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Abstract. We consider the ill-posed Cauchy problem for the polyharmonic heat equation on recovering a
function, satisfying the equation (9;+(—A)™)u = 0 in a cylindrical domain in the half-space R" X [0, +00),
where n > 1, m > 1 and A is the Laplace operator, via its values and the values of its normal derivatives
up to order (2m — 1) on a given part of the lateral surface of the cylinder. We obtain a Uniqueness
Theorem for the problem and a criterion of its solvability in terms of the real-analytic continuation of
parabolic potentials, associated with the Cauchy data.
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In this short note we continue to investigate the ill-posed Cauchy problem for parabolic
operators in various function spaces, see [1, 2| for the second order operators in the Holder
spaces, or [3-5| for the second order operators in the anisotropic Sobolev spaces. Actually the
general schemes related to investigation of the ill-posed Cauchy problem for elliptic operators
(see [6-8] for the second order operators or [9,10] for the Cauchy—Riemann system in one and
many complex variables or [12,13] for general elliptic operators with the unique continuation
property) are still applicable in this new situation.

In the present paper we concentrated our efforts on the solvability criterion of the ill-posed
Cauchy problem for a simple class of Petrovsky 2m-parabolic partial differential operators

(0r + (=A)™), (1)

where m > 1 and A is the Laplace operator in R, n > 1, that are often called polyharmonic
heat operators, see [14, Ch.2, Sec. 1], [15]. Namely the problem consists of the recovering a
function, satisfying the equation (9, + (—A)™)u = 0 in a cylindrical domain in the half-space
R™ x [0,400), via its values and the values of its normal derivatives up to order (2m — 1)
on a given part of the lateral surface of the cylinder. The crucial difference between the heat
equation (or the parabolic Lamé system) and the polyharmonic heat equation is the fact that the
fundamental solution of the polyharmonic heat operator is given by a non-elementary function.
The situation resembles somehow the matter with the fundamental solutions to the Helmholtz

9 L. X _eiwo x|
operator A + ¢2: for n = 3 it is given by Tl

it is represented by the Hankel functions of the second kind (actually, some versions of the Bessel
functions), see, [16, Ch. III, Sec. 11]. Of course, it is not a surprise, because after an application
of the Laplace transform L with respect to the variable ¢ (if applicable) to (1), one arrives at the
parameter depending elliptic equation

(here ¢ is the imaginary unit) while for n = 2
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(7 + (=A)")L(u) = 0, (2)

coinciding with the Helmholtz equation for m = 1 regarding the generalized function L(u) as
an unknown and 7 as a real parameter. Actually, this seemingly simple approach, reducing the
parabolic equations to elliptic ones, is known for decades, see [17]. It gives a lot of qualitative
information on the connection between the corresponding solutions of the differential equations
of different kinds. However one needs very delicate properties of the Laplace transform in order
to obtain really useful formulas solving the parabolic problems with the use of elliptic theory,
see for instance, [3]| for the heat equation and the related remark on properties of the Laplace
transform [18]. Thus, we will act in the framework of mentioned above scheme invented by
L.Aizenberg and developed in [12].

1. Preliminaries

Let 2 be a bounded domain in n-dimensional linear space R™ with the coordinates
x = (x1,...,7,). As usual we denote by Q the closure of 2, and we denote by 99 its boundary.
In the sequel we assume that 0f is piece-wise smooth. We denote by Q1 the bounded open cylin-
der Q2 x (0,T) in R"™! with a positive altitude T. Let also I' C 9 be a non empty connected
relatively open subset of 9Q. Then I'r =T x (0, T) and ' =T x [0, 7.

We consider the functions over subsets in R” and R**1. As usual, for s € Z, we denote by
C*(£2) the space of all s times continuously differentiable functions in Q. Next, for a (relatively
open) set S C 99 denote by C*(Q U S) the set of such functions from the space C*(2) that all
their derivatives up to order s can be extended continuously onto 22U S. The standard topology
of these metrizable spaces induces the uniform convergence on compact subsets in QU S together
with all partial derivatives up to order s. We will also use the standard Banach Holder spaces
C*(Q) and C**(Q) (cf. [19], [20, Ch.1, Sec. 1], [21]), and the related metrizable spaces C**(QUS).

