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1. Introduction and preliminaries

It is well known that Cauchy problem for an elliptic equation is ill-posed. The solution of
the problem is unique but unstable (Hadamard‘s example). For ill-posed problems the existence
of a solution and it belonging to the correctness class is usually assumed a priori. Moreover, the
solution is assumed to belong to some given subset of the function space, that is usually a compact
subset [1]. The uniqueness of the solution follows from the general Holmgren theorem [2].

The Cauchy problem for elliptic equations was the subject of study for mathematicians
throughout the twentieth century and it continues to attract the attention of researchers to
this day.

The development of special methods that allows one to deal with ill-posed Cauchy problems
was stimulated by practical demands. Such problems can be found in hydrodynamics, signal
transmission theory, tomography, geological exploration, geophysics, elasticity theory, and so on.

A solution of the Cauchy problem for the one-dimensional system of Cauchy–Riemann equa-
tions was first obtained in 1926 by Carleman [3]. He proposed the idea of introducing an addi-
tional function into the Cauchy integral formula which allows one to take the limit in order to
damp the influence of integrals over that part of the boundary where the values of the function
to be continued are not given. The idea of Carleman was developed in 1933 by Goluzin and
Krylov [4]. They found a general way to obtain Carleman formulas for the one-dimensional
system of Cauchy–Riemann equations.

Resting on the results of Carleman and Goluzin–Krylov, Lavrent’ev introduced the concept
of the Carleman function for the one-dimensional system of Cauchy–Riemann equations. The
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method proposed by Lavrent’ev [5] consists in approximation of the Cauchy kernel on the addi-
tional part of the domain boundary outside the support of the data of the Cauchy problem.

The Carleman function of the Cauchy problem for the Laplace equation is a fundamental
solution that depends on a positive parameter. It tends to zero together with its normal derivative
on the part of the domain boundary outside the Cauchy data support as the parameter tends
to infinity. Using the Carleman function and Green’s integral formula, a Carleman formula is
produced. It gives an exact solution of the Cauchy problem when the data are specified exactly.
Construction of the Carleman function allows one to construct a regularization if the Cauchy data
are given approximately. The existence of the Carleman function follows from the Mergelyan
approximation theorem [6].

Fock and Kuni [7] found in 1959 an application of the Carleman formula to the one-
dimensional system of Cauchy–Riemann equations. When part of the domain boundary is a
segment of the real axis they used the Carleman formula to establish a criterion for the solvabil-
ity of the Cauchy problem for the system of Cauchy–Riemann equations on the plane. An analog
of the Carleman formula and criteria for the solvability of the Cauchy problem were obtained for
analytic functions of several variables [8, 9], for harmonic functions [10–12] and also [13–16].

A fairly complete survey on Carleman formulas can be found in [5, 11,17,18].
In the present paper, a regularized solution of the Cauchy problem for the system of elasticity

equations is constructed on the basis of the Carleman function method.
Let us assume that x = (x1, . . . , xm) and y = (y1, . . . , ym) are points in Rm, Dρ is a bounded

simple connected domain in Rm. Its boundary is a cone surface:

Σ : α1 = τym, α2
1 = y21 + . . .+ y2m−1, τ = tg

π

2ρ
, ym > 0, ρ > 1.

Let us also consider a smooth surface S that lies inside the cone.
Let us consider in domain Dρ the system of equations of elasticity theory

µ∆U(x) + (λ+ µ) grad divU(x) = 0;

here U = (U1, . . . , Um) is the displacement vector, ∆ is the Laplace operator, λ and µ are the
Lame constants. For brevity, it is convenient to use matrix notation. Let us introduce the matrix
differential operator

A(∂x) = ∥Aij(∂x)∥m×m,

where

Aij(∂x) = δijµ∆+ (λ+ µ)
∂2

∂xi∂xj
.

Then the elliptic system of equations can be written in matrix form

A(∂x)U(x) = 0. (1)

Statement of the problem. Let us assume that Cauchy data of a solution U are given on S,

U(y) = f(y), y ∈ S,

T (∂y, n(y))U(y) = g(y), y ∈ S, (2)

where f = (f1, . . . , fm) and g = (g1, . . . , gm) are prescribed continuous vector functions on
S, T (∂y, n(y)) is the strain operator, i.e.,

T (∂y, n(y)) = ∥Tij(∂y, n(y))∥m×m =

∥∥∥∥λni
∂

∂yj
+ µnj

∂

∂yi
+ µδij

∂

∂n

∥∥∥∥
m×m

,
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δij is the Kronecker delta, and n(y) = (n1(y), . . . , nm(y)) is the unit normal vector to the surface
S at the point y.

