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1. Introduction and preliminaries

Consider a reduced system of n trinomial algebraic equations

Qi := yω
(i)

+ xiy
σ(i)

− 1 = 0, i = 1, . . . , n (1)

with unknowns y = (y1, . . . , yn) ∈ (C \ 0)n and variable complex coefficients x = (x1, . . . , xn),

where yω
(i)

:= y
ω

(i)
1

1 · . . . · yω
(i)
n

n , yσ
(i)

:= y
σ
(i)
1

1 · . . . · yσ
(i)
n
n are monomials in variables y1, . . . , yn with

integer exponents. The coefficients of the system (1) vary in the vector space Cnx . We assume that
the matrix ω formed by column vectors ω(i) is non-degenerate. The universal trinomial system
in which all monomials have independent variable coefficients can be reduced to the form (1) by
means of monomial transformations of the coefficients in view of the polyhomogeneity property
of its solution [1, 3].

Denote by ∇◦ the set in Cnx of all x = (xi) such that the polynomial mapping Q =

(Q1, . . . , Qn) has multiple zeros in the complex algebraic torus (C \ 0)n, i.e.

∇◦ :=

{
x ∈ Cnx : Q1(y

0) = · · · = Qn(y
0) =

∂Q

∂y
(y0) = 0, y0 ∈ (C \ 0)n

}
,

where
∂Q

∂y
is the Jacobian of the mapping Q.
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Definition 1. The discriminant locus ∇ of the system (1) is defined to be the closure of ∇◦ in
the space of coefficients. If ∇ is a hypersurface, then its defining polynomial ∆(x) is said to be
the discriminant of the system (1).

This approach to the definition of the discriminant of the polynomial system was proposed
in [1] as an extension of the concept of the A-discriminant developed in the book [5]. Further,
we denote the discriminant of the system (1) by ∆n(x) to clarify the number of equations and
the dimension of the space of coefficients.

Our main objects of interest are limit positions of the discriminant locus ∇ in the toric
compactification of the space (C \ 0)n associated with the Newton polytope of the discriminant
∆n(x). Recall that the Newton polytope N∆n of the polynomial ∆n(x) is defined to be the
convex hull of its support in Rn. Each monomial xα = xα1

1 · . . . · xαnn is visualized by the point
α = (α1, . . . , αn) of the lattice Zn. The support of a polynomial is defined to be the set of
exponents of all its monomials with non-zero coefficients. The limit positions under study are
determined by truncations of the discriminant ∆n(x) to facets of the Newton polytope N∆n .

Definition 2. The truncation of the polynomial ∆n(x) to a face h of the Newton polytope N∆n

is the sum of all monomials of ∆n(x) whose exponents belong to the face h.

In the classical case n = 1, it is known that the Newton polytope of the discriminant of
the algebraic equation of degree m is combinatorially equivalent to the (m − 1)-dimensional
cube [5, Theorem 2.2, Chapter 12]. The classical discriminant is well-studied and, in particular,
a new approach to the proof of factorization identities for its truncations was proposed in recent
papers [8,9]. The factorization identities were proven in [5] by means of sophisticated techniques
of the theory of A-determinants. Truncations are factorized into the product of discriminants of
lower degree equations.

Let us introduce a matrix σ whose columns are exponents σ(1), . . . , σ(n) of the system (1),
matrices Ψ := ω∗σ and Ψ̃ := Ψ − |ω|En, where ω∗ is the adjoint matrix to the ω, the En
is the identity matrix and |ω| is the determinant of ω. The matrices σ and ω determine the
support of the system (1). As it follows from [2], rows of matrices (−Ψ) and Ψ̃ (we denote
them −ψ1, . . . ,−ψn and ψ̃1, . . . , ψ̃n, correspondingly) could define the inner normal directions
for facets of the polytope N∆n . We assume that matrices Ψ and Ψ̃ do not contain zero elements.
This is a sufficient condition for the set ∇ to be a hypersurface.

Now, we formulate the main result of our study without detailing all the structures used.

