \tag{60}
\end{equation*}
$$

Using (57) and (60) in (59), we obtain $\{(\vartheta(z) \circ \vartheta(b))+z \vartheta(b)+\vartheta(z) b\}[\vartheta(z), b]=0$. Applying (57) in the last expression, we get $\{(\vartheta(z) \circ \vartheta(b))+z \vartheta(b)+\vartheta(z) b\} \mathscr{I}[\vartheta(z), b]=\{0\}$ and so $(\vartheta(z) \circ$ $\vartheta(b))+z \vartheta(b)+\vartheta(z) b=0$ or $[\vartheta(z), b]=0$.

Suppose that

$$
\begin{equation*}
[\vartheta(z), b]=0 . \tag{61}
\end{equation*}
$$

Substituting $r b$ for b in (61) and using it, where $r \in R$, we conclude $[\vartheta(z), r] b=0$, that is, $[\vartheta(z), r] \mathscr{I}=\{0\}$ and so $[\vartheta(z), r]=0$ and hence

$$
\begin{equation*}
\vartheta(z) \in Z \tag{62}
\end{equation*}
$$

Adding $\pm \vartheta(a) b \vartheta(z)$ in (58) and applying (57) and (62), we see that $(b \vartheta(a)+a b) \vartheta(z) \in Z$ and by using (62) in the last relation, we get $b \vartheta(a)+a b \in Z$ or $\vartheta(z)=0$. In case

$$
\begin{equation*}
\vartheta(z)=0 \tag{63}
\end{equation*}
$$

Putting $b=z$ in (57), where $0 \neq z \in \mathscr{I} \cap Z$ and applying the previous expression, we conclude $z \vartheta(a) \in Z$ and so

$$
\begin{equation*}
\vartheta(a) \in Z \tag{64}
\end{equation*}
$$

Writing $a b$ instead of a in (64) and using it, where $b \in \mathscr{I}$, we obtain $\vartheta(a) b+a \vartheta(b) \in Z$ and by applying (64) in the last relation, we get $[\vartheta(a) b+a \vartheta(b), r]=0$, where $r \in R$, by using (64) in the last expression, we see that $\vartheta(a)[b, r]+[a, r] \vartheta(b)=0$. Taking $r=b$ in the previous relation, this gives $[a, b] \vartheta(b)=0$. Replacing a by as in the last expression, where $s \in \mathscr{I}$, we conclude $[a, b] s \vartheta(b)=0$, that is, $[a, b] \mathscr{I} \vartheta(b)=\{0\}$ and so $[a, b]=0$ or $\vartheta(b)=0$. If $[a, b]=0$, then \mathscr{R} is commutative. If $\vartheta(b)=0$, then $\vartheta=0$, a contradiction. Now, suppose that

$$
\begin{equation*}
b \vartheta(a)+a b \in Z \tag{65}
\end{equation*}
$$

Putting $0 \neq b=z \in \mathscr{I} \cap Z$ in (65), we get

$$
\begin{equation*}
\vartheta(a)+a \in Z . \tag{66}
\end{equation*}
$$

Adding $\pm b a$ in (65), this gives $b(\vartheta(a)+a)+[a, b] \in Z$. Using 66) in the last relation, we obtain $[[a, b], b]=0$. Substituting $t a$ for a in the previous expression and applying it, where $t \in \mathscr{I}$, we have $2[t, b][a, b]=0$ and hence $[t, b][a, b]=0$. Writing $s a$ instead of a in the last relation and using it, where $s \in \mathscr{I}$, we see that $[t, b] s[a, b]=0$, that is, $[t, b] \mathscr{I}[a, b]=\{0\}$ and so $[t, b]=0$ or $[a, b]=0$. In two cases \mathscr{R} is commutative.

