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Abstract. In this paper the singular Emden-Fowler equation of fractional order is introduced and a
computational method is proposed for its numerical solution. For the approximation of the solutions
we have used Boubaker polynomials and defined the formulation for its fractional derivative operational
matrix. However, the use of Boubaker polynomials is most recent, and has not been discussed in the
literature, since most of application areas of these polynomials require orthogonal polynomials, and here
we have introduced it for the first time. The operational matrixof the Caputo fractional derivative tool
converts the Emden–Fowler equation to a system of algebraic equations whose solutions are easy to
compute. Numerical examples are examined to prove the validity and the effectiveness of the proposed
method.
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1. Introduction and preliminaries

In mathematical physics and nonlinear mechanics there exists sufficiently large number of
particular singular fractional differential equations for which an exact analytic solution in terms
of known functions does not exist [9,10,14,17,22]. One of these equations describing phenomena
in mathematical physics and astrophysics such as, the thermal behaviour of a spherical cloud of
gas isothermal gas sphere and theory of stellar structure, theory of thermionic currents among
many others, is called the singular Emden–Fowler equation of fractional order, formulated as
follows [12,18,20,21]

D2αu(x) +
λ

xα
Dαu(x) + s(x)g(u(x)) = h(x), x ∈ (0, 1), λ > 0,

1

2
< α 6 1. (1)
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Subject to the conditions:
u (0) = a, Dαu (0) = b,

where a and b are constants, and Dα denotes the Caputo fractional derivative.
When α = 1, λ = 2, and h(x) = 1, Eq.(1) becomes the Lane-Emden type equation.
It is also defined in a more general form as follows :

Dαu (x) =
1

Γ (n− α)

∫ x

0

u(n) (t)

(x− t)
α−n+1 dt, n− 1 < α < n, n ∈ N, α > 0. (2)

For the Caputo derivative we have DαC = 0, where C is a constant, and

Dαxβ =

 0,
Γ (β + 1)

Γ (β + 1− α)
xβ−α

for β ∈ N ∪ {0} and β < ⌈α⌉ ,

for β ∈ N ∪ {0} and β > ⌈α⌉ or β /∈ N and β > ⌈α⌉ .

The problem (1) has been studied by different methods, using the residual power series
[20], homotopy analysis [12], reproducing kernel Hilbert space [21], the fractional differential
transformation [18], polynomial least squares [6], the shifted Legendre operational matrix [25],
the Chebyshev wavelets [13], the orthonormal Bernoulli’s polynomials [23], and the orthonormal
Bernstein polynomials [1]. There are many studies about solutions of Emden-Fowler equations
(α = 1), for e.g. in the monographs [2, 7, 8, 24, 26–28], where both analytical and numerical
approaches are presented.

The purpose of this paper is to use the operational matrix of fractional derivative based
on Boubaker polynomials for solving singular initial value problems of fractional Emden–Fowler
type equations (1). To the best of our knowledge, this is the first time where the Boubaker
operational matrices are used to obtain solutions for the singular Emden–Fowler equations of
fractional order. First we present a new theorem aiming to reduce the fractional Emden–Fowler
problem to a system of algebraic equations. The Boubaker polynomials were introduced for the
first time by Boubaker in (2007). The first monomial definition of the Boubaker polynomials on
the interval x ∈ [0, 1], was introduced in [3–5,11,16,19] in the following form

B0(x) = 1, Bn(x) =

ξ(n)∑
p=0

[
(n− 4p)

(n− p)
Cp

n−p](−1)pxn−2p, n > 1, (3)

where ξ(n) =
⌊ i
2

⌋
=

2n+ ((−1)n − 1)

4
, and Cr

n−r =
(n− p)!

r!(n− 2p)!
. The symbol ⌊.⌋ denotes the

floor function, i.e., the function which maps a real number to the greatest preceding integer.