It is required to determine function U(y) in D, i.e., to find an analytic continuation of the
solution of the system of equations in the domain from the values of f and g on a smooth part
of S of the boundary.

In this paper, the Cauchy problem for system of static equations of elasticity theory is solved
for cone type domains by the method of regularization of the solution according to Lavrentiev.

In earlier works [14–16], this problem was considered either in two or three-dimensional spaces
or for other special domains for which it is required to construct special matrices of fundamental
solutions in explicit form that depends on the domain and dimension of the space.

Similar problems were considered for an arbitrary domain, by expanding the fundamental
solution into a series in terms of spherical functions [12,19].

Let us suppose that instead of f(y) and g(y) their approximations fδ(y) and gδ(y) with
accuracy δ, 0 < δ < 1 (in the metric of C) are given. They do not necessarily belong to the
class of solutions. In this paper, a family of functions U(x, fδ, gδ) = Uσδ(x) that depends on
parameter σ is constructed. It is also proved that under certain conditions and special choice of
parameter σ(δ) the family Uσδ(x) converges in the usual sense to the solution U(x) of problem
(1), (2) as δ → 0.

Following A. N.Tikhonov, Uσδ(x) is called a regularized solution of the problem. A regularized
solution determines a stable method of approximate solution of the problem [1].

2. Construction of the matrix of fundamental solution
for the system of equations of elasticity

Definition 2.1. Matrix Γ(y, x) = ||Γij(y, x)||m×m, is called the matrix of fundamental solutions
of system (1), where

Γij(y, x) =
1

2µ(λ+ 2µ)
((λ+ 3µ)δijq(y, x)− (λ+ µ)(yj − xj)

∂

∂xi
q(y, x)), i, j = 2, . . . ,m,

q(y, x) =


1

(2−m)ωm
· 1

|y − x|m−2
, m > 2

1

2π
ln |y − x|, m = 2,

and ωm is the area of unit sphere in Rm.

Matrix Γ(y, x) is symmetric and its columns and rows satisfy equation (1) at an arbitrary
point x ∈ Rm, except y = x. Thus, we have

A(∂x)Γ(y, x) = 0, y ̸= x.

Developing idea of Lavrent‘ev on the notion of Carleman function of the Cauchy problem for
the Laplace equation [5], the following notion is introduced.

Definition 2.2. The Carleman matrix of problem (1), (2) is (m × m) matrix Π(y, x, σ) that
satisfies the following two conditions

1) Π(y, x, σ) = Γ(y, x) + G(y, x, σ), where σ is a positive parameter, and matrix G(y, x, σ)
satisfies system (1) everywhere in domain D with respect to the variable y.
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2) The following relation holds∫
∂D\S

(|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|)dsy 6 ε(σ),

where ε(σ) → 0 as σ → ∞ uniformly in x on compact subsets of D. Here and elsewhere |Π|

denotes the Euclidean norm of matrix Π = ||Πij ||, i.e., |Π| =
( m∑

i,j=1

Π2
ij

) 1
2

. In particular,

|U | =
( m∑

i=1

U2
i

) 1
2

for a vector U = (U1, . . . , Um).

Definition 2.3. A vector function U(y) = (U1(y), . . . , Um(y)) is said to be regular in D if it is
continuous together with its partial derivatives of second order in D and partial derivatives of
first order in D = D

∪
∂D.

In the theory of partial differential equations solution functions of potential type play an im-
portant role. As an example of such representation, the formula of Somilian–Bettis is considered
below [20].

Theorem 2.1. Any regular solution U(x) of equation (1) in the domain D is represented as

U(x) =

∫
∂D

(Γ(y, x){T (∂y, n)U(y)} − {T (∂y, n)Γ(y, x)}∗U(y))dsy, x ∈ D, (3)

here A∗ is conjugate to A.

Suppose that Carleman matrix Π(y, x, σ) of problem (1), (2) exists. Then for the regular
functions v(y) and u(y) the following relation holds∫

∂Dρ

[v(y){A(∂y)U(y)} − {A(∂y)v(y)}∗U(y)]dy =

=

∫
∂Dρ

[v(y){T (∂y, n)U(y)} − {T (∂y, n)v(y)}∗U(y)]dsy.