Now, in case $(\vartheta(z) \circ \vartheta(b))+z \vartheta(b)+\vartheta(z) b=0$ as in Eq.(50), we conclude as Eq.(56), $\vartheta(z) b[\vartheta(z), t]=0$, that is, $\vartheta(z) \mathscr{I}[\vartheta(z), t]=\{0\}$ and so $\vartheta(z)=0$ or $[\vartheta(z), t]=0$. In case $[\vartheta(z), t]=0$, as in (61). In case $\vartheta(z)=0$ as in (63).

Lemma 3.12. If $\operatorname{char}(\mathscr{R}) \neq 2$ and $\vartheta(a b)-\vartheta(b) \vartheta(a) \in Z \forall a, b \in \mathscr{I}$, then \mathscr{R} is commutative.
Proof. Assume that

$$
\begin{equation*}
\vartheta(a b)-\vartheta(b) \vartheta(a) \in Z \quad \forall a, b \in \mathscr{I} . \tag{67}
\end{equation*}
$$

Suppose that $\mathscr{I} \cap Z=\{0\}$. Then

$$
\begin{equation*}
\vartheta(a b)-\vartheta(b) \vartheta(a)=0 \tag{68}
\end{equation*}
$$

That is,

$$
\begin{equation*}
[\vartheta(a), \vartheta(b)]+\vartheta(a) b+a \vartheta(b)=0 \tag{69}
\end{equation*}
$$

Replacing b by $a b$ in (69), we have $[\vartheta(a), \vartheta(a b)]+\vartheta(a) a b+a \vartheta(a b)=0$. Using (68) in the last relation, we get $[\vartheta(a), \vartheta(b) \vartheta(a)]+\vartheta(a) a b+a \vartheta(b) \vartheta(a)=0$. Thus,

$$
\begin{equation*}
[\vartheta(a), \vartheta(b)] \vartheta(a)+\vartheta(a) a b+a \vartheta(b) \vartheta(a)=0 \tag{70}
\end{equation*}
$$

Right multiplying (69) by $\vartheta(a)$ this gives

$$
\begin{equation*}
[\vartheta(a), \vartheta(b)] \vartheta(a)+\vartheta(a) b \vartheta(a)+a \vartheta(b) \vartheta(a)=0 \tag{71}
\end{equation*}
$$

Comparing (70) and (71), we obtain

$$
\begin{equation*}
\vartheta(a) b \vartheta(a)-\vartheta(a) a b=0 . \tag{72}
\end{equation*}
$$

Substituting $b t$ for b in (72), where $t \in \mathscr{I}$, we see that

$$
\begin{equation*}
\vartheta(a) b t \vartheta(a)-\vartheta(a) a b t=0 . \tag{73}
\end{equation*}
$$

Right multiplying (72) by t, where $t \in \mathscr{I}$, we conclude

$$
\begin{equation*}
\vartheta(a) b \vartheta(a) t-\vartheta(a) a b t=0 . \tag{74}
\end{equation*}
$$

Comparing (73) and (74), we get $\vartheta(a) b[\vartheta(a), t]=0$, that is, $\vartheta(a) \mathscr{I}[\vartheta(a), t]=\{0\}$ and so $\vartheta(a)=0$ or $[\vartheta(a), t]=0$. If $\vartheta(a)=0$, then $\vartheta=0$, a contradiction. In case $[\vartheta(a), t]=0$. Writing $a b$ instead of a in the previous relation and using it, where $b \in \mathscr{I}$, we obtain $\vartheta(a)[b, t]+[a, t] \vartheta(b)=0$. Putting $t=b$ in the last expression, this gives $[a, b] \vartheta(b)=0$. Replacing a by as in the last relation and applying it, where $s \in \mathscr{I}$, we see that $[a, b] s \vartheta(b)=0$, that is, $[a, b] \mathscr{I} \vartheta(b)=\{0\}$ and so $[a, b]=0$ or $\vartheta(b)=0$. If $\vartheta(b)=0$, then $\vartheta=0$, a contradiction. In case $[a, b]=0$, we infer that \mathscr{R} is commutative.