The Boubaker polynomials could be computed by the following recursive formula

Bm(x) = xBm−1(x)−Bm−2(x), m > 2. (4)

We will construct operational matrix of Caputo fractional derivative D(α) for the Boubaker
polynomials using the following relation

DαB(x) ≃ D(α)B(x), (5)

where B(x) = [B0(x), B1(x), . . . , BN (x)]T denotes the Boubaker vector and D(α) is an
(N + 1)× (N + 1) dimensional matrix. This work focuses on solving equation (1) by using
Boubaker operational matrix of fractional derivative.
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Consequently, the remainder of the paper is arranged as follows. In Sec. 2., we express the
Boubaker polynomials in terms of Taylor basis, and function approximation. In Sec. 3. the
operational matrix of Caputo fractional derivatives is constructed. In Sec. 4., we use Boubaker
polynomials method for solving the fractional Emden–Fowler type equations. In Sec. 5. some
numerical examples are given to show the accuracy of this method.

2. Boubaker’s matrix and function approximation

By using the expression (3) and taking n = 0, . . . , N , we can express Boubaker polynomials
in terms of Taylor basis [5, 11,19] as follows

B (x) = MT (x) , x ∈ [0, 1] , (6)

where
T(x) = [1, x, . . . , xN ]T , (7)

and if N is odd,

M =



m0,0 0 0 0 · · · 0 0

0 m1,0 0 0 · · · 0 0

m2,1 0 m2,0 0 · · · 0 0
...

...
...

...
. . .

...
...

mN−1,N−1
2

0 mN−1,N−3
2

0 · · · mN−1,0 0

0 mn,N−1
2

0 mN,N−3
2

· · · 0 mN,0


if N is even,

M =



m0,0 0 0 0 · · · 0 0

0 m1,0 0 0 · · · 0 0

m2,1 0 m2,0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 mN−1,N−2
2

0 mN−1,N−4
2

· · · mN−1,0 0

mN,N2
0 mN,N−2

2
0 · · · 0 mN,0


where

Bn(x) =

ξ(n)∑
p=0

mn,px
n−2p, n = 0, 1, . . . , N, p = 0, 1, . . . ,

⌊n
2

⌋
, (8)

mn,p =
[ (n− 4p)

(n− p)
Cp

n−p

]
(−1)p. (9)

It can be observed, that M is a lower triangular matrix, and |M| = ΠN
i=0mi,0 = 1 thus it is

non-singular and the inverse M−1 exists.

It is clear that SN = span {B0 (x) , B1 (x) , . . . , BN (x)} is a finite dimensional and closed
subspace of the Hilbert space L2 [0, 1], therefore SN is a complete subspace and there is a unique
best approximation out of SN such that uN ∈ SN for each u ∈ L2 [0, 1], (see [15,19]), i.e.,

∀ y ∈ SN ∥u− uN∥ 6 ∥u− y∥ . (10)
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Since uN ∈ SN , there exist unique coefficients ci, i = 0, 1, . . . , N such that

u (x) ≃ uN (x) =

n∑
i=0

ciBn (x) = CTB (x) , (11)

where C is an (N + 1) × (1) vector given by C = [c0, c1, . . . , cN ]T , B(x) is the vector func-
tion defined in Eq. 5, and the coefficients of vector C can be computed by CT ⟨B(x),B(x)⟩ =

⟨u(x),B(x)⟩, such that

⟨u(x),B(x)⟩ =
∫ 1

0

u (x)BT (x)dx, (12)

where ⟨., .⟩ denotes the standard inner product on L2 [0, 1]. Thus, by the definition Q =

⟨B(x),B(x)⟩, we get

CT =

(∫ 1

0

u (x)BT (x)dx

)
Q−1, (13)

where Q is the following (N + 1)× (N + 1) matrix

Q = ⟨B(x),B(x)⟩ =
∫ 1

0

B(x)BT (x)dx = M
(∫ 1

0

T(x)TT (x)dx

)
MT = MHMT ,

where H = [hij ](N+1)×(N+1) is the well-known Hilbert matrix, the components of which can be
computed as

hij =
1

i+ j + 1
, i, j = 1, . . . , N. (14)

Theorem 2.1 (see [11, 15]). The elements B0, B1, . . . , BN of the Hilbert space L2[0, 1] form a
linearly independent set in L2[0, 1] if and only if

G(B0, B1, . . . , BN ) =

∣∣∣∣∣∣∣∣∣
⟨B0, B0⟩ ⟨B0, B1⟩ · · · ⟨B0, BN ⟩
⟨B1, B0⟩ ⟨B1, B1⟩ · · · ⟨B1, BN ⟩

...
...

