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Abstract. We consider the ill-posed Cauchy problem for the polyharmonic heat equation on recovering a
function, satisfying the equation (∂t+(−∆)m)u = 0 in a cylindrical domain in the half-space Rn×[0,+∞),
where n > 1, m > 1 and ∆ is the Laplace operator, via its values and the values of its normal derivatives
up to order (2m − 1) on a given part of the lateral surface of the cylinder. We obtain a Uniqueness
Theorem for the problem and a criterion of its solvability in terms of the real-analytic continuation of
parabolic potentials, associated with the Cauchy data.
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In this short note we continue to investigate the ill-posed Cauchy problem for parabolic
operators in various function spaces, see [1, 2] for the second order operators in the Hölder
spaces, or [3–5] for the second order operators in the anisotropic Sobolev spaces. Actually the
general schemes related to investigation of the ill-posed Cauchy problem for elliptic operators
(see [6–8] for the second order operators or [9, 10] for the Cauchy–Riemann system in one and
many complex variables or [12, 13] for general elliptic operators with the unique continuation
property) are still applicable in this new situation.

In the present paper we concentrated our efforts on the solvability criterion of the ill-posed
Cauchy problem for a simple class of Petrovsky 2m-parabolic partial differential operators

(∂t + (−∆)m), (1)

where m > 1 and ∆ is the Laplace operator in Rn, n > 1, that are often called polyharmonic
heat operators, see [14, Ch.2, Sec. 1], [15]. Namely the problem consists of the recovering a
function, satisfying the equation (∂t + (−∆)m)u = 0 in a cylindrical domain in the half-space
Rn × [0,+∞), via its values and the values of its normal derivatives up to order (2m − 1)
on a given part of the lateral surface of the cylinder. The crucial difference between the heat
equation (or the parabolic Lamé system) and the polyharmonic heat equation is the fact that the
fundamental solution of the polyharmonic heat operator is given by a non-elementary function.
The situation resembles somehow the matter with the fundamental solutions to the Helmholtz
operator ∆+ c20: for n = 3 it is given by −e±ιc0|x|

4π|x| (here ι is the imaginary unit) while for n = 2

it is represented by the Hankel functions of the second kind (actually, some versions of the Bessel
functions), see, [16, Ch. III, Sec. 11]. Of course, it is not a surprise, because after an application
of the Laplace transform L with respect to the variable t (if applicable) to (1), one arrives at the
parameter depending elliptic equation
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(ιτ + (−∆)m)L(u) = 0, (2)

coinciding with the Helmholtz equation for m = 1 regarding the generalized function L(u) as
an unknown and τ as a real parameter. Actually, this seemingly simple approach, reducing the
parabolic equations to elliptic ones, is known for decades, see [17]. It gives a lot of qualitative
information on the connection between the corresponding solutions of the differential equations
of different kinds. However one needs very delicate properties of the Laplace transform in order
to obtain really useful formulas solving the parabolic problems with the use of elliptic theory,
see for instance, [3] for the heat equation and the related remark on properties of the Laplace
transform [18]. Thus, we will act in the framework of mentioned above scheme invented by
L.Aizenberg and developed in [12].

1. Preliminaries

Let Ω be a bounded domain in n-dimensional linear space Rn with the coordinates
x = (x1, . . . , xn). As usual we denote by Ω the closure of Ω, and we denote by ∂Ω its boundary.
In the sequel we assume that ∂Ω is piece-wise smooth. We denote by ΩT the bounded open cylin-
der Ω × (0, T ) in Rn+1 with a positive altitude T . Let also Γ ⊂ ∂Ω be a non empty connected
relatively open subset of ∂Ω. Then ΓT = Γ× (0, T ) and ΓT = Γ× [0, T ].

We consider the functions over subsets in Rn and Rn+1. As usual, for s ∈ Z+ we denote by
Cs(Ω) the space of all s times continuously differentiable functions in Ω. Next, for a (relatively
open) set S ⊂ ∂Ω denote by Cs(Ω ∪ S) the set of such functions from the space Cs(Ω) that all
their derivatives up to order s can be extended continuously onto Ω∪S. The standard topology
of these metrizable spaces induces the uniform convergence on compact subsets in Ω∪S together
with all partial derivatives up to order s. We will also use the standard Banach Hölder spaces
Cs(Ω) and Cs,λ(Ω) (cf. [19], [20, Ch.1, Sec. 1], [21]), and the related metrizable spaces Cs,λ(Ω∪S).

