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Abstract. A slow longitudinal non-isothermal gas flow in the annular region caused by small pressure
and temperature drops across a long micro-channel is considered in the paper. A method for calculating
the values of the Poiseuille number in the transitional gas flow regime is proposed. The method is based
on the solution of the model linearised Bhatnagar-Gross-Krook (BGK) kinetic equation using Cheby-
shev polynomials. The calculated values are compared with similar results obtained using analytical
solutions of the Navier–Stokes equations with no-slip and slip boundary conditions. The effect of the
accommodation coefficient of the tangential momentum of the gas molecules and the gas rarefaction
parameter on the change in the Poiseuille number is analysed for small ratios of the temperature and
pressure gradients of the gas in the channel.
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The miniaturization of technological processes has recently become actively implemented
in the chemical industry [1]. Modelling of flows in micro-channels has become an intensively
developing area of research [1–4]. Micro-channel devices are widely used in various fields of
science and technology such as micro-reactors, micro-heat exchangers, micro-mixers, etc. [1, 2].
The obvious advantages are that use of micro-channels makes it possible to significantly intensify
physiochemical processes. One of the characteristic similarity parameters that is used to describe
gas mass transfer processes in micro-channels is the Poiseuille number [5]. It is calculated using
the Boltzmann kinetic equation [6] or model kinetic equations [7]. In the presented paper, the
value of the Poiseuille number is calculated using the linearized BGK model kinetic equation for
the gas flow in the annular region under the influence of pressure and temperature gradients [8].
Formulation of the problem is close to that given in [7] and [9]. However, unlike [7] and [9] the
influence of cross-effects caused by the action of pressure and temperature gradients is studied.
Comparison with the results from [7] and results for the sliding flow regime using the Navier-
Stokes equation was carried out . The values of the Poiseuille number were found using Chebyshev
polynomials [10]. They depend on the rarefaction parameter, the accommodation coefficient of
the tangential momentum of gas molecules, ratios of cylinder radii and temperature and pressure
gradients. The ratio of temperature gradients and gas pressure in the channel is assumed to be
small.
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1. Formulation of basic equations

Let us consider a rarefied gas flow in a long channel under the action of given pressure
and temperature gradients with incomplete accommodation of the tangential momentum of gas
molecules on the channel walls. The cross section of the channel represents the annular region
with radii R′

1 and R′
2 (R′

1 < R′
2). The channel connects two reservoirs at pressures p′1 and p′2,

temperatures T ′
1 and T ′

2, with p′1 > p′2 and T ′
1 < T ′

2. The tangential momentum accommodation
coefficients of gas molecules on the inner and outer cylinders are the same α1 = α2 = α. Physical
quantities are presented in non-dimensional form as in [9], except for the length. The hydraulic
diameter D′

h = 2(R′
2 −R′

1) [11] is chosen as the length scale. In what follows the prime symbol
for dimensionless quantities is omitted.

The Poiseuille number P0 is defined according to [6] as the product of the Darcy coefficient
of friction fd and the Reynolds number Re

P0 = fdRe = −2Gpp
′
0D

′
hβ

′1/2

µ′ūz
,

where µ′ is the dynamic viscosity of the gas, β′ = m′/(2k′BT
′
0), m′ is the mass of gas molecules,

k′B is the Boltzmann constant, p′0 and T ′
0 are pressure and temperature of the gas taken as the

origin; Gp is the dimensionless pressure gradient, ūz is the average value of the dimensionless
component of the gas mass velocity uz.

Assuming that the absolute values of the dimensionless gradients Gp and GT are small,
linearised distribution function is written as

f(r,C) = f0(C)

(
1 +GT

(
C2 − 5

2

)
z +Gpz + h(ρ,C)

)
, (1)

h(ρ,C) = Gph1(ρ,C) +GTh2(ρ,C).

Here f0(C) = π−3/2 exp
(
−C2

)
is the dimensionless absolute Maxwellian, h1(ρ,C) and

h2(ρ,C) are perturbations of the distribution function due to the presence of pressure and
temperature gradients. In the configuration space and velocity space cylindrical coordinates
r = (ρ, rφ, rz) are used and C = (C⊥, Cψ, Cz).