Now, suppose that $\mathscr{I} \cap Z \neq\{0\}$. Putting $a=b=z$ in (67), where $0 \neq z \in \mathscr{I} \cap Z$, we conclude

$$
\begin{equation*}
\vartheta(z) \in Z \tag{75}
\end{equation*}
$$

Substituting $b z$ for b in (67) and using it and (75), where $0 \neq z \in \mathscr{I} \cap Z$, we get

$$
[\vartheta(a), \vartheta(b)] \vartheta(z)+[\vartheta(a), b] \vartheta(z)+a \vartheta(b) \vartheta(z)+a b \vartheta(z) \in Z
$$

Adding $\pm \vartheta(a) b \vartheta(z)$ in the previous expression and suing (67) and (75), we obtain

$$
([\vartheta(a), b]+a b-\vartheta(a) b) \vartheta(z) \in Z
$$

and so $[\vartheta(a), b]+a b-\vartheta(a) b \in Z$ or $\vartheta(z)=0$. In case

$$
\begin{equation*}
\vartheta(z)=0 \tag{76}
\end{equation*}
$$

Taking $b=z$ in (67) and applying the above relation, where $0 \neq z \in \mathscr{I} \cap Z$, we see that $\vartheta(a) z \in Z$ and so

$$
\begin{equation*}
\vartheta(a) \in Z \tag{77}
\end{equation*}
$$

By using (77) in (67), we have $\vartheta(a) b+a \vartheta(b) \in Z$ and so $\vartheta(a)[b, a]=0$. Writing $s b$ instead of b in the last expression, where $s \in \mathscr{I}$, we get $\vartheta(a) s[b, a]=0$, that is, $\vartheta(a) \mathscr{I}[b, a]=\{0\}$ and so $\vartheta(a)=0$ or $[b, a]=0$. If $[b, a]=0$, then \mathscr{R} is commutative. If $\vartheta(a)=0$, then $\vartheta=0$, a contradiction. Now, suppose that

$$
\begin{equation*}
[\vartheta(a), b]+a b-\vartheta(a) b \in Z \tag{78}
\end{equation*}
$$

Putting $b=z$ in (78), where $0 \neq z \in \mathscr{I} \cap Z$, we see that

$$
\begin{equation*}
a-\vartheta(a) \in Z \tag{79}
\end{equation*}
$$

Replacing b by $\vartheta(b)$ in (78), this gives

$$
\begin{equation*}
[\vartheta(a), \vartheta(b)]+a \vartheta(b)-\vartheta(a) \vartheta(b) \in Z \tag{80}
\end{equation*}
$$

Comparing (80) and (67), we conclude $\vartheta(a)(\vartheta(b)+b) \in Z$. Taking $a=z$ in the previous relation, where $0 \neq z \in \mathscr{I} \cap Z$, we get $\vartheta(z)(\vartheta(b)+b) \in Z$ and so $\vartheta(z)=0$ or $\vartheta(b)+b \in Z$. In case $\vartheta(z)=0$ as Eq. (76). In case $\vartheta(b)+b \in Z$. Putting $b=a$ in the last expression, where $a \in \mathscr{I}$, we obtain

$$
\begin{equation*}
\vartheta(a)+a \in Z . \tag{81}
\end{equation*}
$$

Comparing (80) and (79), we see that $2 a \in Z$ and so $a \in Z$, and hence \mathscr{R} is commutative.
By using Lemmas 3.1-3.12, we get the proof of Theorems 1.1-1.3.
The authors are greatly indebted to the referee for his/her valuable suggestions, which have immensely improved the paper.