Let also Lp(Ω), p > 1, be the Lebesgue spaces, Hs(Ω), s > 0, stand for the Sobolev spaces if
s ∈ N and for the Sobolev-Slobodetskii spaces if s > 0, s ̸∈ N.

To investigate the polyharmonic heat equation we need also the anisotropic (2m-parabolic)
spaces, see [20, Ch. 1], [21, Ch. 8] for m = 1 and [14] for m > 1. With this aim, let C2ms,s(ΩT ),
m ∈ N, stand for the set of all the continuous functions u in ΩT , having in ΩT the continuous
partial derivatives ∂j

t ∂
α
x u with all the multi-indexes (α, j) ∈ Zn

+×Z+ satisfying |α|+2mj 6 2ms

where, as usual, |α| =
n∑

j=1

αj . Similarly, we denote by C2ms+k,s(ΩT ) the set of continuous

functions in ΩT , such that all partial derivatives ∂βu belong to C2ms,s(ΩT ) if β ∈ Zn
+ satisfies

|β| 6 k, k ∈ Z+. Of course, it is natural to agree that C2ms+0,s(ΩT ) = C2ms,s(ΩT ), C0,0(ΩT ) =
C(ΩT ) and C0(Ω) = C(Ω). We also denote by C2ms+k,s((Ω∪S)T ) the set of such functions u from
the space C2ms+k,s(ΩT ) that their partial derivatives ∂j

t ∂
α+β
x u, 2mj+ |α| 6 2ms, |β| 6 k, can be

extended continuously onto (Ω∪S)T . The standard topology of these metrizable spaces induces
the uniform convergence on compact subsets of (Ω ∪ S)T together with all partial derivatives
used in its definition (the cases S = ∅ and S = ∂D are included).

We use also the anisotropic Hölder spaces (cf., [20, Ch. 1], [21, Ch. 8]) for m = 1 and [14] for
m > 1. Let C2ms+k,s,λ,λ/2((Ω∪S)T ) stand for the set of anisotropic Hölder continuous functions
with a power λ over each compact subset of (Ω∪S)T together with all partial derivatives ∂α+β

x ∂j
t u

where |β| 6 k, |α|+2mj 6 2ms. Clearly, C2ms+k,s,λ,λ/2(ΩT ) is a Banach space with the natural
norm, see, for instance, [21, Ch. 8] for m = 1 and [14] for m > 1. In general, the space
C2ms+k,s,λ,λ/2((Ω ∪ S)T ) can be treated again as a metrizable space, generated by a system of
seminorms associated with a suitable exhaustion {Ωi}i∈N of the set Ω ∪ S.

In order to invoke the Hilbert space approach, we need anisotropic (2m-parabolic) Sobolev
spaces H2ms,s(ΩT ), s ∈ Z+, see, [20, 22] for m = 1 or [14] for m > 1, i.e. the set of all the
measurable functions u in ΩT such that all the generalized partial derivatives ∂j

t ∂
α
x u with all the
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multi-indexes (α, j) ∈ Zn
+×Z+ satisfying |α|+2mj 6 2ms, belong to the Lebesgue class L2(ΩT ).

This is the Hilbert space with the natural inner product (u, v)H2ms,s(ΩT ). We also may define
H2ms,s(ΩT ) as the completion of the space C2ms,s(ΩT ) with respect to the norm ∥ · ∥H2ms,s(ΩT )

generated by the inner product (u, v)H2ms,s(ΩT ). For s = 0 we have H0,0(ΩT ) = L2(ΩT ).
We also will use the so-called Bochner spaces of functions depending on (x, t) from the strip

Rn × [T1, T2]. Namely, for a Banach space B (for example, on a subdomain of Rn) and p > 1,
we denote by Lp([T1, T2],B) the Banach space of all the measurable mappings u : [T1, T2] → B
with the finite norm ∥u∥Lp([T1,T2],B) := ∥∥u(·, t)∥B∥Lp([T1,T2]), see, for instance, [23, ch. Sec. 1.2].
The space C([T1, T2],B) is introduced with the use of the same scheme; this is the Banach
space of all the continuous mappings u : [T1, T2] → B with the finite norm ∥u∥C([T1,T2],B) :=
supt∈[T1,T2] ∥u(·, t)∥B.