The average macroscopic velocity of the gas ūz is expressed in terms of the perturbation
functions h1(ρ,C) and h2(ρ,C) as

ūz = −GpŪ1,z +GT Ū2,z, (2)

Ūz = − 2

R2
2 −R2

1

∫ R2

R1

(U1,z(ρ)−GU2,z(ρ))ρdρ, (3)

Ui,z(ρ) = π−3/2

∫
exp

(
−C2

)
Czhi(ρ,C)d3C, (4)

G =
GT
Gp

.

Substituting (2) into (4) and taking into account that in the case of using the solid sphere
model the sparsity parameter δ satisfies the ratio δ = 2(R′

2 −R′
1)p

′β′1/2µ′−1 [12], we obtain the
following expression for the Poiseuille number

P0 =
2δ

Ūz
. (5)
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Let us introduce functions Z1 = Z1(ρ, ζ, C⊥) and Z2 = Z2(ρ, ζ, C⊥) as

Z1(ρ, ζ, C⊥) =
1√
π

∫ +∞

−∞
exp(−C2

z )Czh(ρ,C)dCz,

Z2(ρ, ζ, C⊥) =
1√
π

∫ +∞

−∞
exp(−C2

z )C
3
zh(ρ,C)dCz, ζ = cosψ.

Then using Z1, the component U1,z is written as follows

U1,z =
2

π

∫ +∞

0

C⊥ exp(−C2
⊥)

∫ 1

−1

1√
1− ζ2

Z1dζdC⊥. (6)

Function Z1 can be found from the solution of the linearised BGK model of the kinetic
Boltzmann equation [9](

∂Z1

∂ρ
ζ +

∂Z1

∂ζ

(1− ζ2)

ρ

)
C⊥ + δZ1(ρ, ζ, C⊥) +

1

2
= δU1,z(ρ), ζ = cosψ, (7)

using Maxwell’s mirror-diffuse boundary condition

Z1(Ri, ζ, C⊥) = (1− α)Z1(Ri,−ζ, C⊥), (−1)iζ < 0, i = 1, 2. (8)

To find U2,z, the Onsager ratio U2,z = Q1,z is used [13], where 2GpQ1,z is dimensionless heat
flow due to the presence of the pressure gradient

Q̄1,z =
2

R2
2 −R2

1

∫ R2

R1

q1,z(ρ)ρdρ. (9)

Here, q1,z is the dimensionless z-component of the heat flux vector

q1,z =
2

π

∫ +∞

0

C⊥ exp(−C2
⊥)

∫ 1

−1

1√
1− ζ2

(C2
⊥Z1 + Z2)dζdC⊥ − 5

2
U1,z. (10)

After the solution of the boundary value problem (7), (8) function Z2 can be found from the
equation [15] (

∂Z2

∂ρ
ζ +

∂Z2

∂ζ

(1− ζ2)

ρ

)
C⊥ + δZ2(ρ, ζ, C⊥) +

3

4
=

3δ

2
U1,z(ρ), (11)

with the boundary condition

Z2(Ri, ζ, C⊥) = (1− α)Z2(Ri,−ζ, C⊥), (−1)iζ < 0, i = 1, 2. (12)

2. Solution of the boundary value problem
Unknown functions Z1(ρ, ζ, C⊥) and Z2(ρ, ζ, C⊥) are represented as series in Chebyshev poly-

nomials of the first kind {Tki} (i = 1, 3). Limiting the resulting decompositions to terms with
numbers ki 6 ni (i = 1, 3), we have

Zj(ρ, ζ, C⊥) = T1(x1)⊗T2(x2)⊗T3(x3)Aj, j = 1, 2, (13)

where x1 = (2ρ − R2 − R1)/(R2 − R1), x2 = ζ, x3 = (C⊥ − 1)/(C⊥ + 1), Ti is the matrix of
dimension 1× n′i (n′i = ni + 1, i = 1 . . . 3)
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Ti(xi) = (T0(xi)T1(xi) . . . Tni−1(xi)Tni(xi)) ,

and Aj (j = 1, 2) are unknown matrices of dimension n′1n′2n′3 × 1

Aj =
(
a
(j)
000 a

(j)
001 . . . a

(j)
n1n2n3−1 a

(j)
n1n2n3

)T
, j = 1, 2.

