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Abstract. We define a set of polynomial difference operators which allows us to solve the summation
problem and describe the space of polynomial solutions for these operators in equations with the polyno-
mial right-hand side. The criterion describing these polynomial difference operators was obtained. The
theorem describing the space of polynomial solutions for the operators was proved.
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1. Introduction and preliminaries

The summation of functions is one of the main problems of the theory of finite differences,
and the answer was given in the famous Euler–Maclaurin formula obtained by Euler in 1733 and
independently by Maclaurin in 1738 (see [6, 7, 21]).

In [1,2,13] the problem of rational summation was studied, that is, finding sums of the form

S(x) =

x∑
t=0

φ(t), (1)

where the function φ(t) is a rational function. The solution to the problem consists in finding
a solution in symbolic form, that is, explicitly in the form of a mathematical function (formula)
and is called the indefined summation problem (see also [8, 9]).

In the definite summation problem, the function φ can depend not only on the summation

index, but also on the summation boundary x, that is, S(x) =
x∑

t=0
φ(t, x) (see, for example,

[11,20]).
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The problem of indefinite summation is reduced to solving the so-called (see [8,9]) telescopic
equation — the inhomogeneous difference equation

(δ − 1)f(x) = φ(x), (2)

where δ is a shift operator: δf(x) := f(x+ 1).
By analogy with the problem of integrating functions, the solution f(x) to equation (2)

is called the discrete antiderivative of the function φ(x). If f(x) is the discrete antiderivative
function φ(x), then the required sum is

S(x) = f(x+ 1)− f(0). (3)

Formula (3) is called the discrete analogue of the Newton–Leibniz formula.
Euler’s approach to the problem of finding a discrete antiderivative is based on the operator

equality δ = eD, which allows us to write (2) in the form

Df(x) =

[
D

eD − 1

]
φ(x),

where D is a differentiation operator.
The expression in square brackets on the right-hand side of the last equality is called the

Todd operator and is understood as follows:
[

D

eD − 1

]
=

∞∑
m=0

Bm

m!
Dm, where bm are Bernoulli

numbers (see, for example, [3, 6, 10,17,19]). Thus, we obtain the Euler–Maclaurin formula

x∑
t=0

φ(t) =

x+1∫
0

φ(t)dt+
∞∑

m=1

Bm

m!

[
φ(m−1)(x+ 1)− φ(m−1)(0)

]
,

in which the required sum is expressed in terms of the derivatives and the integral of the func-
tion φ(t).

Remark 1. In the summation problem we can use other operators instead of δ−1. For example,
we can consider the operator (δ − 1)(δ − 2) and solve the difference equation

f(x+ 2)− 3f(x+ 1) + 2f(x) = φ(x), x = 0, 1, 2, . . . .

If a solution to this equation is found then the sum S(x) can be written as S(x) = f(x + 2) −
2f(x+1)− [f(1)−2f(0)]. For n = 1 polynomial difference operators P (δ) = c0+c1δ+ · · ·+cmδm,
where c0 + · · ·+ cm = 0, has a similar property (effect), see Theorem 2.3.

Euler’s approach to the problem of indefinite summation of a function φ(t) = φ(t1, . . . , tn) of
several variables suggests that you need to find a multidimensional analogue of (2), and compute
a discrete antiderivative to obtain an analogue of the Newton-Leibniz formula (3). In Section 2
we implemented it to sum a function over the integer points in an n-dimensional parallelepiped
(Lemma 2.2 and Theorem 2.3).

Bernoulli numbers and polynomials play an important role in classical one-dimensional sum-
mation theory and various branches of combinatorial analysis. Bernoulli polynomials are solu-
tions of difference equation (2) with polynomial right-hand side φ(t) = tµ:

Bµ(t+ 1)−Bµ(t) = µtµ−1.

In the third section of this paper, we use spaces of polynomial solutions (generalized Bernoulli
polynomials) to sum functions of several discrete arguments.
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2. Operators with a summing effect and a discrete analogue
of the Newton–Leibniz formula

To formulate the main result of the paper (Theorem 2.3), we need the following definitions and
notations. For a given function of several discrete arguments φ(t) = φ(t1, . . . , tn), we consider the
problem of finding the sum of its values over all integer points of an n-dimensional parallelepiped
with a "variable" vertex x ∈ Zn

>:

Π(x) = {t ∈ Rn
> : 0 6 tj 6 xj , j = 1, . . . , n}. (4)

This sum can be written as follows:

S(x) =

x1∑
t1=0

· · ·
xn∑

tn=0

φ(t1, . . . , tn) =
∑

t∈Π(x)

φ(t). (5)

To solve the summation problem means to find a formula expressing (5) in terms of a (finite)
number of terms independent of x.