. . .
...

⟨BN , B0⟩ ⟨BN , B1⟩ · · · ⟨BN , BN ⟩

∣∣∣∣∣∣∣∣∣ ̸= 0.

Theorem 2.1 proves that Q is symmetric and non-singular, so Q−1 exists.

Lemma 1 (see [15,19]). Suppose that u ∈ CN+1[0, 1] and

SN = span {BN (x) , Bn (x) , . . . , BN (x)} .

Let u0 be the best approximation for u in SN then

||u(x)− u0(x)||L2[0,1] 6
Maxx∈[0,1]|u(N+1)(x)|

(N + 1)
√
2N + 3

. (15)

Theorem 2.2 (see [15, 19]). Suppose that u ∈ L2[0, 1] and u(x) is approximated by
N∑
i=0

ciBi(x),

then we have

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣u (x)−

N∑
i=0

ciBi(x)

∣∣∣∣∣
∣∣∣∣∣
L2[0,1]

= 0. (16)
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3. The Boubaker operational matrix of fractional derivative

The main objective of this section is to derive the operational matrix of Caputo fractional
derivatives based on the Boubaker polynomials.

For the vector B(x), we can approximate the operational matrices of fractional order inte-
gration as (see [19])

DαB (x) ≃ D(α)B (x) , (17)

where D(α) denotes the (N + 1) × (N + 1) Caputo fractional operational matrix of integration
for Boubaker polynomials, which can be expressed as follows

DαB (x) ≃ MDαT (x) = MZX̄ (x) , (18)

where Z is the matrix given by

Z = (Zi,j) =


Γ (j + 1)

Γ (j + 1− α)
,

0,

i = j = ⌈α⌉, . . . , N

otherwise,
(19)

and X̄ =
[
X̄i+1

]
(N+1)×(1)

, where

X̄i+1 =

{
xi−α,

0,

i = ⌈α⌉, . . . , N
i = 0, 1, . . . , ⌈α⌉ − 1.

(20)

Now, X̄ is expanded in terms of Boubaker polynomials as

X̄ = ETB(x), (21)

where E = [e0, e1, . . . , em] and ei = Q−1Êi with Êi = [êi,0, êi,1, . . . , êi,m]T .

The entries of the vector Êi can be calculated as

êi,j =

(∫ 1

0

xi−αBj(x)dx

)
Q−1. (22)

We have then
DαB (x) ≃ D(α)B (x) , D(α) = MZET . (23)

D(α)is the operational matrix of the Caputo fractional derivative.

4. Solution to singular fractional Emden-Fowler problem

This section presents the derivation of the method for solving a singular initial value problem
of fractional Emden–Fowler type equations.

Let us consider the fractional Emden–Fowler equation of the form

D2αu(x) +
λ

xα
Dαu(x) + s(x)g(u(x)) = h(x), x ∈ (0, 1), λ > 0,

1

2
< α 6 1, (24)

with initial conditions
u (0) = a, Dαu (0) = b. (25)
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We use the approximations of u(x), s (x), and g (u (x)) by the Boubaker polynomials as

u (x) =

m∑
i=0

ciBi (x) = CTB (x) , s (x) g (u (x)) = s (x) g
(
CTB (x)

)
, (26)

where the unknowns are C = [c0, c1, . . . , cm]
T . Using operational matrix of fractional derivative,

Eq. (23) can be written as

CTD(2α)B (x) +
λ

xα
CTD(α)B (x) + s (x) g

(
CTB (x)

)
= h (x) . (27)