Let also LP(Q), p > 1, be the Lebesgue spaces, H*(f2), s > 0, stand for the Sobolev spaces if
s € N and for the Sobolev-Slobodetskii spaces if s > 0, s & N.

To investigate the polyharmonic heat equation we need also the anisotropic (2m-parabolic)
spaces, see [20, Ch. 1], [21, Ch. 8] for m = 1 and [14] for m > 1. With this aim, let C?"%*(Qr),
m € N, stand for the set of all the continuous functions « in Qr, having in Qr the continuous
partial derivatives 9] 93w with all the multi-indexes («, j) € Z7 x Z, satisfying |a|+2mj < 2ms
where, as usual, |a| = Y ;. Similarly, we denote by C?*™T%:5(Qr) the set of continuous

Jj=1
functions in Qr, such that all partial derivatives 9°u belong to C?™**(Qr) if 8 € 7% satisfies
|B] <k, k € Z,. Of course, it is natural to agree that C?"s+9%5(Qr) = C?™5(Q7), C*0(Qr) =
C(Qr) and C°(Q) = C(£2). We also denote by C?™%:((QUS) 1) the set of such functions u from
the space C2m5+k:5(Q7) that their partial derivatives 87 0%+ u, 2mj+|a| < 2ms, |8 < k, can be
extended continuously onto (2U S)r. The standard topology of these metrizable spaces induces
the uniform convergence on compact subsets of (2 U S)r together with all partial derivatives
used in its definition (the cases S = 0 and S = 9D are included).

We use also the anisotropic Holder spaces (cf., [20, Ch. 1], [21, Ch. 8]) for m = 1 and [14] for
m > 1. Let C?ms+ksAN2((QUS)7) stand for the set of anisotropic Hélder continuous functions
with a power \ over each compact subset of (QUS)7 together with all partial derivatives 92T58]u
where |3| < k, |a] +2mj < 2ms. Clearly, C?"s+k:5AA/2(Qr) is a Banach space with the natural
norm, see, for instance, [21, Ch. 8] for m = 1 and [14] for m > 1. In general, the space
C?msthsAN2((QU S)r) can be treated again as a metrizable space, generated by a system of
seminorms associated with a suitable exhaustion {€;};en of the set QU S.

In order to invoke the Hilbert space approach, we need anisotropic (2m-parabolic) Sobolev
spaces H>™%*(Qr), s € Zy, see, [20,22] for m = 1 or [14] for m > 1, i.e. the set of all the
measurable functions u in Q7 such that all the generalized partial derivatives 8] 9%u with all the
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multi-indexes (o, j) € Z'} x Z satisfying |a|+2mj < 2ms, belong to the Lebesgue class L?(Qr).
This is the Hilbert space with the natural inner product (u,v)g2ms.sq.). We also may define
H?™%5(Qq) as the completion of the space C?™%*(Qr) with respect to the norm || - || yzms.« (.,
generated by the inner product (u,v)gzms.s(q.). For s =0 we have H%(Q7) = L?(Qr).

We also will use the so-called Bochner spaces of functions depending on (x,t) from the strip
R™ x [T1,T3]. Namely, for a Banach space B (for example, on a subdomain of R™) and p > 1,
we denote by LP([Ty,T5],B) the Banach space of all the measurable mappings v : [T1,T3] — B
with the finite norm |[u|| zr (7, 10,8y = llu(-, D)5l Lr(17,,1)), See, for instance, [23, ch. Sec. 1.2].
The space C([T1,Tz],B) is introduced with the use of the same scheme; this is the Banach
space of all the continuous mappings u : [T1,T2] — B with the finite norm ||ul|c(ry,m),8) =

SUPse(r, 1) 1wl )5
n
Let now A = Y 92
j=1
the polyharmonic heat operator in R™*!. Of course, for m = 1 it coincides with the usual heat
operator.

be the Laplace operator in R™ and let £,, = 9; + (—A)™ stand for

iy

Nowlet 0, = Y vj 8%. denote the derivative at the direction of the exterior unit normal vector
j=1

v =(v1,...,v,) to the surface 9Q. If 9Q € C?™~! then the higher order normal derivatives 97
are defined near 0€2. We fix also a Dirichlet system {B; }?ZO_ ! of order (2m — 1) consisting of
boundary differential operators with smooth coefficients near 02, i.e. ordB; = j and for each
x € 0N the characteristic polynomials o(B;)(z, () related to the operators B; do not vanish for
¢ =v(x). The sets (1,0,,02,...0*™ 1) and (1,0,,A,0,A, A2, ... A"~ 1 9,Am~1) are precisely
the Dirichlet systems because o(97)(x,v(z)) = 0(9,A)(z,v(x)) = o(A)(x,v(x)) = 1 for each
jeN.

