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Abstract. Self-oscillating system that interacts with energy source of limited power is considered in
the presence of external force and joint action of delays in damping and elasticity. On the basis of the
direct linearisation method, the solution of non-linear equations of the system is obtained. The equations
of non-stationary motion, relations for calculating the amplitude and phase of stationary oscillations,
the speed of the energy source and the load on it on the side of the oscillatory system are derived.
Stability conditions of stationary oscillations were obtained with the use of the Routh–Hurwitz criteria.
Calculations were carried out to study the influence of delays on dynamics of the system. The results
show the combined effect of delays in elasticity and damping on dynamics of oscillations. Delays change
the shape of the amplitude-frequency curve, shift it up/down and shift it in the frequency range. Delays
also affect the stability of oscillations. If in the case of no delay there is no resonant curve then various
intensity resonant curve may appear if delay is present. The intensity of resonant curve depends on the
amount of delay. Considering the influence of delays on dynamics of oscillations, it was assumed that
other parameters of the system are unchanged.
Keywords: self-oscillations, forced oscillations, energy source, delay, damping, elasticity,
linearisation.
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Introduction
The theory of interaction between the oscillating system and the energy source is presented

in many studies [1–8] et al. It is directly related to the solution of environmental problems
that arose due to the large increase in energy consumption in modern conditions. Oscillatory
processes of various types, including mixed oscillations, arise in many modern technical devices
and technological processes under certain conditions. They can also be caused by delay caused
by various factors [9]. Problems where properties of the energy source in systems with delay are
not taken into account were considered in a number of works, for example, in [11–17].

The analysis of non-linear oscillatory systems is carried out using various methods of non-
linear mechanics [17–23] which are very time consuming. The method of direct linearisation is
not so time consuming, and it is easy of use [24–29] et al. Such features are very important when
real technical devices are designed. A model of auto-oscillatory system with limited excitation
in the presence of an external force and delays in elasticity and damping is considered below.
The model is based on the direct linearisation method. The aim of the work is to study the joint
effect of the delay of mixed forced and self-oscillation with limited power of the energy source on
the system dynamics.
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1. Equations of motion
The model for the study of frictional self-oscillations in a system with a limited power source

is based on the model given in [1–3, 29]. The dynamics of the system in the simplest case is
described by non-linear differential equations

mẍ+ k0 ẋ+ c0x = T (U), (1)

Iφ̈ =M(φ̇)− r0T (U),

where k0 = const, c0 = const, T (U) is the non-linear friction force causing self-oscillation,
U = r0φ̇− ẋ, r0 = const is the distance to the point of application of force T (U), φ̇ is the speed
of rotation of the engine, I is the total moment of inertia of the rotating parts, M(φ̇) is the
difference between the torque of the energy source and the torque of the forces resisting rotation.

In practical conditions T (U) has various forms (see, for example, results of experiments in
space [30]). Here the following form is assumed

T (U) = R(sgnU − α1U + α3U
3). (2)

Here R is the normal force, α1 = const, α3 = const, sgnU = 1 in the case U > 0 and sgnU = −1
in the case U < 0.

Let us rewrite the first equation (1) in the form

mẍ+ k0 ẋη + c0x+ c1xτ + F (x) = T (U)− λ sin νt, (3)

where F (x) is non-linear part of elastic force, λ sin νt is external force, ẋη = ẋ(t − η), xτ =
= x(t− τ), η = const and τ = const are delays, c1 = const.

For greater generality characteristics of forces T (U) and F (x) are taken in the following form

T (U) = R [sgnU + f(ẋ)] , f(ẋ) =
∑
i

αiU
i =

5∑
n = 0

δnẋ
n, (4)

F (x) =
∑
s
γsx

s, s = 2, 3, 4, . . .