Substituting v(y) = G(y, x, σ) and u(y) = U(y) into the above relation, we obtain∫
∂Dρ

[G(y, x, σ){A(∂y)U(y)} − {A(∂y)G(y, x, σ)}∗U(y)]dy = 0. (4)

The theorem follows from (3) and (4).

Theorem 2.2. Any regular solution U(x) of equation (1) in domain Dρ is represented as

U(x) =

∫
∂Dρ

(Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y))dsy, x ∈ Dρ, (5)

where Π(y, x, σ) is the Carleman matrix.

Suppose that K(ω), ω = u+ iv (u and v are real) is an entire function that takes real values
on the real axis. It satisfies the following conditions

K(u) ̸= 0, sup
v>1

|vpK(p)(ω)| = M(p, u) < ∞, p = 0, . . . ,m, u ∈ R1.
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Let
s = α2 = (y1 − x1)

2 + · · ·+ (ym−1 − xm−1)
2.

For α > 0 function Φ(y, x) is defined by the following relations. If m = 2 then

−2πK(x2)Φ(y, x) =

∫ ∞

0

Im

[
K(i

√
u2 + α2 + y2)

i
√
u2 + α2 + y2 − x2

]
udu√
u2 + α2

. (6)

If m = 2n+ 1, n > 1 then

CmK(xm)Φ(y, x) =
∂n−1

∂sn−1

∫ ∞

0

Im

[
K(i

√
u2 + α2 + ym)

i
√
u2 + α2 + ym − xm

]
du√

u2 + α2
, (7)

where Cm = (−1)n−1 · 2−n(m− 2)πωm(2n− 1)!. If m = 2n, n > 2 then

CmK(xm)Φ(y, x) =
∂n−2

∂sn−2
Im

K(αi+ ym)

α(α+ ym − xm)
, (8)

where Cm = (−1)n−1(n− 1)!(m− 2)ωm.
The following theorem is valid [10]

Theorem 2.3. Function Φ(y, x) can be expressed as

Φ(y, x) =
1

2π
ln

1

r
+ g2(y, x), m = 2, r = |y − x|,

Φ(y, x) =
r2−m

ωm(m− 2)
+ gm(y, x), m > 3, r = |y − x|,

where gm(y, x), m > 2 is a functions defined for all values of y, x and it is harmonic with
respect to variable y in Rm.

Using function Φ(y, x), the following matrix is constructed

Π(y, x) = ∥Πij(y, x)∥m×m =
∥∥∥ λ+ 3µ

2µ(λ+ 2µ)
δijΦ(y, x)−

− λ+ µ

2µ(λ+ 2µ)
(yj − xj)

∂

∂yi
Φ(y, x)

∥∥∥
m×m

, i, j = 1, 2, . . . ,m. (9)

3. The solution of problems (1), (2) in domain Dρ

I. Let x0 = (0, . . . , 0, xm) ∈ Dρ. Let us introduce the following designations

β = τym − α0, γ = τxm − α0, α2
0 = x2

1 + . . .+ x2
m−1, r = |x− y|,

s = α2 = (y1 − x1)
2 + . . .+ (ym−1 − xm−1)

2, w = iτ
√

u2 + α2 + β, w0 = iτα+ β.

Let us construct a Carleman matrix for problem (1), (2) for domain Dρ. The Carleman
matrix is explicitly expressed in terms of the Mittag–Löffler entire function. It is defined by
series [21]

Eρ(w) =

∞∑
n=0

wn

Γ
(
1 + n

ρ

) , ρ > 0, E1(w) = expw,
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where Γ(·) is the Euler function.
Let us denote the contour in complex plane w by γ = γ(1, θ), 0 < θ <

π

ρ
, ρ > 1. It is in the

direction of nondecreasing argw and it consists of the following parts.
1) ray argw = −θ, |w| > 1,

2) arc − θ 6 argw 6 θ circle |w| = 1,

3) ray argw = θ, |w| > 1.