We consider the Cauchy problem for the polyharmonic heat equation in the cylinder Q7 in
the sense of the Cauchy—Kowalevski Theorem with respect to the space variables, cf. [24].

Problem 1. Given m > 1, functions u; € C*"~IT19Tr), 1 < j < 2m, and f € C(Qr) find a
function u € C*™1(Qr) N C?*m=1O9(QUT)r) satisfying

Lyu= f in Qr, (3)
Bju(x,t) = ujy1(z,t) on Ty for all 0<j <2m—1. (4)

If the hypersurface I and the data of the problem are real analytic then the Cauchy—
Kowalevski theorem implies that problem (3), (4) has one and only one solution in the class
of (even formal) power series. However the theorem does not imply the existence of solutions to
Problem 1 because it grants the solution in a small neighbourhood of the hypersurface I'r only
(but not in a given domain Qr!). We emphasize that, unlike the classical case, we do not ask for
the hypersurface I' or/and the coefficients of the operators B; or/and the data f or/and u; to
be real analytic.

Of course, the above trick with the Laplace transform suggests us that the problem is equiva-
lent to an ill-posed problem for the strongly elliptic operator (—A)™ in Q with the Cauchy data
on I', i.e. Problem 1 is ill-posed itself, too.

2. Solvability conditions

We begin this section proving that Problem 1 can not have more than one solution in the
spaces of differentiable (non-analytic) functions.

To investigate Problem 1, we use an integral representation constructed with the use the
fundamental solution ®,,(z,t) to polyharmonic heat operator L,,. If m =1 then
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2
=]

e ant .
if t > 0,
Oy (z,t) = ¢ (2v/mpt)" (5)
0 ift <0

see, for instance, [19,25]. Unfortunately, if m > 1 then the fundamental solution can not be
represented as an elementary function, see, for instance, [14, Ch. 2, Sec. 1], [15],

+oo 1-n/2
—n/2m n—1_—p>™ |x|p \Z‘|p .
b, (z,t) = Fn,m? /0 pe (t1/2m> Inj2-1 <t1/2 )dp ift >0, (6)
0 if £ <0,

where k,, ., is a normalization constant and .J,, is the Bessel function of the first kind and of order
p (see, for example, [16, Ch. 5, Sec. 23]).

The fundamental solution allows to construct a useful integral Green formula for the operator
Ly,. With this purpose, Denote by {Cy,...Cay,—1} the Dirichlet system associated with the
Dirichlet system {By, ... Bap—1} via (first) Green formula for the operator A™, i.e.

2m—1

/ < Z C’gm_l_ijju> ds = (Amu,’U)L’Z(Q) - (u, AmU)LQ(Q)
oo \ =
for all u,v € C*(Q). For instance, if {By,... Bom_1} = (1,0,,A,0,A, ... A™™1,9,A™~1) then
{Co,...Com_1} = (1,-0,,A,-0,A,,...Am"1 —§,Am~1)

Consider the cylinder type domain Qr, 1, = Q7, \ Qr, with 0 < T3 < T and a closed measur-
able set S C 9Q. For functions f € L*(Qp, 1,), v; € L2([0,T], H*™=1=Y/2(Sr)), h € H/2(Q)
we introduce the following potentials:

To.m () (2, 1) = / Bz — g, Oh()dy, Gom (f)(,1) = / / Bz —y, t— 1) f(y.7)dydr,

Q T Q

VI (o)), ) / / C;®,, — Yus(y P)ds(y)dr, 0< < 2m 1

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1], [26, Ch. 3, Sec. 10] for
= 1). The potential Io 1, (k) is an analogue of the Poisson integral and the function G 1, (f)
is an analogue of the volume heat potential related to m = 1. The functions VS(?T)I (v) and VS(’,lT)“l (v)
are often referred to as single layer heat potential and double layer heat potential, respectively,
if m = 1. By the construction, all these potentials are (improper) integrals depending on the
parameters (z,t).
Next, we need the so-called Green formula for the polyharmonic heat operator.