Operating on the complex-valued functions f(x) of integer arguments x = (x1, . . . , xn), we
define the shift operator δj with respect to the j-th variable

δjf(x) = f(x1, . . . , xj−1, xj + 1, xj+1, . . . , xn), δ
αj

j = δj ◦ · · · ◦ δj︸ ︷︷ ︸
αj times

,

where δ0j is the identity operator. Some properties of the shift operator were studied in [12].
Denote P (δ) =

∑
06α6l

cαδ
α — polynomial difference operator with constant coefficients cα,

α = (α1, . . . , αn), l = (l1, . . . , ln) ∈ Zn
>, and the inequality l > α means lj > αj , j = 1, . . . , n.

We will also use the notation l ̸> α, if there is at least one j0 for which lj0 < αj0 .
The difference equation for the unknown function f(x) is written as follows:

P (δ)f(x) = φ(x), x ∈ Zn
>. (6)

Definition 2.1. A polynomial difference operator P (δ) of the difference equation (6) is called
an operator with a summing effect if the sum (5) can be represented through solutions f(x) to
this equation at finite set of points regardlessly of the numbers of summands in S(x).

In this case, naturally, f(x) can be called the discrete antiderivative of the function φ(x), and
the corresponding expression solving the summation problem (5) is a discrete analogue of the
Newton–Leibniz formula.

For any point x, we define the projection operator πj along the xj axis:

πjx := (x1, . . . , xj−1, 0, xj+1, . . . , xn)

and define its action: πjf(x) := f(πjx).
Let P(A) be the power set of A and V := P({1, . . . , n}), J = {j1, . . . , jk} ∈ V . If we

denote πJ = πj1 ◦ . . . ◦ πjk , then the set of vertices of the parallelepiped Π(x) can be written as
{πJx, J ∈ V }. Note that π∅x = x.

Lemma 2.2. In (6) let P (δ) = R(δ)(δ− I), where R(δ) is a polynomial operator. Then for any
solution f of (6), the discrete analogue of the Newton–Leibniz formula is∑

t∈Π(x)

φ(t) = R(δ)
∑
J∈V

(−1)#Jf(πJ(x+ I)),

where #J is a number of elements of the set J .

– 155 –



Andrey A.Grigoriev . . . Summation of Functions and Polynomial Solutionsto a Multidimensional . . .

Proof. Since

xj∑
tj=0

(δj − 1)f(t) =

xj∑
tj=0

(δj − 1)δ
tj
j πjf(t) = (δj − 1)

( xj∑
tj=0

δ
tj
j

)
πjf(t) =

= (δj − 1)
δ
xj+1
j − 1

δj − 1
πjf(t) = (δ

xj+1
j − 1)πjf(t),

we get ∑
06t6x

φ(t) = R(δ)

n∏
j=1

(δ
xj+1
j − 1)πjf(t) = R(δ)

n∏
j=1

(δ
xj+1
j πj − πj)f(t),

hense, since πj and δk permute for j ̸= k, we have

n∏
j=1

(δ
xj+1
j πj − πj) =

∑
J∈V

(−1)#Jδ
xJ+I

J
πJπJ ,

where J = {1, . . . , n}\J, δ = (δ1, · · · , δn).
Thus we conclude that∑

t∈Π(x)

φ(t) = R(δ)
n∏

j=1

(δ
xj+1
j πj − πj)f(t) = R(δ)

∑
J∈V

(−1)#Jf(πJ(x+ I)).

Note that the case R(δ) ≡ 1 was proved in [18].
We see that in Lemma 2.2 finding the value of (5) is reduced to calculating the values of the

function f(x) at the vertices of the parallelepiped Π(x+ I), the number of which is 2n and does
not depend on x. Thus, the operator P (δ) = R(δ)(δ − I) has a summing effect.

We denote ∂ = (∂1, . . . , ∂n), where ∂j is the differenctiation operators with respect to the
j-th variable, j = 1, . . . , n, and ∂µ = ∂µ1

1 . . . ∂µn
n .