Contour γ divides complex plane on two parts: D− and D+. They are on the left and the
right sides of γ, respectively. Suppose that

π

2ρ
< θ <

π

ρ
, ρ > 1. Then the following relation

holds
Eρ(w) = expwρ +Ψρ(w), w ∈ D+

Eρ(w) = Ψρ(w), E′
ρ(w) = Ψ′

ρ(w), w ∈ D−, (10)

where
Ψρ(w) =

ρ

2πi

∫
γ

exp ζρ

ζ − w
dζ, Ψ′

ρ(w) =
ρ

2πi

∫
γ

exp ζρ

(ζ − w)2
dζ. (11)

ReΨρ(w) =
Ψρ(w) + Ψρ(w)

2
=

ρ

2πi

∫
γ

exp ζρ(ζ −Rew)

(ζ − w)(ζ − w)
dζ,

ImΨρ(w) =
Ψρ(w)−Ψρ(w)

2i
=

ρImw

2πi

∫
γ

exp ζρ

(ζ − w)(ζ − w)
dζ,

ImΨ′
ρ(w)

Imw
=

ρ

2πi

∫
γ

2 exp ζρ(ζ −Rew)

(ζ − w)2(ζ − w)2
dζ.

(12)

In what follows, θ =
π

2ρ
+

ε2
2
, ρ > 1, ε2 > 0. It is clear that if

π

2ρ
+ ε2 6 |argw| 6 π then

w ∈ D− and Eρ(w) = Ψρ(w).
Let us set

Ek,q(w) =
ρ

2πi

∫
γ

ζq exp ζρ

(ζ − w)k(ζ − w)k
dζ, k = 1, 2, . . . , q = 0, 1, 2, . . . .

If
π

2ρ
+

ε2
2

6 |argw| 6 π then the following inequalities are valid

|Eρ(w)| 6
M1

1 + |w|
, |E′

ρ(w)| 6
M2

1 + |w|2
,

|Ek,q(w)| 6
M3

1 + |w|2k
, k = 1, 2, . . . , (13)

where M1,M2,M3 are constants.
Suppose that θ =

π

2ρ
+

ε2
2

<
π

ρ
, ρ > 1 in (10). Then Eρ(w) = Ψρ(w), cos ρθ < 0 and

∫
γ

|ζ|q exp(cos ρθ|ζ|q)|dζ| < ∞, q = 0, 1, 2, . . . . (14)

In this case for sufficiently large |w| (w ∈ D+, w ∈ D−) we have

min
ζ∈γ

|ζ − w| = |w| sin ε2
2
, min

ζ∈γ
|ζ − w| = |w| sin ε2

2
. (15)

– 167 –



Olimdjan I.Makhmudov, Ikbol E.Niyozov The Cauchy Problem for Equation of Elasticity Theory

Now from (10) and
1

ζ − w
= − 1

w
+

ζ

w(ζ − w)
,

1

ζ − w
= − 1

w
+

ζ

w(ζ − w)
, (16)

for large |w| we obtain ∣∣∣∣Eρ(w)− Γ−1

(
1− 1

ρ

)
1

w

∣∣∣∣ 6 ρ

2π sin ε2
2

1

|w|2
·

∫
γ

|ζ| exp [cos ρθ|ζ|ρ] |dζ| 6 const

|w|2
,

Γ−1

(
1− 1

ρ

)
=

ρ

2πi

∫
γ

exp (ζρ) dζ.

It follows from this that
|Eρ(w)| 6

M1

1 + |w|
.

From (11), (15) and
1

(ζ − w)2
=

1

w2
− 2ζ

w2(ζ − w)
+

ζ2

w2(ζ − w)2

for large |w| we obtain ∣∣∣∣E′
ρ(w)− Γ−1

(
1− 1

ρ

)
1

w2

∣∣∣∣ 6 const

|w|3

or
|E′

ρ(w)| =
M2

1 + |w|2
.

Considering (16), for k = 1, 2, . . . we have

1

(ζ − w)k(ζ − w)k
=

[
(−1)k

wk
+ . . .+

ζk

wk(ζ − w)k

] [
(−1)k

wk
+ . . .+

ζk

wk(ζ − w)k

]
=

=
1

|w|2k
− k

|w|2k+1|ζ − w|
+ . . . .

Taking into account previous relations and (14), (15), for large |w| we obtain∣∣∣∣Ek,q(w)− Γ−1

(
1− 1

ρ

)
1

|w|2k

∣∣∣∣ 6 const

|w|2k+1

or
|E′

k,q(w)| =
M3

1 + |w|2k
, k = 1, 2, . . . .