Lemma 1. For all 0 < Ty < Ty and all u € *™Y(Qq, 1,) the following formula holds:

u(w, ) in O, 1, o
0 outside Q7 1, o (v) o1 ( ) Jz:;) 8Q,T1( i) (7)

Proof. See, for instance, [27, ch. 6, Sec. 12| for m = 1 and [28, theorem 2.4.8| for more general
operators, admitting fundamental solutions/parametreces. O

Formulas (5), (6) mean that the kernels ®,,(x — y,t — 7) are smooth outside the diagonal
{(z,t) = (y,7)} and real analytic with respect to the space variables. In particular, this means
that the 2m-parabolic operator L, is hypoelliptic. Moreover, any C*™1(Qq, 1,)-solution v to
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the polyharmonic heat equation £,,v = 0 in the cylinder domain Qg 7, belongs to C*°(Qx, 1,)
and, actually v(z,t) is real analytic with respect to the space variable x € ) for each ¢t € (11, T5)
(for m = 1, see, for instance, [25, Ch. VI, Sec. 1, Theorem 1] and for m > 1 see [14, Ch. Sec. 2,
Sec. 1, Theorem 2.1]). Then Green formula (7) and the information on the kernel ®,, provide
us with a Uniqueness Theorem for Problem 1.

Theorem 1 (A Uniqueness Theorem). If T' has at least one interior point in the relative topology
of 052 then Problem 1 has mo more than one solution.

Proof. For m = 1 see [1, Theorem 1, Corollary 1]. For m > 1 the proof can be done in the
same way with natural modifications. Indeed, under the hypothesis of the theorem there is an
interior (in the relative topology of T'l) point zp on I'. Then there is such a number r > 0
that B(zg, r) N 9Q C T where B(xzg, r) is ball in R™ with center at xg and radius r. Fix
an arbitrary point (z/,t") € Qp. Clearly, there is a domain Q' > 2’ satisfying ' C Q and
Q' NoQ CI'NB(wg, r). Then (2',t') € QF 4, with some 0 < Ty <Tp < T.

But v € sz’l(Q’ThTQ) N CQm’l’O(Q’Tl’TQ) (for m = 1 see, for instance, [19, Ch. 1, Sec. 3 and
Ch. 5, Sec. 2| and for m > 1 it follows from [14, Ch. 2, Sec. 1, Theorem 2.2]) and £L,,u = 0 in
Q7. 1, under the hypothesis of the theorem. Hence formula (7) implies:

u(z,t), (z,t) € Qépl T 2m—1
G V O . (Bju 8
0, (z,t) & QTI,TQ o ooy (Pw) (), )
because Bju =0 on I'r for all 0 < j < 2m — 1.

Takmg into account the character of the singularity of the kernel ®,,,(x —y,t—7) we conclude
that the following properties are fulfilled for the integrals, depending on parameter, from the right
hand side of identity (8):

IQ/7T1 (u) S CQm’l({{L‘ S Rn,Tl <t < TQ}),

Voo oy cver, (Bju) € C*™ Y ({z € R*\ (9 \I),T1 < t < T})

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1] or [26, Ch. 3, Sec. 10]
for m=1). Moreover, as ®,, is a fundamental solution to the polyharmonic heat operator then

‘Cm(xvt)q)m(aj -yt - T) =0 for (I,t) 7é (va)a
and therefore, using Leibniz rule for differentiation of integrals depending on parameter we obtain:

LyIo 7, (u) =0 in the domain {x € R", T <t < T},
Lo, Vc’ggl)’\FT (Bju) =0in Qf 5, ={z e R"\ (OQ'\T), Ty <t < Ty} forall 0 <j <2m—1.