Theorem 1. Let h be a facet of the Newton polytope N∆n with a normal direction µ ∈{
−ψ1, . . . ,−ψn, ψ̃1, . . . , ψ̃n

}
. The zero locus of the truncation ∆n(x)|h contains the set

{
x ∈ (C \ 0)n : ∆n−1(z)|z=u(x) = 0

}
, (2)

where ∆n−1(z) is the discriminant of the reduced system of n − 1 trinomials, and z = u(x) :

(C \ 0)nx → (C \ 0)n−1
z is a mapping given by monomial functions of coefficients x = (x1, . . . , xn)

of the system (1).

The constructive proof of Theorem 1 is given in Section 4. It is important to note that the
proposed scheme is meaningful in case when matrices θ, θ̃, κ, κ̃ (see (9), (10), (16), (17) ) do
not contain zero elements.
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2. Parametrization of the discriminant locus
for the system (1)

The parametrization of the dehomogenized discriminant locus of a system of n Laurent poly-
nomials in n variables was comprehensively studied in the paper [1]. It is applied for computing
the tropical discriminant of the system [2] and is a key tool in the proof of Theorem 1 .

Let us introduce two copies of the space Cn. The first one is the space Cnx with coordinates
x = (x1, . . . , xn), and the second one is Cns with coordinates s = (s1, . . . , sn). We interpret
the Cns as the space of homogeneous coordinates in CPn−1

s . Consider the multivalued algebraic
mapping x = x(s) : CPn−1

s → Cnx with components

xi = − |ω|si
⟨ψ̃i, s⟩

n∏
k=1

(
⟨ψ̃k, s⟩
⟨ψk, s⟩

)ψ
(i)
k

|ω|

, i = 1, . . . , n, (3)

where brackets ⟨, ⟩ denote the inner product of vectors. The number of branches in (3) equals
to the absolute value of the determinant |ω|, however, some branches may coincide. If the
discriminant locus of the system (1) is an irreducible hypersurface depending on all variables
x1, . . . , xn, then the mapping (3) parametrizes it with the multiplicity equal to the index |Zn : H|
of the sublattice H ⊂ Zn generated by the columns of the matrix (ω|σ), i.e. by all exponents of
the system (1).

3. Tropical discriminant

We start this section with some basic concepts of the tropical geometry following the book [10].
Consider the tropical semiring (R ∪∞,⊕,⊙), where arithmetic operations of addition and mul-
tiplication are defined as follows:

x⊕ y := min(x, y), x⊙ y := x+ y.

Consider a field K with a valuation val : K → R ∪ {∞}. For a polynomial

f =
∑
u∈Zn

cux
u

in the ring K[x±1 , . . . , x
±
n ], the tropicalization is defined to be the function

trop(f)(w) := minu∈Zn (val(cu) + ⟨u,w⟩) . (4)

The tropical polynomial trop(f)(w) is a piecewise linear function that is obtained by replacing all
coefficients cu by their valuations val(cu) and performing all operations in the tropical semiring.

The Laurent polynomial f over the field K determines the algebraic hypersurface

V (f) = {y ∈ Tn : f(y) = 0},

where Tn := (K \ 0)n is the algebraic torus.

Definition 3. The tropicalization of the algebraic hypersurface V (f) is defined to be the set

trop(V (f)) := {w ∈ Rn : the minimum in (4) is attained at least twice} .
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Therefore, the trop(V (f)) is the locus in Rn, where the function trop(f)(w) fails to be linear.
The general construction of tropicalization for an algebraic variety that admits a rational

parametric representation whose components are Laurent monomials in linear forms is proposed
in [7]. Let K be a field with trivial valuation. Consider a m × d matrix U = (uij) over K and
a p ×m matrix V = (vij) with integer entries. The matrix U determines m linear forms in the
ring K[s1, . . . , sd] :

li(s) = ui1s1 + . . .+ uidsd, i = 1, . . . ,m. (5)

The matrix V encodes p Laurent monomials in K[z±1 , . . . , z
±
m]:

z
vj1
1 · . . . · zvjmm , j = 1, . . . , p. (6)

The composition of monomials (6) and forms (5) defines a rational mapping α : Kd → Kp with
components

αj(s) =

m∏
i=1

li(s)
vij .

We denote by Y the closure of the image of α. According to [7, Theorem 3.1], the tropicalization
of the variety Y is a polyhedral fan trop(Y ) that coincides with the image of the Bergman fan
BM of the matroid M associated with the matrix U under the linear map defined by V . The
Bergman fan being a geometric model of the matroid M , is the tropicalization of the linear
variety given by the linear map s→ Us (see [4, 10]).