Therefore, since

(ζ − w)(ζ − w) = ζ2 − 2ζ(ym − xm) + u2 + α2 + (ym − xm)2, α2 = s,

then
∂n−1

∂sn−1

1

(ζ − w)(ζ − w)
=

(−1)n−1(n− 1)!

(ζ − w)n(ζ − w)n
.
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Now we obtain from (11) that

dn−1

dsn−1
ReEρ(w) =

(−1)n−1(n− 1)!ρ

2πi

∫
γ

(ζ − (ym − xm)) exp ζρ

(ζ − w)n(ζ − w)n
dζ,

dn−1

dsn−1

ImEρ(w)√
u2 + α2

=
(−1)n−1(n− 1)!ρ

πi

∫
γ

exp ζρ

(ζ − w)n(ζ − w)n
dζ,

Then from (3.) we have ∣∣∣∣ dn−1

dsn−1
ReEρ(w)

∣∣∣∣ 6 const · r
1 + |w|2∣∣∣∣ dn−1

dsn−1

ImEρ(w)√
u2 + α2

∣∣∣∣ 6 const · r
1 + |w|2

.

For σ > 0 we set in formulas (6)-(9)

K(w) = Eρ(σ
1
ρw), K(xm) = Eρ(σ

1
ρ γ). (17)

Then, for ρ > 1 we obtain

Φ(y, x) = Φσ(y, x) =
φσ(y, x)

cmEρ(σ
1
ρ γ)

, y ̸= x,

where φσ(y, x) is defined as follows:
if 1

ρ m = 2 then

φσ(y, x) =

∫ ∞

0

Im
Eρ(σw)

i
√
u2 + α2 + y2 − x2

udu√
u2 + α2

,

if m = 2n+ 1, n > 1 then

φσ(y, x) =
dn−1

dsn−1

∫ ∞

0

Im
Eρ(σ

1
ρw)

i
√
u2 + α2 + ym − xm

udu√
u2 + α2

, y ̸= x,

if m = 2n, n > 2 then

φσ(y, x) =
dn−2

dsn−2
Im

Eρ

(
σ

1
ρw

)
α(iα+ ym − xm

, y ̸= x.

Let us define matrix Π(y, x, σ) using (9) for Φ(y, x) = Φσ(y, x).
It was proved [10]

Theorem 3.1. Function Φσ(y, x) can be expressed as

Φσ(y, x) =
1

2π
ln

1

r
+ g2(y, x, σ), m = 2, r = |y − x|,

Φσ(y, x) =
r2−m

ωm(m− 2)
+ gm(y, x, σ), m > 3, r = |y − x|,

where gm(y, x, σ), m > 2 is a function defined for all y, x and it is harmonic with spect to
variable y in Rm.

We obtain from this theorem
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Theorem 3.2. Matrix Π(y, x, σ) defined in (7)–(9) and (17) is a Carleman matrix for problem
(1), (2).

Let us first consider some properties of function Φσ(y, x).
I. Let m = 2n+ 1, n > 1, x ∈ Dρ, y ̸= x, σ > σ0 > 0 then

1) for β 6 α the following inequalites hold:

|Φσ(y, x)| 6 C1(ρ)
σm−2

rm−2
exp(−σγρ),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C2(ρ)
σm

rm−1
exp(−σγρ), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C3(ρ)
σm+2

rm
exp(−σγρ), i = 1, . . . ,m, (18)

2) for β > α the following inequalities hold:

|Φσ(y, x)| 6 C4(ρ)
σm−2

rm−2
exp(−σγρ + σReωρ

0),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C5(ρ)
σm

rm−1
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C6(ρ)
σm+2

rm
exp(−σγρ + σReωρ

0), i = 1, . . . ,m. (19)

II. Let m = 2n, n > 2, x ∈ Dρ, x ̸= y, σ > σ0 > 0 then
1) for β 6 α the following inequalities hold:

|Φσ(y, x)| 6 C̃1(ρ)
σm−3

rm−2
exp(−σγρ),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C̃2(ρ)
σm

rm−1
exp(−σγρ), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C̃3(ρ)
σm+2

rm
exp(−σγρ), y ∈ ∂Dρ, i = 1, . . . ,m, (20)