Hence the function 0
v(z,t) = I 1 (W) (@, 1) + Vo p o, (Bju) (2,1),

satisfies the polyharmonic heat equation (L,,v)(x,t) = 01in Q7, 5,. As we mentioned above, this
implies that the function v(z, t) is real analytic with respect to the space variable z € R™\ (9Q'\I')
for any Ty < t < Ty . By the construction the function v(x,t) is real analytic with respect to «
in the ball B(zg,r) and it equals to zero for € B(wzg,r) \ Q for all Ty < t < Ty. Therefore, the
Uniqueness Theorem for real analytic functions yields v(x,t) = 0 in QF, 7,, and in the cylinder
Q7. r,, containing point (z/,t'). Now it follows from (8) that u(z’,t') = v(z’,t') = 0 and then,
since the point (z/,t') € Qr is arbitrary we conclude that u =0 in Q. O

Now we are ready to formulate a solvabilty criterion for Problem 1. As before, we assume
that I is a relatively open connected subset of Q. Then we may find a set O C R” in such a
way that the set D = QUT'UQT would be a bounded domain with piece-wise smooth boundary.
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It is convenient to set Q= = . For a function v on Dy we denote by v its restriction to Q;
and, similarly, we denote by v~ its restriction to Q. It is natural to denote limit values of v* on
I'r, when they are defined, by vﬁET. Actually, for m = 1 similar solvability criterions for Problem
1 were obtained in [1] and [4].

Theorem 2 (Solvability criterion). Let A € (0,1), 9Q belong to C*™ '+ and let T be a relatively
open connected subset of 9Q. If f € COOANN2(Qr), u; € C?m=30MN2(Ty), 1 < j < 2m, then
Problem (3), (4) is solvable in the space C*™1AN2(Qp) N C?m=1L0AN2(Qr UTy) if and only
if there is a function F € COO(DT) satisfying the following two conditions: 1) L, F' =0 in Dy,

2) FZGQQ( )+ Z uj+]_> m Q;

Proof. Necessity. Let a function u(z,t) € C*MLAN2(Qr) N C?2M=L0AN2(Qr U Tr) satisfy
(3), (4). Clearly, the function u(z,t) belongs to the space C2™1LAN2(QL) N C2m=L.0AN2(QF
for each cylindrical domain Q. with such a base ' that Q' C Q and Q' N 9Q C I'. Besides,
Lu = f e COOMN2 (@) Without loss of the generality we may assume that the interior part
I of the set Q' N AN is non-empty. Consider in the domain D the functions

2m—1

where Y/ is a characteristic function of the set M C R"*1. By the very construction condition 2)
is fulfilled for it. Note that xo,u = xq/, u in D7, where D’ = QUL UQT. Then Lemma 1 yields

2m—1

F =G o Z Vi (w41) = Taro(w) in Df. (10)

Arguing as in the proof of Theorem 1 we conclude that each of the integrals in the right hand
side of (10) is smooth outside the corresponding integration set and each satisfies homogeneous
polyharmonic heat equation there. In particular, we see that F' € C°>°(D/.) and LF = 0 in D/,
because of [25, Ch. VI, Sec. 1, Theorem 1]. Obviously, for any point (z,t) € Dy there is a domain
D’ containing (x, t). That is why £,,F' = 0 in D, and hence F belongs to the space C*°(Dr).
Thus, this function satisfies condition 1), too.

Sufficiency. Let there be a function F € C°°(Dr), satisfying conditions 1) and 2) of the
theorem. Consider on the set D7 the function

U=F-F (11)

As f € COOMN2(Qr) then the results of [19, Ch. 1, Sec. 3], [20, Ch. 4, Secs. 11-14] for m = 1
and [14, Ch. 2, Sec. 1, Theorem 2.2| for m > 1 imply

GQ,o(f) c CQm,l,A,A/Z(ﬁ) N sz—l,o,,\,A/z(DT) (12)

and, moreover,
LnGoo(f)=finQr, LnGEo(f)=0in Q. (13)

Since u; € C?m=3.0MX2(T'r) then the results of [20, Ch. 4, Secs. 11-14], [19, Ch. 5, Sec. 2| for
m = 1 and [14, Ch. 2, Sec. 1, Theorem 2.2] for m > 1 yield

ngg (uj) € C(QF) N C*LOMN2(QEUT)g),  LOVg o (uy) = 0 in Qp U QS (14)

Since F' € C°(Dy) C C*OAN2((QF UT)r) then formulas (11)(14) imply that U belongs
C2mLAN2(QE) 0 C2LOAN2(QF UT)r) and LU = xp, f in Qp UQF. In particular, (3) is
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fulfilled for U~. Let us show that the function U~ satisfies (4). Since F' € C°°(Dr) we see that
O*F~ =9*F* on I'y for a € Z4 with |a| < 2m — 1 and

2m—1 ] +
OFy, = (aaag,o(f) + > o (vgﬂg(ujﬂ))) ,
: -

=0

Thus, it follows from formula (12) that for all 0 < i < 2m — 1 we have

wis - (S o), - (a(E o)),

Hence, in order to finish the proof we need the following lemma.