Expression T1(x1)⊗T2(x2) means the Kronecker product of two matrices.
Zeros of polynomial Tn′

i
on the interval [−1, 1]

xi,ki = cos

(
π(2ni − 2ki + 1)

2(ni + 1)

)
, ki = 0, ni, i = 1, 3 (14)

are selected as collocation nodes in (7) and (11) for xi. The values of Chebyshev polynomials and
their derivatives at points (14) are found according to the definition Tji(xi) = cos(ji arccosxi),
where xi ∈ [−1, 1] [10].

To calculate integrals (6) and (10), the Clenshaw–Curtis method [14] and the recurrence
relations [10] are used

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2(x), i > 2.

Substituting (13) and (14) into (7) and (11), we obtain two systems of n′1n′2n′3 equations in
which equations at points x1,0, x2,k2 (k2 = n′2/2 . . . n2) are replaced with the equations arising
from boundary conditions (8) and (12) for x2 > 0

T1(−1)⊗ (T2(x2,k2)− (1− α)T2(x2,n2−k2))⊗T3(x3,k3)Aj = 0, k3 = 0, n3, j = 1, 2.

Similarly, at the points x1,n1
x2,k2 (k2 = 0, n′

2/2− 1) equations corresponding to (8) and (12)
for x2 < 0 are

T1(1)⊗ (T2(x2,k2)− (1− α)T2(x2,n2−k2))⊗T3(x3,k3)Aj = 0, k3 = 0, n3, j = 1, 2.

Here and below, it is assumed that n2 is an odd number.
In order to reduce the computational error for Ū1,z and Ū2,z coefficients in (13) are expressed

in terms of values of functions Z1 and Z2 at points (14). As this takes place, we have the following
equalities at points (14)

2

n′i

ni∑
ki=0

′
Tki(xli)Tki(xji) = δli,ji , li, ji = 0, ni, i = 1, 3,

where δli,ji is the Kronecker symbol, and notation
ni∑
ki=0

′
means the partial sum in which the first

term is multiplied by 1/2.
Denoting matrices that contain values of functions Z1 and Z2 at points (14) as Z1 and Z2,

we obtain
Aj =

8

n′1n
′
2n

′
3

JT
′ ⊗HT ′ ⊗ LT

′
Zj, j = 1, 2, (15)

where J, H and G are square matrices of size n′i × n′i with elements Jk1+1,j1+1 = Tj1(x1,k1),
Hk2+1,j2+1 = Tj2(x2,k2), Lk3+1,j3+1 = Tj3(x3,k3), ji, ki = 0, ni, i = 1 . . . 3. The symbol T means
the transposition of matrices J, H and L. The prime symbol means that the first rows of matrices
JT , HT and LT are multiplied by 1/2
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Using (15), we obtain system of equations with respect to unknown matrices Z1 and Z2.
They are found by the LU method. Next, using the obtained elements of matrices Z1 and Z2,
U1,z(ρ) and q1,z(ρ) are restored

U1,z(ρ) =
8

n′1n
′
2n

′
3

T1

(
2ρ−R2 −R1

R2 −R1

)
JT

′ ⊗B1Z1, (16)

q1,z(ρ) =
8

n′1n
′
2n

′
3

T1

(
2ρ−R2 −R1

R2 −R1

)
JT

′ ⊗
∑
j=1,2

B3−jZj, (17)

where Bj is the block matrix of size 1 × n′2n
′
3 that consists of n′2-identical blocks KjL

T ′ of
dimension 1× n′3,

Kj = 2

∫ 1

−1

(1 + x3)
ij

(1− x3)2+ij
T3(x3) exp

(
− (1 + x3)

2

(1− x3)2

)
dx3, j = 1, 2, i1 = 1, i2 = 3.