Let now ∆ =
n∑

j=1

∂2
xj ,xj

be the Laplace operator in Rn and let Lm = ∂t + (−∆)m stand for

the polyharmonic heat operator in Rn+1. Of course, for m = 1 it coincides with the usual heat
operator.

Now let ∂ν =
n∑

j=1

νj∂xj denote the derivative at the direction of the exterior unit normal vector

ν = (ν1, . . . , νn) to the surface ∂Ω. If ∂Ω ∈ C2m−1 then the higher order normal derivatives ∂j
ν

are defined near ∂Ω. We fix also a Dirichlet system {Bj}2m−1
j=0 of order (2m − 1) consisting of

boundary differential operators with smooth coefficients near ∂Ω, i.e. ordBj = j and for each
x ∈ ∂Ω the characteristic polynomials σ(Bj)(x, ζ) related to the operators Bj do not vanish for
ζ = ν(x). The sets (1, ∂ν , ∂

2
ν , . . . ∂

2m−1
ν ) and (1, ∂ν ,∆, ∂ν∆,∆2, . . .∆m−1, ∂ν∆

m−1) are precisely
the Dirichlet systems because σ(∂j

ν)(x, ν(x)) = σ(∂ν∆
j)(x, ν(x)) = σ(∆j)(x, ν(x)) = 1 for each

j ∈ N.
We consider the Cauchy problem for the polyharmonic heat equation in the cylinder ΩT in

the sense of the Cauchy–Kowalevski Theorem with respect to the space variables, cf. [24].

Problem 1. Given m > 1, functions uj ∈ C2m−j+1,0(ΓT ), 1 6 j 6 2m, and f ∈ C(ΩT ) find a
function u ∈ C2m,1(ΩT ) ∩ C2m−1,0((Ω ∪ Γ)T ) satisfying

Lmu = f in ΩT , (3)

Bju(x, t) = uj+1(x, t) on ΓT for all 0 6 j 6 2m− 1. (4)

If the hypersurface Γ and the data of the problem are real analytic then the Cauchy–
Kowalevski theorem implies that problem (3), (4) has one and only one solution in the class
of (even formal) power series. However the theorem does not imply the existence of solutions to
Problem 1 because it grants the solution in a small neighbourhood of the hypersurface ΓT only
(but not in a given domain ΩT !). We emphasize that, unlike the classical case, we do not ask for
the hypersurface Γ or/and the coefficients of the operators Bj or/and the data f or/and uj to
be real analytic.

Of course, the above trick with the Laplace transform suggests us that the problem is equiva-
lent to an ill-posed problem for the strongly elliptic operator (−∆)m in Ω with the Cauchy data
on Γ, i.e. Problem 1 is ill-posed itself, too.

2. Solvability conditions

We begin this section proving that Problem 1 can not have more than one solution in the
spaces of differentiable (non-analytic) functions.

To investigate Problem 1, we use an integral representation constructed with the use the
fundamental solution Φm(x, t) to polyharmonic heat operator Lm. If m = 1 then
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Φ1(x, t) =


e−

|x|2
4µ t(

2
√
πµ t

)n if t > 0,

0 if t 6 0,

(5)

see, for instance, [19, 25]. Unfortunately, if m > 1 then the fundamental solution can not be
represented as an elementary function, see, for instance, [14, Ch. 2, Sec. 1], [15],

Φm(x, t) =

kn,mt−n/2m

∫ +∞

0

ρn−1e−ρ2m
( |x|ρ
t1/2m

)1−n/2

Jn/2−1

( |x|ρ
t1/2m

)
dρ if t > 0,

0 if t 6 0,

(6)

where kn,m is a normalization constant and Jp is the Bessel function of the first kind and of order
p (see, for example, [16, Ch. 5, Sec. 23]).

The fundamental solution allows to construct a useful integral Green formula for the operator
Lm. With this purpose, Denote by {C0, . . . C2m−1} the Dirichlet system associated with the
Dirichlet system {B0, . . . B2m−1} via (first) Green formula for the operator ∆m, i.e.∫

∂Ω

( 2m−1∑
j=0

C2m−1−jvBju

)
ds = (∆mu, v)L2(Ω) − (u,∆mv)L2(Ω)

for all u, v ∈ C∞(Ω). For instance, if {B0, . . . B2m−1} = (1, ∂ν ,∆, ∂ν∆, . . .∆m−1, ∂ν∆
m−1) then

{C0, . . . C2m−1} = (1,−∂ν ,∆,−∂ν∆, , . . .∆m−1,−∂ν∆
m−1).