Lemma 2. Let T € C?—1+X gnd uj € C?m=i0AN2(T), 1< 5 < 2m. Then

(5 o) (o (E ), v vtz o

Proof. 1t is similar to the proof of the analogous lemmas for the heat Single and Double Layer
Potentials (see, for instance, [1, Lemma 3], [26, Ch. 3, Sec. 10, Theorem 10.1] for m = 1 and a
different function class or [12, Lemma 2.7] for elliptic potentials). ad

Using Lemma 2 and formulas (12), (15), we conclude that B, UIF = ujq1 for all 0 < j <

2m — 1, i.e. the second equation in (4) is fulfilled for U~. Thus, function u(x,t) = U~ (x,t)
satisfies conditions (3), (4). The proof is complete. a

We note that Theorem 2 is also an analogue of Theorem by Aizenberg and Kytmanov [10]
describing solvability conditions of the Cauchy problem for the Cauchy—Riemann system (cf. also
[11] in the Cauchy Problem for Laplace Equation or [13] in the Cauchy problem for general elliptic
systems).

We note also that formula (11), obtained in the proof of Theorem 2, gives the unique solution
to Problem 1. Clearly, if we will be able to write the extension F' of the sum of potentials

2m—1 .
Gaolf)+ > Vf(](i(u]‘_i'_l) from QF onto Dr as a series with respect to special functions or a
j=0 b

limit of parameter depending integrals then we will get Carleman’s type formula for solutions to
Problem 1 (cf. [10]). However, for the best way for this purpose is to use the Fourier series in the
framework of the Hilbert space theory, see [5]. Unfortunately, this is not a short story because
one needs approximation theorems in spaces of solutions to the homogeneous polyharmonic
heat equation that we are not ready to prove right now. Thus we finish our paper with a
statement extending Theorem 2 to the anisotropic Sobolev spaces, leaving the construction of
the Carleman’s type formulae for the next article.
First of all, we need the following lemma.

Lemma 3. Let 90 € C?™*! and let T be a relatively open connected subset of OQ with boundary
O € C?MHA. [If u; € CPHl=i0AN2(T, r), 1 < j < 2m, then there ewist functions @; €
C?mt1-5.0.A, MQ(@QT) such that i; = uj on T, 1 < j < 2m, and a function @ € C2™1AN2(Q)
such that Bjt = Gj41 on (0Q)7 for all0 < j < 2m —1.

Proof. We may adopt the standard arguments from [29, Lemma 6.37] related to isotropic spaces.
Indeed according to it, under our assumptions, for any s < 2m and any v € C**(T') there is
CS 2(0Q) such that v =g on I'. The construction of the extension involves the rectifying
diffeomorphism of JI" and a suitable partition of unity of a neighbourhood of 9", only. Thus, we
conclude there are functions @; € CQm_jH’O’A’)‘/Q(aQT) such that 4; = u; on I'r, 1 < j < 2m.
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Next, we use the existence of the Poisson kernel Pazm o (x,y) for the Dirichlet problem related
to the operator A?™ see [30]. It is known that the problem is well-posed over the scale of Holder
spaces in §. Namely, if 90 € 5t s > 2m — 1, then for each ®2TO Yv; € €572 (99Q) the
integral

2m—1
0lo) = Pam @32 ) = [ (X <Bj(y>PAm,Q><x7y)vj<y>)ds<y>
7=0
belongs to C**(Q) and satisfies A>™v = 0 in Q and Bjv = v; on 99 for all 0 < j < 2m — 1.
Now, we set

o(z) = Pazm 0@ ij41)(, 0)(2) € O HA(@) N C* A (Q).