Substituting (16) and (17) into (3) and considering that u2,z = q1,z, the values of the Poiseuille
number can be calculated from (5). The variable parameters in this case are α, δ, G and
r = R′

1/R
′
2. Radii R1 and R2 are expressed in terms of r as

R1 =
r

2(1− r)
, R2 =

1

2(1− r)
.

3. Analysis of the obtained results
Relationship between the Poiseuille number P0 and δ for r = R′

1/R
′
2 = 0.1, 0.5, 0.9 and

G = 0 are shown in Fig. 1 (a)(α =1) and in Fig. 1 (b) (α = 0.85 ) at n1 = n2 =15, n3 =11.
Interpolation of values of the Poiseuille number P0 (5) is performed on the basis of cubic splines
with values of the sparsity parameter δ from 0 to 100. Curves 1–3 correspond to r = 0.1, 0.5, 0.9.
The dots mark the values of P0 from [7]. It is clear that results obtained in this paper based on
the Chebyshev polynomials are in good agreement with [7]. The difference between results does
not exceed 2 %. It should be noted that there is a rapid convergence of curves 2 and 3 for r = 0.5
and r = 0.9 with decreasing values of the tangential momentum accommodation coefficient of
the gas molecules α. Next, the simulation results for r = 0.1 and r = 0.9 are presented.

To analyse the results obtained in the sliding and hydrodynamic modes, solution of the
Navier–Stokes equation with boundary conditions of sliding and sticking were found. In the
hydrodynamic limit (δ → ∞), we obtain from (7)

Uz(ρ) =
δ

4

(
R2

1 ln

(
R2

ρ

)
+R2

2 ln

(
ρ

R1

)
− ρ2

)(
ln

(
R2

R1

))−1

. (18)

It corresponds to the solution of the Navier–Stokes equation [16]

1

ρ

d

dρ

(
ρ
dUz(ρ)

dρ

)
= −δ, (19)

with boundary conditions of adhesion on the inner and outer surfaces of the cylinders

Uz(Ri) = 0, i = 1, 2.

Substituting (18) into (3) and (5) and considering that Ū2,z = 0, we obtain the following
expression for the Poiseuille number

P0 =
64(1− r)2 ln r

(ln r − 1)r2 + ln r + 1
. (20)
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(a) (b)

Fig. 1. The relationship between P0 and δ at G = 0 for α = 1 (a) and α = 0.85 (b): (1–3)
corresponds to r = 0.1, 0.5 and 0.9

For r → 0 we obtain from (20) P0 = 64 that corresponds to the laminar flow in the cylinder
[11]. In the case of r → 1, the value of P0 tends to the value of 96 that is characteristic of the
flow between two parallel planes [6].

In the sliding flow mode, boundary conditions for Navier–Stokes equation (19) are written in
the form [12]

U1,z(Ri) = (−1)i+1σp
δ

dUz
dρ

(Ri), i = 1, 2, (21)

U2,z(Ri) =
σT
2δ
, i = 1, 2. (22)

Here σp and σT are the coefficients of isothermal and thermal slip, respectively. For the BGK
equations considered in the paper the relationship between σp, σT and α can be represented
as [12,17]

σp(α) =
2− α

α
(σp(1)− 0.1211(1− α)) , σp(1) = 1.016,

σT (α) = 0.75 + 0.3993α.

(23)

Solving boundary value problems (19), (21) and (22), we find

U1,z(ρ) =

[(
ρ2 ln r −R2

1 ln

(
ρ

R2

)
−R2

2 ln

(
R1

ρ

))
R1R2δ

2+(R1 +R2) ρ
2σpδ+2σ2

p

(
R2

2 −R2
1

)
+

+

(
R3

1 +R3
2 −R2

1R2 ln

(
R2

2

ρ2

)
−R1R

2
2 ln

(
R2

1

ρ2

))
σpδ

][
4(σp(R1 +R2)−R1δR2 ln r)

]−1

, (24)

U2,z(ρ) =
σT
2δ
. (25)

One can see from (25) that component U2,z does not depend on r = R1/R2.
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Substituting (24) and (25) into (3), we find from (5) that

P0 =
4δ2β1
β2

, (26)

where β1 = 32(δr ln r + (2r2 − 2)σp)(1− r)2,

β2 = 2(r3(ln r − 1) + r(ln r + 1))δ3 + 4(r4 + 4r3(ln r − 1)− 4r2 ln r + 4(ln r + 1)r − 1)σpδ
2+

+32(r4 − 2r3 + 2r − 1)δσ2
p − β1σT .