Consider the rational map CPn−1
s → Cnw that is obtained by raising the components of the

map (3) to the power |ω|. It defines the rational variety ∇̃, and by the construction given above
the tropicalization trop(∇̃) is encoded by the pair of block matrices

U3n×n =
(
−|ω|En

∣∣ΨT ∣∣ Ψ̃T)T , and Vn×3n =
(
|ω|En

∣∣−ΨT
∣∣ Ψ̃T) . (7)

The study of the tropical discriminant in case of the general polynomial system has been carried
out in [2]. In Section 5, using an example, we demonstrate how a tropical variety constructed
on the basis of the parametrization of the discriminant set reveals normals to facets of the
Newton polytope of the discriminant, while the matroid associated with the matrix U suggests
the parametrization of ‘hidden’ limit positions of the discriminant locus.

4. Zero loci of truncations

Here we present a proof of the main result.
The relation between the discriminant ∆n(x) and its truncation ∆n(x)|h to the facet h is

established by means of the function

Hτ
h(x) := τd∆n

( x1
τµ1

, . . . ,
xn
τµn

)
,

where µ1, . . . , µn are entries of the normal vector µ to the facet h, d is the weighted degree of all
monomials of the truncation ∆n(x)|h with respect to the weight µ.

Lemma 1. The function Hτ
h(x) being a homogenization of the discriminant of the system (1)

with respect to the weight µ has the following property

Hτ
h(x) −→

τ→0
∆n(x)|h.
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Proof. The weighted degree of all monomials of the ∆n(x) that do not belong to the truncation
∆n(x)|h is strictly less than d. Therefore, as a result of passing to the limit when τ → 0,
all monomials disappear, except for those whose exponents belong on the face h. Lemma 1 is
proved. �

Proof of Theorem 1. First, we study the truncation ∆n(x)|h to the facet h having a normal
vector µ = −ψj . Recall that ψj is the jth row of the matrix Ψ and introduce the following
constructions. Let δ(m)

k denote a 2× 2 minor of the matrix Ψ formed by the intersection of rows
ψk, ψj , and columns ψ(m), ψ(j). Therefore, we have

δ
(m)
k = ±

(
ψ
(m)
k ψ

(j)
j − ψ

(j)
k ψ

(m)
j

)
, (8)

where the sign on the right-hand side depends on the choice of k and m. Define the square
matrix θ of the order n− 1 that contains the entries

θ
(m)
k := δ

(m)
k , k,m ∈ {1, . . . , j − 1},

θ
(m)
k := −δ(m+1)

k , k ∈ {1, . . . , j − 1} , m ∈ {j, . . . , n− 1},

θ
(m)
k := −δ(m)

k+1, k ∈ {j, . . . , n− 1} , m ∈ {1, . . . , j − 1},

θ
(m)
k := δ

(m+1)
k+1 , k,m ∈ {j, . . . , n− 1},

(9)

and matrices
ξ := |ω|ψ(j)

j En−1 and θ̃ := θ − ξ. (10)

Introduce a system of n− 1 trinomials

yξ
(i)

+ ziy
θ(i) − 1 = 0, i = 1, . . . , n− 1, (11)

where y = (y1, . . . , yn−1), ξ(i) and θ(i) are columns of matrices ξ and θ respectively.
Now we are in a position to study a parametrization of the zero locus of the trunca-

tion ∆n(x)|h. To this end, according to Lemma 1, we consider the sets {x : Hτ
h(x) = 0},

τ ̸= 0 that admit the parametrization

xi = −τψ
(i)
j

|ω|si
⟨ψ̃i, s⟩

n∏
k=1

(
⟨ψ̃k, s⟩
⟨ψk, s⟩

)ψ
(i)
k

|ω|

, i = 1, . . . , n. (12)

In the projective space with coordinates s = (s1 : . . . : sn) , we define a plane γj given by the
equation