Now, we may take as @(x,t) € C?™LAN2(Qr) N C?=10AN2(Qr) the unique solution to
the parabolic initial boundary problem

Oyt t) + A2z, t) =0 in  Qp,

@30y Bju(z,t) = @30 M aa(z,t)  on (9Q)r,

(z,0) = tp(x) on Q,
see, for instance, [20, Ch. 5, Sec. 6] for m = 1 or [14, Ch. 3, Sec. 1] for m > 1. But of course,
there are other possibilities to choose a function @ with the desired properties. O

Under the assumptions of Lemma 3, we set

2m—1
F=Gaolf)+ Y Vatlolij) + Iao(@). (17)
j=0

Corollary 1. Let A € (0,1), 99 belong to C*™ X and let T' be a relatively open connected
subset of 0Q with boundary OT € C?*M A If f € COONN2(Q), uy € C2m—I+HLOAN2(T L) | then
Problem (3), (4) is solvable in the space C*™1AN2(Qp)nC2m=10; 2 A2 (QrUTr)NH?™ N (Qr) if
and only if there is a function F € C>®°(Dy)NH?*™Y(Dy) satisfying the following two conditions:
1)) LF =0 in Dy, 2°) F = F in Qf.

Proof. First of all, we note that, by Green formula (7), we have F =Goo(f — L) + xa, @ and
then F € C?"1AA2(OF) because of (12). On the other hand,
2m—1

—F= Z sinro(@i1) + Ioo(@). (18)

This means that the function F — F satisfies the £(F — F) = 0 in Dy and hence the function
F extends to Dy as a solution of the heat equation if and only if function F extends to Dy as
a solution of the polyharmonic heat equation, too.

Let Problem (3), (4) be solvable in the space C?™1AA2(Qp) N C?m=L0AN2(Qrn U Tr) N
H?™1(Q7). Then formulas (9) and (18) imply

F=F —xqpu€ H*™YQF) and LF =0 in Dr.
Now, as F' € H>™Y(QE) N C=(Dr) (see [25, Ch. VI, Sec. 1, Theorem 1]) we conclude that
F € H?™Y(D7), i.e. conditions 1°), 2°) of the corollary are fulfilled.

If conditions 1°), 2) of the corollary hold true then conditions 1), 2) of Theorem 2 are fulfilled,
too. Moreover, formulas (11) and (18) imply that in Dy we have

U=F-F=F-FeH™ (0F) (19)
and the U~ is the solution to Problem 1 in the space G2 1AA/2(Qp)NC2m=10AN2(Qp UTr) N
H27”71(Q%) by Theorem 2. O
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O HekoppekTHOIT 3agade Komm ajs pentenmii
MOJIMTAPMOHMYECKOT'0 YPaBHEHUS TENJIONPOBOJHOCTH

Nnpsa A. KypuiaeHko
Anekcangp A.IMlnanyHos

Cubupckuii deiepaibHbIil yHUBEPCUTET
Kpacnosipck, Poccuiickas @epeparims

AnnoTtanusi. Mbl paccMaTpuBaeM HEKOPPEKTHYIO 3ajady Koy /Jisl TIOJIMrapMOHIIECKOTO ONlepaTopa
TEIIONPOBOIHOCTHU O BOCCTAHOBJIEHUH (DYHKIINH, YAOBIETBOpsomeii ypasaenuto (0;+(—A)™)u = 0 B un-
JIMHJIPUYECKO# obsractu B ostynpocrpanctse R™ x [0, +00), tae n > 1, m > 1, a A — oneparop Jlamaca,
110 33/IaHHBIM €€ 3HAYEHUsIM M 3HAYEHMsIM ee HOPMAaJIbHBIX NIPOM3BOJHBIX J0 mopsiaka (2m — 1) BkJo-
YUTETHFHO Ha 9acTU GOKOBOH MOBEPXHOCTH IUIWHApa. HaMu MOJy9eHbI TeopeMa €IWHCTBEeHHOCTH JIJIst
sroii 3agadu Komm B anuzorponnbix npocrpancrsax CobosieBa, a Takyke HEOOXOAUMBIE U JOCTATOYHDLIE
YCJIOBHS €e Pa3pelIiMOCTH B TePMHMHAX BEIIECTBEHHO-aHAJIUTUYECKOTO MPOJOIKEHHU MapaboTuIecKIX
[IOTEHIUAJIOB, ACCOLIMUPOBAHHLIX ¢ JaHHbIME Kormm.

KuroueBrble ciioBa: IOJUTrapMOHIYECKOE YPaBHEHUE TEIJIONPOBOAHOCTH, HEKOPPEKTHBIE 33/1a9H, METO/T
WHTEI'DAJIBHBIX IIPE/ICTABIICHUI.
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