Collocating Eq. (27) at m− 1 collocation points leads to

CTD(2α)B (xi) +
λ

xα
CTD(α)B (xi) + s (xi) g

(
CTB (xi)

)
= h (xi) , (28)

where a set of suitable collocation points is defined as follows

xi =
1

2

(
cos

(
iπ

m

)
+ 1

)
, i = 0, . . . ,m− 1. (29)

In addition, the initial conditions (25) provide two algebraic equations

CTB (0) = a, CTD(α)B (0) = 0. (30)

Finally, we can compute the values for the components of C by solving the system of Eq. (28)
and Eq. (30). Hence, the approximate solution for u(x) can be computed by using Eq. (11).

5. Numerical examples

In this section, we apply the method presented in Sec. 4. to solve fractional Emden–Fowler
Equation. Numerical computations have been performed using Matlab programing language.

Example 1. We consider the following fractional Emden–Fowler equation :

D2αu(x) +
2

xα
Dαu(x) + u(x)n = 0, (31)

subject to the following conditions u(0) = 1, Dαu(0) = 0.

1. For the case α = 1, and n = 0, Eq. (31) has the following exact solution u(x) = 1− 1

3!
x2.

By applying the above method, and taking m = 2, we find

D(1) =

 0 0 0

1 0 0

0 2 0

 , D(2) =

 0 0 0

0 0 0

2 0 0

 , C =

 c0
c1
c2

 =

 4
3

0

− 1
6



Hence, the solution is u(x) = CTB (x) =

[
4

3
, 0,−1

6

] 1

x

x2 + 2

 = 1− 1

3!
x2

which is the exact solution found previously.
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2. Case α = 1, and n = 1, Eq. (31) has the exact solution [2] u (t) =
sin(x)

x
.

Applying the technique described in Sec. 4., with m = 3, we approximate the solution by

u(x) = c0B0(x) + c1B1(x) + c2B2(x) + c3B3(x) = CTB(x),

where,

D(1) =


0 0 0 0

1 0 0 0

0 2 0 0

−5 0 3 0

 , D(2) =


0 0 0 0

0 0 0 0

2 0 0 0

0 6 0 0

 , C =


c0
c1
c2
c3


then, we find the following system of equations

c0 + 2c2 = 1, c1 + c3 = 0,

c0 +
41

12
c1 +

137

16
c2 +

2465

192
c3 = 0, c0 +

33

4
c1 +

129

16
c2 +

721

64
c3 = 0,

which has the solution

c0 =
25 673

19 113
, c1 = − 256

19 113
, c2 = − 3280

19 113
, c3 =

256

19 113

so, in this case the approximation of u3(x) is

u3 (x) =

[
25 673

19 113
− 256

19 113
− 3280

19 113

256

19 113

]
1

x

x2 + 2

x3 + x

 =

=
256

19 113
x3 − 3280

19 113
x2 + 1.

Tab. 1 shows the absolute error between the approximate solution obtained for the values
of m = 3, and m = 6, using the operational matrix of Boubaker polynomials, and the exact
solution. It can be seen from Tab. 1 that the solutions obtained by the proposed method
is almost identical to the exact solutions. Clearly, increasing more higher the values of m
leads to highly accurate results.

Table 1. Absolute error for different values of m for α = 1

x 0.1 0.3 0.5 0.7 0.9
m = 3 3.6881E−5 1.5070E−4 7.9560E−5 1.9380E−4 3.9614E−4
m = 6 3. 389 1E−8 3. 051 2E−7 8. 479 1E−8 1. 671 4E−7 2. 961 1E−7

Example 2. We consider the following fractional Emden–Fowler equation [20]

D2αu (x) +
1

xα
Dαu (x) + (1 + xα) (u (x)) = h (x) ,

subject to the conditions u (0) = 3, Dαu (0) = 0, where

h (x) = Γ (1 + 2α) +
Γ (1 + 2α)

Γ (1 + α)
+ (1 + xα)

(
3 + x2α

)
.
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The exact solution is given by u (x) = 3 + x2α.