δ0 = α1V + α2V
2 + α3V

3 + α4V
4 + α5V

5,

δ1 = − (α1 + 2α2V + 3α3V
2 + 4α4V

3 + 5α5V
4), δ2 = α2 + 3α3V + 6α4V

2 + 10α5V
3,

δ3 = −(α3 + 4α4V + 10α5V
2), δ4 = α4 + 5α5V, δ5 = −α5,

where αi = const, γs = const.
Using the direct linearisation method [24], forces f(ẋ) and F (x) are replaced with linear

functions
f∗(ẋ) = Bf + kf ẋ, F∗(x) = BF + kF x, (5)

where Bf , kf , BF , kF are linearisation coefficients defined as

Bf =
∑
n
Nnαnυ

n, n = 0, 2, 4 (n is even),

kf =
∑
n
αnN̄nυ

n−1, n = 1, 3, 5 (n is odd),

BF =
∑
s
Nsγsa

s, s = 2, 4, 6, . . . (s is even),

kF =
∑
s
N̄sγsa

s−1, s = 3, 5, 7, . . . (s is odd),

(6)

Nn = (2r + 1)/(2r + 1 + n), N̄n = (2r + 3)/(2r + 2 + n),

Ns = (2r + 1)/(2r + 1 + s), N̄s = (2r + 3)/(2r + 2 + s),

a = max |x| , υ = max |ẋ| .
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In expressions for Nn, N̄n, Ns, N̄s symbol r represents the linearisation accuracy parameter
which can be chosen in the interval (0,2) [24].

Taking into account (5), equations (1) take the form

mẍ+ k0 ẋη + cx+ c1xτ = B +R(sgnU + kf ẋ)− λ sin νt, (7)

Iφ̈ =M(φ̇) − r0R(sgnU +Bf + kf ẋ),

where B = RBf −BF , c = c0 + kF .

2. Solution of equations
To solve a non-linear equation with linearised functions the method of change of variables

with averaging is used [24]. Then x = a cosψ, ẋ = −υ sinψ, ψ = p t+ ξ are taken as a solution
and the standard form of the equation for determining υ and ξ is derived. They can be used to
study non-stationary and stationary processes. To solve the first equation (7) the standard form
of equation is used. To solve the second equation the procedure described in [27] is used. In
accordance with this procedure, V = r0 φ̇ is replaced with u = r0 Ω in expressions for δ0, . . . , δ5
in (4).

Taking into account υ = ap and p = ν, the following equations for amplitude a, phase ξ and
velocity u are obtained from (7) for u > ap

da

dt
= − 1

2pm
[aA+ λ cos ξ] ,

dξ

dt
=

1

2pma
[aE + λ sin ξ] , (8)

du

dt
=
r0
I

[
M

(u
r

)
− r0T0 (1 +Bf )

]
,

where A = p(k0 cos pη − T0kf ) − c1 sin pτ , E = m(ω2
0 − p2) + kF + c1 cos pτ , ψ∗ = 2π −

arcsin(u/ap), ω2
0 = c0/m.

Using technique described in [3], the following equations are obtained for u < ap

da

dt
= − 1

2pm

[
aA+ λ cos ξ − 4T0

πap

√
a2p2 − u2

]
,

dξ

dt
=

1

2pma
[aE + λ sin ξ] ,

du

dt
=

r0
I

[
M

(u
r

)
− r0T0 (1 +Bf )−

r0T0
π

(3π − 2ψ∗)

]
.

Equations for stationary oscillations when ȧ = 0, ξ̇ = 0, u̇ = 0 are obtained from (8). The
amplitude and phase of these oscillations are determined by the relations

a2(A2 + E2) = λ2, tgξ = E/A. (9)

The approximate formula ap ≈ u can be used to calculate the amplitude for u < ap.
Equation for the stationary values of the velocity is obtained from the condition u̇ = 0

M(u/r0)− S(u) = 0, (10)

where
a) u > ap, S(u) = r0R(1 +BF ),
b) u < ap, S(u) = r0R

[
(1−BF ) + π−1(3π − 2ψ∗)

]
.

The term S(u) can be simplified for u < ap with the use of the approximate equality ap ≈ u
for the amplitude.
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3. Conditions of stability of stationary oscillations
Equations in variations are formulated for equations of non stationary motions, and the

Routh–Hurwitz criteria is used. The conditions of stability are

D1 > 0, D3 > 0, D1D2 −D3 > 0, (11)

where
D1 = − (b11 + b22 + b33), D2 = b11b33 + b11b22 + b22b33 − b23b32 − b12b21 − b13b31,
D3 = b11b23b32 + b12b21b33 − b11b22b33 − b12b23b31 − b13b21b32.