⟨ψj , s⟩ = 0,

and use the parametrization (12) to get restrictions of the monomials xi · x
−ψ(i)

j /ψ
(j)
j

j to γj for
i ̸= j. Note that (

|ω|sj
⟨ψ̃j , s⟩

)−ψ(i)
j /ψ

(j)
j

∣∣∣∣∣∣
γj

= (−1)
−ψ(i)

j /ψ
(j)
j ,

and, for i ̸= j,
|ω|si
⟨ψ̃i, s⟩

∣∣∣∣
γj

=
|ω|ψ(j)

j si∑
m̸=j

(
ψ
(m)
i ψ

(j)
j − ψ

(j)
i ψ

(m)
j

)
sm − |ω|ψ(j)

j si
.
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Moreover, for k ≠ j

⟨ψ̃k, s⟩
⟨ψk, s⟩

∣∣∣∣∣
γj

=

∑
m̸=j

(
ψ̃
(m)
k ψ

(j)
j − ψ̃

(j)
k ψ

(m)
j

)
sm∑

m̸=j

(
ψ
(m)
k ψ

(j)
j − ψ

(j)
k ψ

(m)
j

)
sm

.

Therefore, in terms of notations (9) and (10) restrictions of monomials xi · x
−ψ(i)

j /ψ
(j)
j

j to the
plane γj admit representations

xi · x
−ψ(i)

j /ψ
(j)
j

j

∣∣∣∣
γj

= −
ξ
(j)
j si

⟨θ̃i, s⟩

n−1∏
k=1

(
⟨θ̃k, s⟩
⟨θk, s⟩

) θ
(i)
k

ξ
(j)
j

, i = 1, . . . , j − 1,

xi · x
−ψ(i)

j /ψ
(j)
j

j

∣∣∣∣
γj

= −
ξ
(j)
j si−1

⟨θ̃i−1, s⟩

n−1∏
k=1

(
⟨θ̃k, s⟩
⟨θk, s⟩

) θ
(i−1)
k

ξ
(j)
j

, i = j + 1, . . . , n,

(13)

where s = (s1 : . . . : sn−1) are homogeneous coordinates of CPn−2. The right-hand sides of
formulae (13) determine the parametrization of the discriminant locus for the system (11).
Thus, the zero locus of the truncation ∆n(x)|h contains the set{

x ∈ (C \ 0)n : ∆n−1(z)|z=u(x) = 0
}
, (14)

where ∆n−1(z) is the discriminant of the system (11) and z = u(x) is a monomial mapping with
components

ui(x) =

xi · x
−ψ(i)

j /ψ
(j)
j

j , i = 1, . . . , j − 1,

xi+1 · x
−ψ(i+1)

j /ψ
(j)
j

j , i = j, . . . , n− 1.

(15)

Next, we follow the similar way to study the truncation ∆n(x)|h to the facet h with the
normal vector µ = ψ̃j . Define the square matrix κ of the order n− 1 that contains the entries

κ(m)
k := δ

(m)
k − |ω|ψ(m)

k , k,m ∈ {1, . . . , j − 1},

κ(m)
k := −δ(m+1)

k − |ω|ψ(m+1)
k , k ∈ {1, . . . , j − 1} , m ∈ {j, . . . , n− 1},

κ(m)
k := −δ(m)

k+1 − |ω|ψ(m)
k+1, k ∈ {j, . . . , n− 1} , m ∈ {1, . . . , j − 1},

κ(m)
k := δ

(m+1)
k+1 − |ω|ψ(m+1)

k+1 , k,m ∈ {j, . . . , n− 1},

(16)

and matrices
η := |ω|ψ̃(j)

j En−1, κ̃ := κ − η. (17)

In this case, the sets {x : Hτ
h(x) = 0}, τ ̸= 0 admit parametrization

xi = −τ ψ̃
(i)
j

|ω|si
⟨ψ̃i, s⟩

n∏
k=1

(
⟨ψ̃k, s⟩
⟨ψk, s⟩

)ψ
(i)
k

|ω|

, i = 1, . . . , n. (18)

In the projective space with coordinates s = (s1 : . . . : sn) , we define a plane γ̃j given by the
equation

⟨ψ̃j , s⟩ = 0,
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and use the parametrization (18) to get restrictions of monomials xi · x
−ψ̃(i)

j /ψ̃
(j)
j

j to γ̃j for i ̸= j.
We obtain the following result

xi · x
−ψ̃(i)

j /ψ̃
(j)
j

j

∣∣∣∣
γ̃j

= −
η
(j)
j si

⟨κ̃i, s⟩

n−1∏
k=1

(
⟨κ̃k, s⟩
⟨κk, s⟩

)κ(i)
k

η
(j)
j , i = 1, . . . , j − 1,

xi · x
−ψ̃(i)

j /ψ̃
(j)
j

j

∣∣∣∣
γ̃j

= −
η
(j)
j si−1

⟨κ̃i−1, s⟩

n−1∏
k=1

(
⟨κ̃k, s⟩
⟨κk, s⟩

)κ(i−1)
k

η
(j)
j , i = j + 1, . . . , n.