Consider the cylinder type domain ΩT1,T2 = ΩT2 \ΩT1 with 0 6 T1 < T2 and a closed measur-
able set S ⊂ ∂Ω. For functions f ∈ L2(ΩT1,T2), vj ∈ L2([0, T ], H2m−j−1/2(ST )), h ∈ H1/2(Ω)
we introduce the following potentials:

IΩ,T1(h)(x, t) =

∫
Ω

Φ(x− y, t)h(y)dy, GΩ,T1(f)(x, t) =

t∫
T1

∫
Ω

Φ(x− y, t− τ)f(y, τ)dydτ,

V
(j)
S,T1

(vj)(x, t) =

t∫
T1

∫
S

CjΦm(x− y, t− τ)vj(y, τ)ds(y)dτ, 0 6 j 6 2m− 1

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1], [26, Ch. 3, Sec. 10] for
m = 1). The potential IΩ,T1(h) is an analogue of the Poisson integral and the function GΩ,T1(f)

is an analogue of the volume heat potential related to m = 1. The functions V (0)
S,T1

(v) and V
(1)
S,T1

(v)
are often referred to as single layer heat potential and double layer heat potential, respectively,
if m = 1. By the construction, all these potentials are (improper) integrals depending on the
parameters (x, t).

Next, we need the so-called Green formula for the polyharmonic heat operator.

Lemma 1. For all 0 6 T1 < T2 and all u ∈ 2m,1(ΩT1,T2) the following formula holds:

u(x, t) in ΩT1,T2

0 outside ΩT1,T2

}
= IΩ,T1

(u) +GΩ,T1
(Lmu) +

2m−1∑
j=0

V
(j)
∂Ω,T1

(Bju) . (7)

Proof. See, for instance, [27, ch. 6, Sec. 12] for m = 1 and [28, theorem 2.4.8] for more general
operators, admitting fundamental solutions/parametreces.

Formulas (5), (6) mean that the kernels Φm(x − y, t − τ) are smooth outside the diagonal
{(x, t) = (y, τ)} and real analytic with respect to the space variables. In particular, this means
that the 2m-parabolic operator Lm is hypoelliptic. Moreover, any C2m,1(ΩT1,T2)-solution v to
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the polyharmonic heat equation Lmv = 0 in the cylinder domain ΩT1,T2
belongs to C∞(ΩT1,T2

)
and, actually v(x, t) is real analytic with respect to the space variable x ∈ Ω for each t ∈ (T1, T2)
(for m = 1, see, for instance, [25, Ch. VI, Sec. 1, Theorem 1] and for m > 1 see [14, Ch. Sec. 2,
Sec. 1, Theorem 2.1]). Then Green formula (7) and the information on the kernel Φm provide
us with a Uniqueness Theorem for Problem 1.

Theorem 1 (A Uniqueness Theorem). If Γ has at least one interior point in the relative topology
of ∂Ω then Problem 1 has no more than one solution.

Proof. For m = 1 see [1, Theorem 1, Corollary 1]. For m > 1 the proof can be done in the
same way with natural modifications. Indeed, under the hypothesis of the theorem there is an
interior (in the relative topology of Γ!) point x0 on Γ. Then there is such a number r > 0
that B(x0, r) ∩ ∂Ω ⊂ Γ where B(x0, r) is ball in Rn with center at x0 and radius r. Fix
an arbitrary point (x′, t′) ∈ ΩT . Clearly, there is a domain Ω′ ∋ x′ satisfying Ω′ ⊂ Ω and
Ω′ ∩ ∂Ω ⊂ Γ ∩B(x0, r). Then (x′, t′) ∈ Ω′

T1,T2
with some 0 < T1 < T2 < T .