2) for β > α the following inequalities hold:

|Φσ(y, x)| 6 C̃4(ρ)
σm−2

rm−2
exp(−σγρ + σReωρ

0),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C̃5(ρ)
σm

rm−1
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ 6 C̃6(ρ)
σm+2

rm
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ, i = 1, . . . ,m. (21)

III. Let m = 2, x ∈ Dρ, x ̸= y, σ > σ0 > 0 then
1) if β 6 α then

|Φσ(y, x)| 6 C7(ρ)E
−1(σ

1
ρ γ) ln

1 + r2

r2
,∣∣∣∣∂Φσ

∂yi
(y, x)

∣∣∣∣ 6 C8(ρ)
E−1

ρ (σ
1
ρ γ)

r
, (22)
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2) if β > α then

|Φσ(y, x)| 6 C̃7(ρ)E
−1(σ

1
ρ γ)(ln

1 + r2

r2
) exp(σReωρ

0),∣∣∣∣∂Φσ

∂yi
(y, x)

∣∣∣∣ 6 C̃8(ρ)E
−1
ρ (σ

1
ρ γ)

1

2
exp(σReωρ

0). (23)

Here all coefficients Ci(ρ) and C̃i(ρ), i = 1, . . . 8 depend on ρ.

Proof of Theorem 3.2. From the definition of Π(y, x, σ) and Lemma 1 we have

Π(y, x, σ) = Γ(y, x) +G(y, x, σ),

where

G(y, x, σ) =||Gkj(y, x, σ)||m×m =

=

∣∣∣∣∣∣∣∣ λ+ 3µ

2µ(λ+ 2µ)
δkjgm(y, x, σ)− λ+ µ

2µ(λ+ 2µ)
(yj − xj)

∂

∂yi
gm(y, x, σ)

∣∣∣∣∣∣∣∣
m×m

.

Let us prove that A(∂y)G(y, x, σ) = 0. Since ∆ygm(y, x, σ) = 0, ∆y =
m∑

k=1

∂2

∂y2k
and taking

into account relation for the jth column Gj(y, x, σ)

÷Gj(y, x, σ) =
1

2µ(λ+ 2µ)
· ∂

∂yj
gm(y, x, σ),

we obtain relation for the kth components of A(∂y)G
j(y, x, σ)

m∑
i=1

A(∂y)kiGij(y, x, σ)=µ∆y

[
λ+ 3µ

2µ(λ+2µ)
· δkjgm(y, x, σ)− λ+ µ

2µ(λ+2µ)
(yj− xj)

∂

∂yk
gm(y, x, σ)

]
+

+ (λ+ µ)
∂

∂yk
divGj(y, x, σ) =

=− λ+ µ

2µ(λ+ 2µ)

∂2

∂y2j
gm(y, x, σ) +

λ+ µ

2µ(λ+ 2µ)

∂2

∂y2j
gm(y, x, σ) = 0

Therefore, each column of matrix G(y, x, σ) satisfies system (1) with respect to the variable y

everywhere in Rm.
The second condition on the Carleman matrix follows from inequalities (18)–(23). The proof

of the theorem is complete. 2

For fixed x ∈ Dρ we denote the part of S, where β > α by S∗. If x = x0 = (0, . . . , 0, xm) ∈ Dρ

then S = S∗. Consider the point (0, . . . , 0) ∈ Dρ. Suppose that

∂U

∂n
(0) =

∂U

∂ym
(0),

∂Φσ(0, x)

∂n
=

∂Φσ(0, x)

∂ym
.

Let

Uσ(y) =

∫
S∗
[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy, x ∈ Dρ. (24)
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Theorem 3.3. Let U(x) be a regular solution of system (1) in Dρ, such that

|U(y)|+ |T (∂y, n)U(y)| 6 M, y ∈ Σ. (25)

Then
1) if m = 2n+ 1, n > 1 and for x ∈ Dρ, σ > σ0 > 0 the following estimate is valid:

|U(x)− Uσ(x)| 6 MC1(x)σ
m+1 exp(−σγρ),

2) if m = 2n, n > 1, x ∈ Dρ, σ > σ0 > 0 the following estimate is valid

|U(x)− Uσ(x)| 6 MC2(x)σ
m exp(−σγρ),

where
Ck(x) = Ck(ρ)

∫
∂Dρ

dsy
rm

, k = 1, 2,

Ck(ρ) is a constant that depends on ρ.