(19)

The right-hand sides of (19) determine the parametrization of the discriminant set for the tri-
nomial system with the support (η|κ). Thus, the zero locus of the truncation ∆n(x)|h contains
the set {

x ∈ (C \ 0)n : ∆n−1(z)|z=u(x) = 0
}
, (20)

where ∆n−1(z) is the discriminant of the system of n− 1 trinomials with the support (η|κ) and
z = u(x) is a monomial mapping with entries

ui(x) =

xi · x
−ψ̃(i)

j /ψ̃
(j)
j

j , i = 1, . . . , j − 1,

xi+1 · x
−ψ̃(i+1)

j /ψ̃
(j)
j

j , i = j, . . . , n− 1.

(21)

The proof of Theorem 1 is completed. �

Remark 1. The described procedure can be applied to the truncation ∆n|h0
j

that lies in a

coordinate plane αj = 0. The limit set
{
x : Hτ

h0
j
(x) = 0

}
as τ → 0 approaches the discriminant

set {∆n−1(x1, . . . [j] . . . , xn) = 0} of the system of n− 1 trinomials of the form

y
|ω|
i + xiy

ψ(i)[j] − 1 = 0, i = 1, . . . [j] . . . , n, (22)

where ψ(i)[j] := (ψ
(i)
1 , . . . [j] . . . , ψ

(i)
n ), yψ

(i)[j] := y
ψ

(i)
1

1 · . . . [j] . . . · yψ
(i)
n

n .

5. Example: ‘hidden’ facets and truncations

Consider a system of equations 
y1 + ay1

2y2y3 − 1 = 0,

y2 + by1y2
2y3 − 1 = 0,

y3 + cy1y2y3
2 − 1 = 0

(23)

with unknowns y1, y2, y3 and variable coefficients a, b, c. The matrix of exponents of the system
is

(ω|σ) =

 1 0 0 2 1 1

0 1 0 1 2 1

0 0 1 1 1 2

 .

Its columns generate the lattice Z3. Since matrices

Ψ =

 2 1 1

1 2 1

1 1 2

 and Ψ̃ =

 1 1 1

1 1 1

1 1 1
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do not contain zero elements, the discriminant set ∇ is a hypersurface. The rational mapping
CP2

s → C3
a,b,c given by formulae

a = − s1
s1 + s2 + s3

(
s1 + s2 + s3
2s1 + s2 + s3

)2(
s1 + s2 + s3
s1 + 2s2 + s3

)(
s1 + s2 + s3
s1 + s2 + 2s3

)
,

b = − s2
s1 + s2 + s3

(
s1 + s2 + s3
2s1 + s2 + s3

)(
s1 + s2 + s3
s1 + 2s2 + s3

)2(
s1 + s2 + s3
s1 + s2 + 2s3

)
,

c = − s3
s1 + s2 + s3

(
s1 + s2 + s3
2s1 + s2 + s3

)(
s1 + s2 + s3
s1 + 2s2 + s3

)(
s1 + s2 + s3
s1 + s2 + 2s3

)2

,

(24)

parametrizes ∇ with the multiplicity one. Here s = (s1, s2, s3) ∈ C3 are homogeneous coordinates
in CP2

s.
Let us study the tropicalization τ(∇) of the rational variety ∇ ⊂ C3. As it was pointed out

in Section 3, the mapping (24) is encoded by two matrices

U =



−1 0 0
0 −1 0
0 0 −1
2 1 1
1 2 1
1 1 2
1 1 1
1 1 1
1 1 1


and V =

(
1 0 0 −2 −1 −1 1 1 1
0 1 0 −1 −2 −1 1 1 1
0 0 1 −1 −1 −2 1 1 1

)
.