But u ∈ C2m,1(Ω′
T1,T2

) ∩ C2m−1,0(Ω′
T1,T2

) (for m = 1 see, for instance, [19, Ch. 1, Sec. 3 and
Ch. 5, Sec. 2] and for m > 1 it follows from [14, Ch. 2, Sec. 1, Theorem 2.2]) and Lmu = 0 in
Ω′

T1,T2
under the hypothesis of the theorem. Hence formula (7) implies:

u(x, t), (x, t) ∈ Ω′
T1,T2

0, (x, t) ̸∈ Ω′
T1,T2

}
= IΩ′,T1(u)(x, t) +

2m−1∑
j=0

V
(j)
∂Ω′\Γ,T1

(Bju) (x, t), (8)

because Bju ≡ 0 on ΓT for all 0 6 j 6 2m− 1.
Taking into account the character of the singularity of the kernel Φm(x−y, t−τ) we conclude

that the following properties are fulfilled for the integrals, depending on parameter, from the right
hand side of identity (8):

IΩ′,T1(u) ∈ C2m,1({x ∈ Rn, T1 < t < T2}),

V
(j)
∂Ω′\Γ,T1<t<T2

(Bju) ∈ C2m,1({x ∈ Rn \ (∂Ω′ \ Γ), T1 < t < T2})

(see, for instance, [19, Ch. 1, Sec. 3 and Ch. 5, Sec. 2], [20, Ch. 4, Sec. 1] or [26, Ch. 3, Sec. 10]
for m=1). Moreover, as Φm is a fundamental solution to the polyharmonic heat operator then

Lm(x, t)Φm(x− y, t− τ) = 0 for (x, t) ̸= (y, τ),

and therefore, using Leibniz rule for differentiation of integrals depending on parameter we obtain:

LmIΩ′,T1(u) = 0 in the domain {x ∈ Rn, T1 < t < T2},

LmV
(j)
∂Ω′\Γ,T1

(Bju) = 0 in Ω′′
T1,T2

= {x ∈ Rn \ (∂Ω′ \ Γ), T1 < t < T2} for all 0 6 j 6 2m− 1.

Hence the function
v(x, t) = IΩ′,T1(u)(x, t) + V

(j)
∂Ω′\Γ,T1

(Bju) (x, t),

satisfies the polyharmonic heat equation (Lmv)(x, t) = 0 in Ω′′
T1,T2

. As we mentioned above, this
implies that the function v(x, t) is real analytic with respect to the space variable x ∈ Rn\(∂Ω′\Γ)
for any T1 < t < T2 . By the construction the function v(x, t) is real analytic with respect to x
in the ball B(x0, r) and it equals to zero for x ∈ B(x0, r) \ Ω for all T1 < t < T2. Therefore, the
Uniqueness Theorem for real analytic functions yields v(x, t) ≡ 0 in Ω′′

T1,T2
, and in the cylinder

Ω′
T1,T2

, containing point (x′, t′). Now it follows from (8) that u(x′, t′) = v(x′, t′) = 0 and then,
since the point (x′, t′) ∈ ΩT is arbitrary we conclude that u ≡ 0 in ΩT . 2

Now we are ready to formulate a solvabilty criterion for Problem 1. As before, we assume
that Γ is a relatively open connected subset of ∂Ω. Then we may find a set Ω+ ⊂ Rn in such a
way that the set D = Ω∪Γ∪Ω+ would be a bounded domain with piece-wise smooth boundary.
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It is convenient to set Ω− = Ω. For a function v on DT we denote by v+ its restriction to Ω+
T

and, similarly, we denote by v− its restriction to ΩT . It is natural to denote limit values of v± on
ΓT , when they are defined, by v±|ΓT

. Actually, for m = 1 similar solvability criterions for Problem
1 were obtained in [1] and [4].

Theorem 2 (Solvability criterion). Let λ ∈ (0, 1), ∂Ω belong to C2m−1+λ and let Γ be a relatively
open connected subset of ∂Ω. If f ∈ C0,0,λ,λ/2(ΩT ), uj ∈ C2m−j,0,λ,λ/2(ΓT ), 1 6 j 6 2m, then
Problem (3), (4) is solvable in the space C2m,1,λ,λ/2(ΩT ) ∩ C2m−1,0,λ,λ/2(ΩT ∪ ΓT ) if and only
if there is a function F ∈ C∞(DT ) satisfying the following two conditions: 1) LmF = 0 in DT ,

2) F = GΩ,0(f) +
2m−1∑
j=0

V
(j)

Γ,0
(uj+1) in Ω+

T .