Taking into account that u = rΩ for u > ap, we have after averaging

b11 =
r0
J
(Q− r0R

∂Bf

∂u
), b12 = −r

2
0R

J

∂Bf

∂a
, b13 = 0, b21 =

aR

2m

∂kf
∂u

,

b22 = − 1

2m
(k0 cos pη −Rkf − aR

∂kf
∂a

), b23 =
λ sin ξ

2pm
, b31 = 0,

b32 =
1

2pm
(
∂kF
∂a

− λ

a2
sin ξ), b33 =

λ cos ξ

2pma
, Q =

d

du
M(

u

r0
),

∂Bf

∂u
=
∂δ0
∂u

+N2 (ap)
2 ∂δ2
∂u

+N4 (ap)
4 ∂δ4
∂u

,
∂kf
∂u

= N̄1
∂δ1
∂u

+ N̄3 (ap)
2 ∂δ3
∂u

+ N̄5 (ap)
4 ∂δ5
∂u

,

∂Bf

∂a
= 2ap2(N2δ2 + 2N4 δ4a

2p2),
∂kf
∂a

= 2ap2(N̄3δ3 + 2N̄5 δ5a
2p2),

δ0 = α1u+ α2u
2 + α3u

3 + α4u
4 + α5u

5, δ1 = − (α1 + 2α2u+ 3α3u
2 + 4α4u

3 + 5α5u
4),

δ2 = α2 + 3α3u+ 6α4u
2 + 10α5u

3, δ3 = − (α3 + 4α4u+ 10α5u
2), δ4 = α4 + 5α5u, δ5 = −α5,

∂δ0
∂u

= α1 + 2α2u+ 3α3u
2 + 4α4u

3 + 5α5u
4,

∂δ1
∂u

= − 2 (α2 + 3α3u+ 6α4u
2 + 10α5u

3),

∂δ2
∂u

= 3 (α3 + 4α4u+ 10α5u
2),

∂δ3
∂u

= −4(α4 + 5α5u),
∂δ4
∂u

= 5α5,
∂δ5
∂u

= 0,

∂kF
∂a

= 2a(N̄3γ3 + 2N̄5γ5a
2 + 3N̄7γ7a

4 + · · · ).

When u < ap coefficients b13, b23, b31, b33 remain as before but the following coefficients are
changed

b11 =
r0
I

[
Q− r0R

∂Bf

∂u
− 2r0R

π
√
a2p2 − u2

]
, b12 = −r

2
0R

I

[
∂Bf

∂a
+

2u

πa
√
a2p2 − u2

]
,

b21 =
a

2m

[
R
∂kf
∂u

+
4uR

πa2p2
√
a2p2 − u2

]
,

b22 = − 1

2m

(
k0 cos pη −Rkf − aR

∂kf
∂a

+
4Ru2

πa2p2
√
a2p2 − u2

)
.

Let us note that when calculating ∂Bf/∂u, ∂Bf/∂a only even powers of n (that is, δ0, δ2,
δ4) are taken into account, and when calculating ∂kf/∂u, ∂kf/∂a odd powers of n (that is, δ1,
δ3, δ5) are taken into account. Similarly, odd powers of s and, respectively, γ1, γ3, γ5, . . . are
taken into account when calculating ∂kF /∂a.

4. Results of calculations
Calculations were carried out to obtain information on the effect of delays on the system at

ω0 = 1s−1, m = 1kgf · s2 · cm−1, k = 0.02 kgf · s · cm−1, c1 = 0.05 kgf · cm−1, λ = 0.02 kgf,

– 303 –



Alishir A.Alifov On the Effect of Delays in Self-oscillating System . . .

r0 = 1 cm, I = 1 kgf ·s ·cm2. Parameters of friction term (2) are T0 = 0.5 kgf, α1 = 0.84 s ·cm−1,
α3 = 0.18 s3 · cm−3. Parameters of delays are pη = π/2, π, 3π/2; pτ = π/2, π, 3π/2.