Theorem 2.3. In the summation problem (5), the polynomial difference operators

P (δ) = R(δ)

n∏
j=1

(δj − 1) = R(δ)(δ − I)

and only they have a summing effect, where R(δ) is a polynomial.

Proof. We transform (5), assuming that f(t) is a solution to the difference equation (6) and using
the equality f(t) = δtf(0) yields

S(x) =
∑

t∈Π(x)

φ(t) =
∑

t∈Π(x)

P (δ)f(t) =
∑

t∈Π(x)

δtP (δ)f(0). (7)

Next, we use the multiple geometric progression formula
∑

t∈Π(x)

δt =
δx+I − I

δ − I
and expand the

characteristic polynomial in a Taylor series at the point I = (1, 1, . . . , 1): P (z) =
∑

06α6l

∂αP (I)
α! (z−

I)α. Then we transform the resulting expression

P (z) =
∑
α>0
α ̸>I

∂αP (I)

α!
(z − I)α + (z − I)

∑
I6α6l

∂αP (I)

α!
(z − I)α−I
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and to express (5) as

S(x) =

∑
α>0
α ̸>I

∂αP (I)

α!
(δ − I)α

 ∑
t∈Π(x)

f(t)+

+

 ∑
I6α6l

∂αP (I)

α!
(δ − I)α−I

(
δx+I − I

)
f(0), (8)

where δx+I − I = (δx1+1
1 − 1) · · · (δxn+1

n − 1).
Note that the number of summands in the second sum of the right-hand side of (8) does not

depend on numbers of summands in S(x), but in the first sum it does. If P (δ) = R(δ)(δ − I),
then the first term is absent and P (δ) has a summing effect.

On the other hand, if P (δ) has a summing effect, then
∑
α>0
α ̸>I

∂αP (I)

α!
(δ − I)α ≡ 0, but then

P (δ) =
∑

I6α6l

∂αP (I)

α!
(δ − I)α = (δ − I)R(δ),

where R(δ) =
∑

I6α6l

∂αP (I)

α!
(δ − I)α−I .

Example. Find the sum

S(x1, x2) =

x1∑
t1=0

x2∑
t2=0

φ(t1, t2)

for the function
φ(t1, t2) =

1

(t1 + t2 + 1)(t1 + t2 + 2)(t1 + t2 + 3)
.

We note that the function
f(t1, t2) =

1

2

1

t1 + t2 + 1

is a solution to the difference equation (δ1 − 1)(δ2 − 1)f(t) = φ(t). Since P (δ) = (δ1 − 1)(δ2 − 1),
R ≡ 1, the sum is

S(x) = f(x1 + 1, x2 + 1)− f(x1 + 1, 0)− f(0, x2 + 1) + f(0, 0) =

=
1

2

(
1

x1 + x2 + 3
− 1

x1 + 2
− 1

x2 + 2
+ 1

)
.

3. Polynomial solutions to a multidimensional difference
equation

Bernoulli numbers and polynomials play an important role in the classical one-dimensional
summation theory. Bernoulli polynomials are solutions of the difference equation (2) with the
polynomial right-hand side φ(t) = tµ−1:

1

µ
(Bµ(t+ 1)−Bµ(t)) = tµ−1. (9)
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Bernoulli numbers and polynomials are well studied (see, for example, [6, 19]) and have nu-
merous applications in various branches of mathematics (see [5, 15,16]).

One of the options for finding the Bernoulli polynomials is to use the operator equality δ = eD.
From (9) we find the formula for the Bernoulli polynomials

Bµ(t) =
µ

δ − 1
tµ−1 =

µ

eD − 1
tµ−1,

whence we get

Bµ(t) =
D

eD − 1
tµ, (10)

where
D

eD − 1
=

∞∑
ν=0

Bν
Dν

ν!
is a differential operator of infinite order, Bν = Bν(0) are Bernoulli

numbers.
The action of the operator

D

eD − 1
on polynomials is well defined. We obtain a formula for

finding the Bernoulli polynomials

Bµ(t) =

µ∑
ν=0

Bν

ν!
Dνtµ.

Remark. The above scheme for finding the Bernoulli polynomials can be viewed as a method
for finding a particular solution of the equation (2) in the case when the right-hand side of φ(t)
is a polynomial.