Applying the method developed in Sec. 3. and Sec. 4. for m = 2, α = 1, we have

u(x) = c0B0(x) + c1B1(x) + c2B2(x) = CTB(x).

Therefore, using Eq. (28) we obtain : 1. 5c0 + 2. 75c1 + 7. 375c2 = 8. 875.

Now, applying again Eq. (28) we have c0 + 2c2 = 3 and c1 = 0.

Finally, we get c0 = 1, c1 = 0 and c2 = 1.

Thus, u(x) can be written as

u (x) =
[
1 0 1

]  1

x

x2 + 2

 = 3 + x2,

which is none other than the exact solution.
Tab. 2 shows the absolute errors between the approximate solutions obtained for the respectives
values of (α = 0.75, α = 0.85, α = 1), and the exact solutions.

Table 2. Absolute error for different values of α for m = 2

x 0.1 0.3 0.5 0.7 0.9

α = 1 0.000 0.000 0.000 0.000 0.000

α = 0.85 6. 760 7× 10−2 1.07 59× 10−2 8. 371 2× 10−3 6. 982 7× 10−3 1.18 70× 10−3

α = 0.75 9. 703 2× 10−2 1.02 64× 10−2 5. 164 3× 10−3 4. 989 1× 10−3 1.99 24× 10−3

Example 3. Consider the following fractional Emden–Fowler equation

D2αu(x) +
λ

xα
Dαu(x)− 2(2x2 + 3)u(x) = h(x), (32)

subject to the conditions u(0) = 1, Dαu(0) = 0, with α = 1, λ = 2, and h(x) = 0. Eq (32) has
the exact solution (see [2]) u (t) = exp(x2).

In Fig. 1 (a), are plotted the exact and the approximate solutions of u(x) for m = 4, and
m = 6. Definitely, by increasing the value of m, the approximate value of u(x) will be closer to
the exact value. Fig. 1 (b) represents the absolute error in this case.

Example 4. Consider the following fractional Emden–Fowler equation (see [20] )

D2αu (x) +
1

xα
Dαu (x)− 9u (x) = h (x) , x ∈ (0, 1),

1

2
< α 6 1, (33)

subject to the boundary conditions u (0) = 2, Dαu (0) = 0, where

h (x) = −9 +
Γ (1 + 2α)

Γ (1 + α)
+ Γ (1 + 2α) +

(
Γ (1 + 3α)

Γ (1 + α)
+

Γ (1 + 3α)

Γ (1 + 2α)

)
xα − 9x2α − 9x3α.

The exact solution is given by

u (x) = 1 + x2α + x3α.
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Fig. 1. (a) — graph of exact and approximate solution (for m = 4 and m = 6), (b) — graph of
absolute error

For various values of α = 0.7, 0.8, 1 and m = 4. The operational matrix for D(α) is given by