The amplitude-frequency relationships a(p) shown in Figs. 1–3 are obtained in the case of
linear elastic force for u = 1.2, and aa reflects the amplitude of self-oscillations. Relationships
were obtained using the straight linearisation method with the accuracy parameter r = 1.5. Solid
line in Figs. 1–3 corresponds to the absence of delays, and it is given for comparison with curves
when delays are present. In particular, it also shows results based on the asymptotic averaging
method that completely coincide with the results obtained with the direct linearisation method
with the accuracy parameter r = 1.5 . Some comparison of the numerical coefficients N and
N̄ indicated in (6) with the corresponding coefficients obtained on the basis of well-known and
widely used methods of non-linear mechanics is given in [25]. Fig. 4 shows (without regard to
stability and, therefore, feasibility) the relationship between amplitude and speed u for frequency
p = 1 at η = π/2, τ = π/2, τ = 3π/2, where curve 1 corresponds to the absence of delays. On
the section of curve 1 shown by the inclined straight line AB in Fig. 4 approximate equality
ap ≈ u takes place.

Fig. 1. Amplitude-frequency curves at η = π/2: curve 1 — τ =π/2, curve 2 — τ =π, curve 3 —
τ =3π/2

.

Oscillations are stable if the steepness Q = dM(u/r0)/du of the energy source characteristic
is within the shaded sector. For all pη = π/2, π, 3π/2 the entire lower branch of curve 1 (τ =π/2)
and parts of curves 2 with small amplitudes are unstable. In contrast, there is stability for curve
3 (τ = 3π/2) in the frequency range p = 0.9÷ 1.1 at pη = π/2, 3π/2 and in the frequency range
p = 0.9÷ 1.06 at pη = π.

Conclusion
The obtained results show the combined effect of delays in elasticity and damping on the

dynamics of oscillations. It was found that delays
- change the shape of the amplitude-frequency curve;
- shift the amplitude-frequency curve up/down and shift it in the frequency range (the reso-

nance zone is displaced in frequency);
- have an effect on the stability of oscillations.
Summing up the results, one can conclude that if in the absence of delay there is no resonant

curve (i.e. oscillations) then if delay is present resonant curve may appear with various intensities
that dependin on the amount of delay.
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Fig. 2. Amplitude-frequency curves at η =π: curve 1 — τ = π/2, curve 2 — τ = π, curve 3 —
τ = 3π/2

.

Fig. 3. Amplitude-frequency curves at η = 3π/2: curve 1 – τ = π/2, curve 2 – τ = π, curve 3 –
τ = 3π/2

.

Fig. 4. Amplitude curves at η = π/2: curve 1 – τ = π/2, curve 2 – τ = π, curve 3 – τ = 3π/2
.
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О вынужденных и автоколебаниях при запаздываниях
Алишир А. Алифов

Институт машиноведения им. А.А. Благонравова РАН
Москва, Российская Федерация

Аннотация. Рассмотрена взаимодействующая с источником энергии ограниченной мощности ав-
токолебательная система при наличии внешней силы и совместном действии запаздываний в демп-
фировании и упругости. На основе метода прямой линеаризации выполнено решение нелинейных
уравнений системы. Выведены уравнения нестационарных движений и соотношения для вычис-
ления амплитуды и фазы стационарных колебаний, скорости источника энергии и нагрузки на
него со стороны колебательной системы. Получены условия устойчивости стационарных колеба-
ний с использованием критериев Рауса–Гурвица. Проведены расчеты для получения информации
о влиянии запаздываний на динамику системы. Результаты показывают совместное влияние запаз-
дываний в упругости и демпфирования на динамику колебаний. Они изменяют форму амплитудно-
частотной кривой, смещают ее вверх/вниз и сдвигают в частотной области (зона резонанса переме-
щается по частоте), оказывают действие на устойчивость колебаний. При остальных неизменных
параметрах системы если в случае отсутствия запаздываний нет резонансной кривой, то при его
наличии она может появиться разной интенсивностью в зависимости от величины запаздывания.

Ключевые слова: автоколебания, вынужденные колебания, источник энергии, запаздывание,
демпфирование, упругость, линеаризация.
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