Proof. Necessity. Let a function u(x, t) ∈ C2m,1,λ,λ/2(ΩT ) ∩ C2m−1,0,λ,λ/2(ΩT ∪ ΓT ) satisfy
(3), (4). Clearly, the function u(x, t) belongs to the space C2m,1,λ,λ/2(Ω′

T ) ∩ C2m−1,0,λ,λ/2(Ω′
T

for each cylindrical domain Ω′
T with such a base Ω′ that Ω′ ⊂ Ω and Ω′ ∩ ∂Ω ⊂ Γ. Besides,

Lu = f ∈ C0,0,λ,λ/2(Ω′
T ). Without loss of the generality we may assume that the interior part

Γ′ of the set Ω′ ∩ ∂Ω is non-empty. Consider in the domain DT the functions

F = GΩ,0(f) +

2m−1∑
j=0

V
(j)

Γ,0
(uj+1) and F = F − χΩT u, (9)

where χM is a characteristic function of the set M ⊂ Rn+1. By the very construction condition 2)
is fulfilled for it. Note that χΩT u = χΩ′

T
u in D′

T , where D′ = Ω′∪Γ′∪Ω+. Then Lemma 1 yields

F = GΩ\Ω′,0(f) +

2m−1∑
j=0

V
(j)

Γ,0
(uj+1)− IΩ′,0(u) in D′

T . (10)

Arguing as in the proof of Theorem 1 we conclude that each of the integrals in the right hand
side of (10) is smooth outside the corresponding integration set and each satisfies homogeneous
polyharmonic heat equation there. In particular, we see that F ∈ C∞(D′

T ) and LF = 0 in D′
T

because of [25, Ch. VI, Sec. 1, Theorem 1]. Obviously, for any point (x, t) ∈ DT there is a domain
D′

T containing (x, t). That is why LmF = 0 in DT , and hence F belongs to the space C∞(DT ).
Thus, this function satisfies condition 1), too.

Sufficiency. Let there be a function F ∈ C∞(DT ), satisfying conditions 1) and 2) of the
theorem. Consider on the set DT the function

U = F − F. (11)

As f ∈ C0,0,λ,λ/2(ΩT ) then the results of [19, Ch. 1, Sec. 3], [20, Ch. 4, Secs. 11–14] for m = 1
and [14, Ch. 2, Sec. 1, Theorem 2.2] for m > 1 imply

GΩ,0(f) ∈ C2m,1,λ,λ/2(Ω±
T ) ∩ C2m−1,0,λ,λ/2(DT ) (12)

and, moreover,
LmG−

Ω,0(f) = f in ΩT , LmG+
Ω,0(f) = 0 in Ω+

T . (13)

Since uj ∈ C2m−j,0,λ,λ/2(ΓT ) then the results of [20, Ch. 4, Secs. 11-14], [19, Ch. 5, Sec. 2] for
m = 1 and [14, Ch. 2, Sec. 1, Theorem 2.2] for m > 1 yield

V
(j)

Γ,0
(uj) ∈ C∞(Ω±

T ) ∩ C2m−1,0,λ,λ/2((Ω± ∪ Γ)T ), L(j)VΓ,0(uj) = 0 in ΩT ∪ Ω+
T . (14)

Since F ∈ C∞(DT ) ⊂ C1,0,λ,λ/2((Ω+ ∪ Γ)T ) then formulas (11)–(14) imply that U belongs
C2m,1,λ,λ/2(Ω±

T ) ∩ C2m−1,0,λ,λ/2((Ω± ∪ Γ)T ) and LU = χDT
f in ΩT ∪ Ω+

T . In particular, (3) is
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fulfilled for U−. Let us show that the function U− satisfies (4). Since F ∈ C∞(DT ) we see that
∂αF− = ∂αF+ on ΓT for α ∈ Z+ with |α| 6 2m− 1 and

∂αF+
|ΓT

=

(
∂αGΩ,0(f) +

2m−1∑
j=0

∂α
(
V

(j)

Γ,0
(uj+1)

))+

|ΓT

.

Thus, it follows from formula (12) that for all 0 6 i 6 2m− 1 we have

BiU
−
|ΓT

=

(
Bi

( 2m−1∑
j=0

V
(j)

Γ,0
(uj+1)

))−

|ΓT

−
(
Bi

( 2m−1∑
j=0

V
(j)

Γ,0
(uj+1)

))+

|ΓT

. (15)

Hence, in order to finish the proof we need the following lemma.