D(0.7) =


0 0 0 0 0

7. 506 7 −5. 108 4 −7. 096 9 8. 245 8 −3. 488 8

−0.758 54 −2. 489 −1. 828 7 4. 118 2 −2. 181 5

3. 851 8 −5. 522 9 −5. 082 6 8. 471 2 −3. 305 7

1. 864 6 −2. 331 3 −0.318 72 2. 375 2 0.614 68

 ,

D(1.4) =


0 0 0 0 0

0 0 0 0 0

4. 738 6 7. 309 6 0.564 06 −4. 312 0 2. 820 3

−7. 585 9 0.987 11 3. 296 3 0.211 52 −0.475 93

−3. 893 4 −10. 541 −1. 816 9 11. 281 −3. 742 3

 ,

D(0.8) =


0 0 0 0 0

6. 198 6 −3. 393 4 −5. 244 3 5. 809 3 −2. 380 9

−2. 661 6 3. 804 3 2. 649 3 −2. 973 3 1. 315 1

1. 755 7 −3. 665 2 −2. 863 6 5. 913 2 −2. 224 9

2. 393 3 −4. 664 7 −1. 793 3 5. 076 8 −0.584 78

 ,

D(1.6) =


0 0 0 0 0

0 0 0 0 0

13. 216 −6. 467 1 −11. 403 12. 352 −4. 984 5

−8. 582 9 6. 606 8 6. 319 4 −5. 044 7 2. 038 9

−10. 082 −5. 954 1 3. 617 9 5. 905 8 −1. 420 1

 ,

D(1) =


0 0 0 0 0

1 0 0 0 0

0 2 0 0 0

−5 0 3 0 0

0 −4 0 4 0

 , D(2) =


0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0 6 0 0 0

−24 0 12 0 0

 .
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Then, Eq. (33) with the initial condition has been solved with the proposed method and the
values of the unknown matrix CT are obtained and listed in Tab. 2. The values of absolute
errors are shown in Tab. 3.

Table 3. Values of unknowns for m = 4, and for different values of α

Unknowns c0 c1 c2 c3 c4
α = 0.7 −2. 270 6 0.575 55 1. 616 8 −7. 593 7× 10−2 1. 856 8× 10−2

α = 0.8 −2. 289 5 7. 948 1× 10−2 1. 635 2 0.145 92 9. 545 0× 10−3

α = 1 −1. 000 4 −0.999 65 1. 000 2 0.999 65 2. 221 6× 10−5

Table 4. Absolute errors for m = 5 and for different values of α

x α = 0.7 α = 0.8 α = 1
0.1 5. 583 9× 10−2 2. 825 1× 10−2 3. 834 8× 10−5

0.2 4. 923 8× 10−2 2. 367 8× 10−2 3. 476 4× 10−5

0.3 4. 577 6× 10−2 2. 066 5× 10−2 3. 1270× 10−5

0.4 4. 324 2× 10−2 1. 855 0× 10−2 2. 983 1× 10−5

0.5 4. 065 4× 10−2 1. 719 5× 10−2 3. 236 2× 10−5

0.6 3. 751 0× 10−2 1. 660 5× 10−2 4. 072 1× 10−5

0.7 3. 352 8× 10−2 1.6 810× 10−2 5. 671 6× 10−5

0.8 2. 853 9× 10−2 1. 782 4× 10−2 8. 2100× 10−5

0.9 2. 242 8× 10−2 1. 961 9× 10−2 1. 185 7× 10−4

1.0 1. 509 9× 10−2 2. 212 5× 10−2 1. 677 8× 10−4

Fig. 2. The graph of u(x) with m = 4 and α = 0.7, 0.8, 1

Conclusions

In this paper, we introduced a new operational matrix of fractional derivative by using
Boubaker polynomials. Then by using these matrices, we reduced the singular fractional Emden-
Fowler type equations to a system of algebraic equations that can be solved easily. Numerical
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examples are included to demonstrate the validity and application of this method. The results
revealed that the introduced method is very effective, straightforward, simple, and it can be
applied to other related fractional problems, such as partial fractional differential and integro-
differential equations. Further improvements involving Boubaker polynomials in the fractional
case are possible and may be directions of the future research.
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Метод операционной матрицы Бубакера для дробной
задачи Эмдена-Фаулера

Абделькрим Бенчейх
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Уаргла, Алжир
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Сетиф, Алжир

Аннотация. В работе введено сингулярное уравнение Эмдена–Фаулера дробного порядка и пред-
ложен вычислительный метод его численного решения. Для аппроксимации решений мы исполь-
зовали полиномы Бубакера и определили формулировку его операционной матрицы дробной про-
изводной. Однако использование полиномов Бубакера появилось совсем недавно и в литературе не
обсуждалось, поскольку в большинстве областей применения этих полиномов требуются ортого-
нальные полиномы, и здесь мы ввели его впервые. Операционная матрица инструмента дробной
производной Капуто преобразует уравнение Эмдена-Фаулера в систему алгебраических уравнений,
решения которой легко вычислить. Рассмотрены численные примеры, подтверждающие обоснован-
ность и эффективность предложенного метода.

Ключевые слова: многочлены Бубакера, операционная матрица дробных производных, метод
коллокаций, дробные уравнения типа Эмдена–Фаулера.
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