We are interested in computing polynomial solutions to difference equation (6) with poly-
nomial right-hand sides. In this case, without loss of generality, we can consider the case
φ(t) = tµ = tµ1

1 . . . tµn
n . In addition, we are interested in polynomial difference operators P (δ)

with a summing effect, which, by virtue of Theorem 2.3, can be written in the form

P (δ) = R(δ)

n∏
j=1

(δj − 1)kj , (11)

where R(δ) is a polynomial difference operator with constant coefficients, R(I) ̸= 0.
We consider the difference equation

R(δ)
n∏

j=1

(δj − 1)kjf(t) = tµ, t ∈ Zn
>, (12)

and find its particular polynomial solutions by analogy with the one-dimensional case, that is,
we use the operator equalities δj = eDj , j = 1, 2, . . . , n.

The function Td(ξ) =
1

R(eξ)

n∏
j=1

ξ
kj

j

(eξj − 1)kj
is holomorphic at the point ξ = 0 and therefore

admits its expansion in some neighborhood of zero as a power series

Td(ξ) =
∑
m>0

b̃k,m
m!

ξm. (13)

Substituting the differentiation operator Dj into (13) in place of the variable ξj , we define the
differential operator of infinite order :

Td(D) =
∑
m>0

b̃k,m
m!

Dm. (14)
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For k1 = . . . = kn = 1 and R(δ) ≡ 1, the operator defined in (14) is called the Todd operator (see,
for example, [4, 14]). In the general case, it is natural to call it the generalized Todd operator,
and the numbers b̃k,m — generalized Bernoulli numbers. Any polynomial solution to equation
(12) is called the Bernoulli polynomial associated with the polynomial difference operator (11).

The case R(δ) ≡ 1 was considered in [18].
We set µ(m) = µ(µ− 1)(µ− 2) · · · (µ− (m− 1)).

Theorem 3.1. Let P (δ) be an operator with summing effect of the form (11). Then the set of
Bernoulli polynomials associated with this operator is described by the formula

f(x) =
∑

06m6µ

b̃k,m
m!

µ(m)xµ+k−m

(µ+ k −m)(k)
+

n∑
i=1

ki∑
mi=1

xki−mi
i qmi(x1, . . . [i] . . . , xn), (15)

where qmi are arbitrary polynomials in (n− 1)-th variables x1, . . . , [i], . . . , xn.

Proof. From the difference equation (12), using δj = eDj , j = 1, 2, . . . , n, and the definition of
the Todd operator, we obtain

Dkf(x) = Td(D)xµ =
∑

06m6µ

b̃k,m
m!

Dmxµ =
∑

06m6µ

b̃k,m
m!

µ(m)xµ−m. (16)

Integrating (16) kj times over the variable xj for all j = 1, . . . , n, we get (15).

Example. As an illustration of the application of (15), we present the solution of the difference
equation

(δ1 − 1)(δ2 − 1)f(x, y) = xy. (17)

We have P (δ) = (δ1 − 1)(δ2 − 1), R ≡ 1, (µ1, µ2) = (1, 1), (k1, k2) = (1, 1), and f(x, y) =

= B̃11,11(x) + Q(x) + S(y), where B̃11,11(x) =
b̃11,00
2 · 2

x2y2 +
b̃11.01
2 · 1

x2y +
b̃11.10
1 · 2

xy2 +
b̃11,11
1 · 1

xy

is the generalized Bernoulli polynomial, b̃11,m are the expansion coefficients of the generating
function

D1D2

(eD1 − 1)(eD2 − 1)

into the Taylor series at the point D = 0; Q(x), S(y) are arbitrary polynomials in one variable.

Calculations give: b̃11.00 = 1, b̃11.01 = −1

2
, b̃11.10 = −1

2
, b̃11,11 =

1

4
.

Thus, any polynomial solution to (17) has the form

f(x, y) =
1

4
(x2y2 − x2y − xy2 + xy) +Q(x) + S(y).

The second author is supported by the Russian Science Foundation no. 20-11-20117.
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Сумма функций и полиномиальные решения
многомерного разностного уравнения
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Аннотация. Определен набор полиномиальных разностных операторов, позволяющий решить за-
дачу суммирования, и описано пространство полиномиальных решений этих операторов в урав-
нениях с полиномиальной правой частью. Получен критерий, описывающий эти полиномиальные
разностные операторы. Доказана теорема, описывающая пространство полиномиальных решений
для операторов.

Ключевые слова: числа Бернулли, многочлены Бернулли, задача суммирования, многомерное
разностное уравнение, формула Эйлера–Маклорена, оператор Тодда.
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