Lemma 2. Let Γ ∈ C2m−1+λ and uj ∈ C2m−j,0,λ,λ/2(ΓT ), 1 6 j 6 2m. Then(
Bi

( 2m−1∑
j=0

V
(j)

Γ,0
(uj+1)

))−

|ΓT

−
(
Bi

( 2m−1∑
j=0

V
(j)

Γ,0
(uj+1)

))+

|ΓT

= ui+1, 0 6 i 6 2m− 1. (16)

Proof. It is similar to the proof of the analogous lemmas for the heat Single and Double Layer
Potentials (see, for instance, [1, Lemma 3], [26, Ch. 3, Sec. 10, Theorem 10.1] for m = 1 and a
different function class or [12, Lemma 2.7] for elliptic potentials). 2

Using Lemma 2 and formulas (12), (15), we conclude that BjU
−
|ΓT

= uj+1 for all 0 6 j 6
2m − 1, i.e. the second equation in (4) is fulfilled for U−. Thus, function u(x, t) = U−(x, t)
satisfies conditions (3), (4). The proof is complete. 2

We note that Theorem 2 is also an analogue of Theorem by Aizenberg and Kytmanov [10]
describing solvability conditions of the Cauchy problem for the Cauchy–Riemann system (cf. also
[11] in the Cauchy Problem for Laplace Equation or [13] in the Cauchy problem for general elliptic
systems).

We note also that formula (11), obtained in the proof of Theorem 2, gives the unique solution
to Problem 1. Clearly, if we will be able to write the extension F of the sum of potentials

GΩ,0(f) +
2m−1∑
j=0

V
(j)

Γ,0
(uj+1) from Ω+

T onto DT as a series with respect to special functions or a

limit of parameter depending integrals then we will get Carleman’s type formula for solutions to
Problem 1 (cf. [10]). However, for the best way for this purpose is to use the Fourier series in the
framework of the Hilbert space theory, see [5]. Unfortunately, this is not a short story because
one needs approximation theorems in spaces of solutions to the homogeneous polyharmonic
heat equation that we are not ready to prove right now. Thus we finish our paper with a
statement extending Theorem 2 to the anisotropic Sobolev spaces, leaving the construction of
the Carleman’s type formulae for the next article.

First of all, we need the following lemma.

Lemma 3. Let ∂Ω ∈ C2m+1 and let Γ be a relatively open connected subset of ∂Ω with boundary
∂Γ ∈ C2m+λ. If uj ∈ C2m+1−j,0,λ,λ/2(ΓT ), 1 6 j 6 2m, then there exist functions ũj ∈
C2m+1−j,0,λ,λ/2(∂ΩT ) such that ũj = uj on ΓT , 1 6 j 6 2m, and a function ũ ∈ C2m,1,λ,λ/2(ΩT )
such that Bj ũ = ũj+1 on (∂Ω)T for all 0 6 j 6 2m− 1.

Proof. We may adopt the standard arguments from [29, Lemma 6.37] related to isotropic spaces.
Indeed, according to it, under our assumptions, for any s 6 2m and any v ∈ Cs,λ(Γ) there is
ṽj ∈ Cs,λ(∂Ω) such that v = v0 on Γ. The construction of the extension involves the rectifying
diffeomorphism of ∂Γ and a suitable partition of unity of a neighbourhood of ∂Γ, only. Thus, we
conclude there are functions ũj ∈ C2m−j+1,0,λ,λ/2(∂ΩT ) such that ũj = uj on ΓT , 1 6 j 6 2m.
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Next, we use the existence of the Poisson kernel P∆2m,Ω(x, y) for the Dirichlet problem related
to the operator ∆2m, see [30]. It is known that the problem is well-posed over the scale of Hölder
spaces in Ω. Namely, if ∂Ω ∈ Cs+1,λ, s > 2m − 1, then for each ⊕2m−1

j=0 vj ∈ Cs−j,λ(∂Ω) the
integral

v(x) = P∆2m,Ω(⊕2m−1
j=0 vj)(x) =

∫
∂Ω

( 2m−1∑
j=0

(Bj(y)P∆2m,Ω)(x, y)vj(y)

)
ds(y)

belongs to Cs,λ(Ω) and satisfies ∆2mv = 0 in Ω and Bjv = vj on ∂Ω for all 0 6 j 6 2m− 1.
Now, we set

ũ0(x) = P∆2m,Ω(⊕2m−1
j=0 ũj+1)(·, 0)(x) ∈ C2m−1,λ(Ω) ∩ C2m,λ(Ω).