The results of calculation of the Poiseuille number P0 at α = 1 for G = GT /Gp = 0.1
(a) and G = 0.9 (b) using the BGK model (curves 1 and 2 for r = 0.1 and 0.9, respectively)
in comparison with results obtained on the basis of the Navier–Stokes equation with a sliding
boundary condition (dashed lines) are shown in Fig. 2. To reconstruct U2,z component using
the BGK model the expression 2δ/3 [12] was used for the sparsity parameter, since this model
of the kinetic Boltzmann equation leads to the value of the Prandtl number equal to 1. The
difference in the results is less than 5 % at δ = 20 and about 1 % at δ = 40. It can be seen from
Fig. 2 that with increasing values of δ and r the simulation results are slowly approaching the
hydrodynamic limit. At r = 0.1, the value of the Poiseuille number calculated by formula (20)
is P0 = 89.4, that is, there is a shift towards a flat flow.

(a) (b)

Fig. 2. The relationship between P0 and δ for α = 1, G = 0.1 (a) and G = 0.9 (b): (1 and 2)
correspond to r = 0.1 and 0.9

Fig. 3 shows the results of interpolation of P0(δ) for α = 0.85 with the same parameters as in
Fig. 2. It can be seen from Fig. 3 that value of the Poiseuille number increases with an increase in
the ratio of temperature and pressure gradients G = GT /Gp. Note that correction in the second-
order approximation for σT (α) in the form σT (α) = 0.75(1 + 0.5714α− 0.0422α2) [18] does not
significantly contribute to the values of the Prandtl number. Comparison of this coefficient with
(23) shows that deviation for α = 1 and 0.85 does not exceed 0.2%.
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(a) (b)

Fig. 3. The relationship between P0 and δ for α = 0.85, G = 0.1 (a) and G = 0.9 (b): (1 and 2)
correspond to r = 0.1 and 0.9

Conclusion

The change in the value of the Poiseuille number in the channel formed by two concentric
cylinders was studied with the use of Chebyshev polynomials of the first kind. It depends on
rarefaction parameter, the tangential momentum accommodation coefficient of the gas molecules,
the ratio of the radii of the cylinders and the gradient of temperature and pressure. It was shown
that the value of the Poiseuille number increases with an increase in the ratio of dimensionless
temperature and pressure gradients for any ratio of cylinder radii, the degree of gas rarefaction
and the coefficient of accommodation of the tangential pulse by the channel walls. When the
ratio of temperature and pressure gradients is close to zero the presented results correspond
to the results characteristic of the isothermal flow of rarefied gas in a channel with the same
configuration.
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Вычисление числа Пуазейля в кольцевой области
при неизотермическом течении газа

Оксана В. Гермидер
Василий Н. Попов

Северный (Арктический) федеральный университет имени М.В. Ломоносова
Архангельск, Российская Федерация

Аннотация. В статье рассматривается медленный продольный неизотермический поток газа в
кольцевой области, обусловленный малыми перепадами давления и температуры на концах длин-
ного микроканала. Предложен метод расчета значений числа Пуазейля в промежуточном режи-
ме течения газа, основанный на решении модельного линеаризованного кинетического уравнения
Бхатнагара-Гросса-Крука (БГК, BGK) с использованием полиномов Чебышева первого рода. Вы-
численные значения сравниваются с аналогичными результатами, полученными с использованием
аналитических решений уравнений Навье–Стокса с граничными условиями прилипания и сколь-
жения. Анализируется влияние коэффициента аккомодации тангенциального импульса молекул
и параметра разрежения газа на изменение числа Пуазейля при малых отношениях градиентов
температуры и давления газа в канале.

Ключевые слова: полиномы Чебышева первого рода, метод коллокаций, неизотермическое тече-
ние газа в канале, число Пуазейля, кинетическое уравнение, модели граничных условий.
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