Proof. It follows from (5) that

U(x) =

∫
S∗
[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy+

+

∫
∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy, x ∈ Dρ.

Therefore, we have from (24) that

|U(x)− Uσ(x)| 6
∫

∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy 6

6
∫

∂Dρ\S∗

[|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|] [|T (∂y, n)Π(y, x, σ)|+ |U(y)|] dsy.

Taking into accoun inequalities (18)–(23) and condition (25), we obtain for β 6 α and m = 2n+1,
n > 1

|U(x)− Uσ(x)| 6 MC1(ρ)σ
m+1 exp(−σγρ)

∫
∂Dρ

dsy
rm

.

For m = 2n, n > 1 we obtain

|U(x)− Uσ(x)| 6 MC2(ρ)σ
m exp(−σγρ)

∫
∂Dρ

dsy
rm

.

The proof of the theorem is complete. 2

One can determine U(x) approximately if, instead of U(y) and T (∂y, n)U(y), their continuous
approximations fδ(y) and gδ(y) are given on surface S:

max
S

|U(y)− fδ(y)|+max
S

|T (∂y, n)U(y)− gδ(y)| 6 δ, 0 < δ < 1. (26)

Function Uσδ(x) is defined as follows

Uσδ(x) =

∫
s∗
[Π(y, x, σ)gδ(y)− {T (∂y, n)Π(y, x, σ)}∗fδ(y)]dsy, x ∈ Dρ, (27)
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where
σ =

1

Rρ
ln

M

δ
,Rρ = max

y∈S
Reωρ

0 .

Then the following theorem holds.

Theorem 3.4. Let U(x) be a regular solution of system (1) in Dρ, such that

|U(y)|+ |T (∂y, n)U(y)| 6 M, y ∈ ∂Dρ.

Then,
1) if m = 2n+ 1, n > 1 then the following estimate is valid

|U(x)− Uσδ(x)| 6 C1(x)δ
( γ
R )ρ

(
ln

M

δ

)m+1

,

2) if m = 2n, n > 1 then the following estimate is valid:

|U(x)− Uσδ(x)| 6 C2(x)δ
( γ
R )ρ

(
ln

M

δ

)m

,

where
Ck(x) = Ck(ρ)

∫
∂Dρ

dsy
rm

, k = 1, 2.

Proof. It follows from (5) and (27) that

U(x)− Uσδ(x) =

∫
∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy+

+

∫
S∗
[Π(y, x, σ){T (∂y, n)U(y)− gδ(y)}+ {T (∂y, n)Π(y, x, σ)}∗(U(y)− fδ(y))]dsy =

=I1 + I2.

Taking into account Theorem 3.3, we obtain for m = 2n+ 1, n > 1,

|I1| = MC1(ρ)σ
m+1 exp(−σγρ)

∫
∂Dρ

dsy
rm

,

and for m = 2n, n > 1

|I1| = MC2(ρ)σ
m exp(−σγρ)

∫
∂Dρ

dsy
rm

.

Let us consider |I2| :

|I2| =
∫
S∗

(|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|) (|T (∂y, n)U(y)− gδ(y)|+ |U(y)− fδ(y)|) dsy.

Taking into account Theorem 3.1 and condition (26), we obtain for m = 2n+ 1, n > 1

|I2| = C̃1(ρ)σ
m+1δ exp(−σγρ + σRewρ

0)

∫
∂Dρ

dsy
rm

and for m = 2n, n > 1,

|I2| = C̃2(ρ)σ
mδ exp(−σγρ + σRewρ

0)

∫
∂Dρ

dsy
rm

.
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Therefore, from

σ =
1

Rρ
ln

M

δ
, Rρ = max

y∈S
Reωρ

0 .

The theorem is proved.

Corollary 1. The limits

lim
σ→∞

Uσ(x) = U(x), lim
δ→0

Uσδ(x) = U(x)

hold uniformly on any compact set from Dρ.
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Задача Коши для уравнения теории упругости
Олимджан И.Махмудов

Икбол Э.Ниёзов
Самаркандский государственный университет

Самарканд, Узбекистан

Аннотация. Рассматривается задача об аналитическом продолжении решения системы теории
упругости в область по значениям решения и его напряжений на части границы этой области, т. е.
задача Коши.

Ключевые слова: задача Коши, теория упругости, эллиптическая система, некорректно постав-
ленная задача, матрица Карлемана, регуляризация.
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