Consider the matroid M on the set E = {1, 2, 3, 4, 5, 6, 7, 8, 9} associated with the set of rows
of the matrix U. The tropical linear space related to the matroid M is the Bergman fan B(M).
It is a two-dimensional fan in R9/R1 or a graph depicted in Fig. 1a. The graph has ten vertices,
corresponding to seven flats of the rank one (1, 2, 3, 4, 5, 6, 789) and three circuits (14789, 25789,
36789) of the matroid M . The edges 12, 13, 15, 16, 23, 24, 26, 43, 35, 45, 46, 56 of the graph
correspond to flats of the rank two.

The image of B(M) under V is a two-dimensional fan τ(∇) ⊂ R3 (see Fig. 1b). It is the
tropical variety τ(∇) that consists of all codimension one cones of the normal fan of the Newton
polytope N∆3

for the discriminant of the system (23). Seven rays µ(1), . . . , µ(7) of the fan τ(∇)

generated by columns V are predicted explicitly by the parametrization (24) and determine
normal directions

µ(1) = (1, 0, 0), µ(5) = (−1,−2,−1),

µ(2) = (0, 1, 0), µ(6) = (−1,−1,−2),

µ(3) = (0, 0, 1), µ(7) = (1, 1, 1).

µ(4) = (−2,−1,−1),

There are three more ‘hidden’ rays that are revealed as a result of intersection of two-
dimensional cones of the fan τ(∇). More precisely, images of cones 14789 and 23 intersect along
the ray R>0(0, 1, 1)

T (µ(10) in Fig. 1b); images of 25789 and 13 intersect along R>0(1, 0, 1)
T (µ(9)

in Fig. 1b); images of 36789 and 12 intersect along R>0(1, 1, 0)
T (µ(8) in Fig. 1b). Therefore,

all inner normals to facets of the Newton polytope of the discriminant for the system (23) are
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found. The discriminant of (23) is as follows

∆3(a, b, c) = 4a5b2 − 8a5bc+ 4a5c2 − 27a4b4 + 36a4b3c− 6a4b3 − 2a4b2c2 + 6a4b2c+ a4b2 + 36a4bc3+

+ 6a4bc2 − 2a4bc− 27a4c4 − 6a4c3 + a4c2 + 36a3b4c− 6a3b4 − 256a3b3c3 − 52a3b3c2 + 16a3b3c−

− 2a3b3 − 52a3b2c3 − 16a3b2c2 + 2a3b2c+ 36a3bc4 + 16a3bc3 + 2a3bc2 − 6a3c4 − 2a3c3 + 4a2b5−

− 2a2b4c2 + 6a2b4c+ a2b4 − 52a2b3c3 − 16a2b3c2 + 2a2b3c− 2a2b2c4 − 16a2b2c3 − 6a2b2c2 + 6a2bc4+

+ 2a2bc3 + 4a2c5 + a2c4 − 8ab5c+ 36ab4c3 + 6ab4c2 − 2ab4c+ 36ab3c4 + 16ab3c3 + 2ab3c2+

+ 6ab2c4 + 2ab2c3 − 8abc5 − 2abc4 + 4b5c2 − 27b4c4 − 6b4c3 + b4c2 − 6b3c4 − 2b3c3 + 4b2c5 + b2c4.

a) b)

Fig. 1. a) The Bergman fan B(M). b) The tropical variety τ(∇)

Fig. 2. The Newton polytope N∆3

The Newton polytope N∆3
has 10 facets (Fig. 2) enumerated by h(j), j = 1, . . . , 10, in

accordance with normal vectors µ(j).
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The truncations of the discriminant ∆3(a, b, c) to coordinate faces h(1), h(2), h(3) are as follows

∆3|h(1) = b2c2(−27b2c2 + 4b3 − 6b2c− 6bc2 + 4c3 + b2 − 2bc+ c2),

∆3|h(2) = a2c2(−27a2c2 + 4a3 − 6a2c− 6ac2 + 4c3 + a2 − 2ac+ c2),

∆3|h(3) = a2b2(−27a2b2 + 4a3 − 6a2b− 6ab2 + 4b3 + a2 − 2ab+ b2).