Now, we may take as ũ(x, t) ∈ C2m,1,λ,λ/2(ΩT ) ∩ C2m−1,0,λ,λ/2(ΩT ) the unique solution to
the parabolic initial boundary problem

∂tũ(x, t) + ∆2mũ(x, t) = 0 in ΩT ,

⊕2m−1
j=0 Bj ũ(x, t) = ⊕2m−1

j=0 ũj+1(x, t) on (∂Ω)T ,

ũ(x, 0) = ũ0(x) on Ω,

see, for instance, [20, Ch. 5, Sec. 6] for m = 1 or [14, Ch. 3, Sec. 1] for m > 1. But of course,
there are other possibilities to choose a function ũ with the desired properties.

Under the assumptions of Lemma 3, we set

F̃ = GΩ,0(f) +

2m−1∑
j=0

V
(j)
∂Ω,0(ũj+1) + IΩ,0(ũ). (17)

Corollary 1. Let λ ∈ (0, 1), ∂Ω belong to C2m+1+λ and let Γ be a relatively open connected
subset of ∂Ω with boundary ∂Γ ∈ C2m+λ. If f ∈ C0,0,λ,λ/2(ΩT ), uj ∈ C2m−j+1,0,λ,λ/2(ΓT ), then
Problem (3), (4) is solvable in the space C2m,1,λ,λ/2(ΩT )∩C2m−1,0,λ,λ/2(ΩT ∪ΓT )∩H2m,1(ΩT ) if
and only if there is a function F̃ ∈ C∞(DT )∩H2m,1(DT ) satisfying the following two conditions:
1’) LF̃ = 0 in DT , 2’) F̃ = F̃ in Ω+

T .

Proof. First of all, we note that, by Green formula (7), we have F̃ = GΩ,0(f − Lũ) + χΩT
ũ and

then F̃ ∈ C2m,1,λ,λ/2(Ω±
T ) because of (12). On the other hand,

F̃ − F =

2m−1∑
j=0

V
(j)
∂Ω\Γ,0(ũj+1) + IΩ,0(ũ). (18)

This means that the function F̃ − F satisfies the L(F̃ − F) = 0 in DT and hence the function
F extends to DT as a solution of the heat equation if and only if function F̃ extends to DT as
a solution of the polyharmonic heat equation, too.

Let Problem (3), (4) be solvable in the space C2m,1,λ,λ/2(ΩT ) ∩ C2m−1,0,λ,λ/2(ΩT ∪ ΓT ) ∩
H2m,1(ΩT ). Then formulas (9) and (18) imply

F̃ = F̃ − χΩT u ∈ H2m,1(Ω±
T ) and LF̃ = 0 in DT .

Now, as F̃ ∈ H2m,1(Ω±
T ) ∩ C∞(DT ) (see [25, Ch. VI, Sec. 1, Theorem 1]) we conclude that

F̃ ∈ H2m,1(DT ), i.e. conditions 1’), 2’) of the corollary are fulfilled.
If conditions 1’), 2’) of the corollary hold true then conditions 1), 2) of Theorem 2 are fulfilled,

too. Moreover, formulas (11) and (18) imply that in DT we have

U = F − F = F̃ − F̃ ∈ H2m,1(Ω±
T ) (19)

and the U− is the solution to Problem 1 in the space C2m,1,λ,λ/2(ΩT )∩C2m−1,0,λ,λ/2(ΩT ∪ΓT )∩
H2m,1(Ω±

T ) by Theorem 2.
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О некорректной задаче Коши для решений
полигармонического уравнения теплопроводности

Илья А. Куриленко
Александр А.Шлапунов

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Мы рассматриваем некорректную задачу Коши для полигармонического оператора
теплопроводности о восстановлении функции, удовлетворяющей уравнению (∂t+(−∆)m)u = 0 в ци-
линдрической области в полупространстве Rn× [0,+∞), где n > 1, m > 1, а ∆ – оператор Лапласа,
по заданным ее значениям и значениям ее нормальных производных до порядка (2m − 1) вклю-
чительно на части боковой поверхности цилиндра. Нами получены теорема единственности для
этой задачи Коши в анизотропных пространствах Соболева, а также необходимые и достаточные
условия ее разрешимости в терминах вещественно-аналитического продолжения параболических
потенциалов, ассоциированных с данными Коши.

Ключевые слова: полигармоническое уравнение теплопроводности, некорректные задачи, метод
интегральных представлений.
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