References

[1] A.Melaibari, N.Muthana, A.Al-Kenani, Centrally-extended homoderivations on rings, Gulf j. math, $4(2)(2016), 62-70$.
[2] A.Melaibari, N.Muthana, A.Al-Kenani, Homoderivations on rings, Gen. Math. Notes, 35(1)(2016), 1-8.
[3] A.Al-Kenani, A.Melaibari, N.Muthana, Homoderivations and commutativity of $*$-prime rings, East West Math, 17(2)(2015), 117-126.
[4] E.Gselmann, G.Kiss, Remarks on the notion of homo-derivations, 2020.
DOI: 10.48550/arXiv.2001.03439
[5] E.Alharfie, N.Muthana, Homoderivation of prime rings with involution, Bull. Inter. Math. Virtual Inst, 9(2019), 305-318. DOI: 10.7251/BIMVI1902305A
[6] E.Alharfie, N.Muthana, On homoderivations and commutativity of rings, Bull. Inter. Math. Virtual Inst, 9(2019), 301-304. DOI: 10.7251/BIMVI1902301A
[7] E.Alharfie, N.Muthana, The commutativity of prime rings with homoderivations, Int. J. of Ad. and Appl. Sci., 5(5)(2018), 79-81.
[8] J.Mayne, Centralizing mappings of prime rings, Can. Math. Bull, 27(1)(1984), 122-126.
[9] M.El-Sayiad, A.Ageeb, A.Ghareeb, Centralizing n-homoderivations of semiprime rings, J. Math, 2022(2022), 1-8. DOI: 10.1155/2022/1112183
[10] M.Yettou, A.Amroune, Homoderivations on a lattice, Jordan J. of Math. and Sta., $15(2)(2022), 325-338$.
[11] M.Abu-Nawas, R.Al-Omary, On ideals and comuutativity of prime rings with generalized derivations, Eur. J. Appl. Math, 11(1)(2018), 79-89. DOI: 10.29020/nybg.ejpam.v11i1. 3142
[12] M.M. Ebrahimi, H.Pajoohesh, Inner derivations and homo-derivations on ℓ-rings, Acta Math. Hungar., 100(1-2)(2003), 157-165. DOI: 10.1023/A:1024616503681
[13] M.Ashraf, N.Rehman, On derivation and commutativity in prime rings, East-West J. Math, 3(1)(2001), 87-91.
[14] M.El-Sofy, Rings with some kinds of mappings, M.Sc. Thesis, Cairo University, Branch of Fayoum, Cairo, Egypt, 2000.
[15] N.Rehman, H.Alnoghashi, On jordan homo-derivation of triangular algebras, Miskolc Math. Notes, Accepted.
[16] N.Rehman, H.Alnoghashi, Jordan homo-derivations on triangular matrix rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 68(2)(2022), 203-216. DOI: 10.47743/anstim.2022.00016
[17] N.Rehman, M.R. Mozumder, A.Abbasi, Homoderivations on ideals of prime and semi prime rings, The Aligarh Bull. of Math., 38(1-2)(2019), 77-87.
[18] S.Mouhssine, A.Boua, Homoderivations and semigroup ideals in 3-prime near-rings, Algebr. Struct. their Appl., 8(2)(2021), 177-194.
[19] S.S.Husain, K.Dey, Homoderivations of σ-prime γ-rings, Adv. Math.: Sci. J, 10(1)(2021), 83-91.

Тождества, связанные с гомообразованием на идеале в первичных кольцах

Надим Рехман
Хафед Альногаши

Кафедра математики
Алигархский мусульманский университет
Алигарх, Индия

Abstract

Аннотация. Целью данной работы является исследование коммутативности первичного кольца \mathscr{R} с ненулевым идеалом \mathscr{I} и гомодифференцированием ϑ, удовлетворяющим некоторым алгебраическим тождествам. Мы также привели несколько примеров того, почему наша гипотеза о результатах важна. Ключевые слова: первичное кольцо, гомопроисхождение.

[^0]: *rehman100@gmail.com, nu.rehman.mm@amu.ac.in https://orcid.org/0000-0003-3955-7941
 ${ }^{\dagger}$ halnoghashi@gmail.com https://orcid.org/0000-0003-0253-6573
 (C) Siberian Federal University. All rights reserved