(25)

Polynomials in brackets in (25) are irreducible and coincide with the discriminant ∆2(z1, z2) of
the system {

y1 + z1y1
2y2 − 1 = 0,

y2 + z2y1y2
2 − 1 = 0,

under condition of a suitable determination of variable coefficients.
The factorized truncations of the polynomial ∆3(a, b, c) to facets h(4), h(5), h(6) are as follows

∆3|h(4) = −a3(256b3c3 + 27ab4 − 36ab3c+ 2ab2c2 − 36abc3 + 27ac4 − 4a2b2 + 8a2bc− 4a2c2),

∆3|h(5) = −b3(256a3c3 + 27a4b− 36a3bc+ 2a2bc2 − 36abc3 + 27bc4 − 4a2b2 + 8ab2c− 4b2c2),

∆3|h(6) = −c3(256a3b3 + 27a4c− 36a3bc+ 2a2b2c− 36ab3c+ 27b4c− 4a2c2 + 8abc2 − 4b2c2).

Implementing the construction proposed in Theorem 1 for these truncations, we obtain the
following representations

∆3(a, b, c)|h(4) = a6 ·∆2(z)|z=u(1)(a,b,c),

∆3(a, b, c)|h(5) = b6 ·∆2(z)|z=u(2)(a,b,c),

∆3(a, b, c)|h(6) = c6 ·∆2(z)|z=u(3)(a,b,c),

where

∆2(z) = 256z31z
3
2 + 27z41 − 36z31z2 + 2z21z

2
2 − 36z1z

3
2 + 27z42 − 4z21 + 8z1z2 − 4z22

is the discriminant of the system {
y1

2 + z1y
3
1y2 − 1 = 0,

y2
2 + z2y1y2

3 − 1 = 0,
(26)

and
u(1)(a, b, c) = (ba−1/2, ca−1/2),

u(2)(a, b, c) = (ab−1/2, cb−1/2),

u(3)(a, b, c) = (ac−1/2, ac−1/2).

As applied to the truncation ∆3(a, b, c)|h(7) , the construction degenerates. If we consider
parametrizations of sets {(a, b, c) : Hτ

h(7)(a, b, c) = 0}, τ ̸= 0, and, according to (19), express the
restrictions of monomials b · a−1, c · a−1 to the plane ⟨µ(7), s⟩ = 0, then we get the equations

b

a
=
c

a
= 1,

that define the zero locus of the truncation ∆3|h(7) . The truncation itself is as follows

∆3|h(7) = (b− c)2(a− c)2(a− b)2. (27)

The limit positions of the discriminant locus associated with facets h(8), h(9), h(10) can be
investigated by means of the the tropical fan τ(∇). For example, consider the ray R>0(1, 1, 0)

T
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that defines the normal to the facet h(8). It is the intersection of cones associated with flats
36789 and 12. This means that the zero locus of the truncation ∆3|h(8) can be obtained by the
restriction of the parametrization for the family {(a, b, c) : Hτ

µ(8)(a, b, c) = 0}, τ ̸= 0 to the planes

γ1 : s1 = s2 = 0 and γ2 : s3 = 0, s1 + s2 + s3 = 0.

As a result, we get that the zero locus of the truncation ∆3|h(8) consists of three components
c = 0, a = b and c = − 1

4 which agrees with the expression

∆3|h(8) = c4(a− b)2(4c+ 1).

Similarly, we study limit positions of the discriminant locus associated with facets h(9), h(10).
They are given by polynomials

∆3|h(9) = b4(a− c)2(4b+ 1),

∆3|h(10) = a4(b− c)2(4a+ 1).

All the discriminants from the example are computed using the computer algebra system for
polynomial computations Singular [6].

The research is supported by the Krasnoyarsk Mathematical Center funded by the Ministry of
Science and Higher Education of the Russian Federation (Agreement no. 075-02-2023-936).
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Параметризации предельных положений
дискриминантного множества системы триномов
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Красноярск, Российская Федерация

Аннотация. Рассматривается дискриминант приведенной системы n триномиальных алгебраиче-
ских уравнений. Исследуются срезки дискриминанта на гиперграни его многогранника Ньютона.
Основой исследования являются свойства параметризации дискриминантного множества системы
и общая комбинаторная конструкция тропикализации алгебраических многообразий.

Ключевые слова: алгебраическое уравнение, дискриминант, многогранник Ньютона, срезка, дис-
криминантное множество, параметризация.
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