
Journal of Siberian Federal University. Mathematics & Physics 2023, 16(2), 239–244

EDN: PCXYNS
УДК 517.55

On Multiple Zeros of Entire Functions of Finite
Order of Growth

Alexander M.Kytmanov∗

Olga V.Khodos†
Siberian Federal University

Krasnoyarsk, Russian Federation

Received 10.07.2022, received in revised form 15.09.2022, accepted 20.10.2022

Abstract. The article is devoted to determination of the number of multiple zeros of entire functions
of finite order of growth.
Keywords: entire function, multiple zero.

Citation: A.M.Kytmanov, O.V. Khodos, On Multiple Zeros of Entire Functions of Finite
Order of Growth, J. Sib. Fed. Univ. Math. Phys., 2023, 16(2), 239–244. EDN: PCXYNS.

Our work is devoted to the problem of multiple zeros of entire functions. For polynomials,
this question is a classical problem, and its solution is included in algebra textbooks (see, for
example, [1]).

Recall the statement. Consider a polynomial P (z) of degree n. Denote by Sj the power sums
of the roots of a polynomial of degree j.

Theorem 1. In order for the polynomial P (z) to have multiple roots, it is necessary and sufficient
that

D(P ) = a2n−2
0

∣∣∣∣∣∣∣∣
n S1 S2 . . . Sn−1

S1 S2 S3 . . . Sn

. . . . . . . . . . . . . . .
Sn−1 Sn Sn+1 . . . S2n−2

∣∣∣∣∣∣∣∣ = 0.

Here a0 is the leading coefficient of the polynomial P (z).

The determinant of D(P ) is called the discriminant of the polynomial P (z).
For entire functions, the question of multiple zeros needs to be clarified. An entire function

may have no zeros at all, like, for example, the function ez, or an infinite number of zeros like
sin z. Therefore, we have to consider various options here.

1. Let an entire function have the form

f(z) =
∞∑
k=0

ak z
k, f(0) = a0 = 1. (1)

The following statement is true ( [2], corollary 1.4.1).

Theorem 2. In order for the function f(z) to be an entire function of finite order k0 that has
no zeros, it is necessary and sufficient that the determinant

D(P ) = a2n−2
0

∣∣∣∣∣∣∣∣
a1 a0 0 . . . 0
2a2 a1 a0 . . . 0
. . . . . . . . . . . . . . .
kak ak−1 ak−2 . . . a1

∣∣∣∣∣∣∣∣ = 0 for all k > k0, (2)
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where k0 is the minimal number with this property.

2. Consider an entire function of finite order of growth of the form (1). Find the order ρ of
the function f . To do this, we apply the formula ( [3], ch. 7)

lim
n→∞

ln (1/|an|)
n lnn

=
1

ρ
.

If ρ is a fractional number, then the function f(z) is known to have an infinite number of zeros
(see [3]). First we will assume that ρ is an integer.

Let us take a sequence of complex numbers s0, s1, s2, . . . . It defines an infinite Hankel
matrix

S =


s0 s1 s2 . . .
s1 s2 s3 . . .
s2 s3 s4 . . .
. . . . . . . . . . . .

 . (3)

The consecutive main minors of the matrix S are denoted by D0, D1, D2, . . . . In addition,
we set D−1 = 1.

If for every p ∈ N there exists a minor of the matrix S of order p that is not equal to zero,
then the matrix has infinite rank. If, starting from some p, all minors of larger orders are zero,
then the matrix S has finite rank. The smallest such p is called the rank of the matrix.

We recall a statement regarding matrices S of finite rank p ( [4], ch. 16, Sec. 10).

Theorem 3. If an infinite Hankel matrix has finite rank p, then the minor Dp−1 ̸= 0.

Thanks to the properties of entire functions, the power sums of σk

σk =
∞∑

n=1

1

αk
n

, k ∈ N

are absolutely convergent series for k > ρ. Here, the zeros of the entire function f(z) are denoted
by αn. We will arrange them in ascending order of modules 0 < |α1| 6 |α2| 6 . . . 6 |αn| 6. . . .

The smallest such k is denoted by k0 and we denote sj = σ2k0+j , j = 0, 1, . . .. Consider an
infinite Hankel matrix S of the form (3). In the monograph ( [2], Theorem 1.4.5) the following
statement is proved

Theorem 4. In order for the function f to have a finite number of zeros, it is necessary and
sufficient that the rank of the matrix S is finite, while the number of different zeros of f is equal
to the rank of S.

In this case, we can write the function f as follows:

f(z) = e−Q(z) P (z), (4)

where Q(z) is a polynomial of degree p = ρ, and P (z) is a polynomial of some degree m

P (z) =

m∑
k=0

bk z
k = 1 + b1 z + . . .+ bm zm.

The number m is the number of roots of the function f(z) together with their multiplicities.
To find the polynomial P (z), one needs to factorize the function f(z) (see Sec. 1.6.5 from [2]).

Take the logarithm of both parts in the formula (4). Let
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ln f(z) =

∞∑
k=1

ãk z
k = ã1 z + . . .+ ãn z

n + . . . ,

lnP (z) =
∞∑
k=1

b̃k z
k = b̃1 z + . . .+ b̃n z

n + . . . .

The coefficients of ãn can be found by the following formula (see [2], Lemma 1.2.1)

ãn =
(−1)n−1

n

∣∣∣∣∣∣∣∣∣∣
a1 1 0 . . . 0
2a2 a1 1 . . . 0
3a3 a2 a1 . . . 0
. . . . . . . . . . . . . . .
nan an−1 an−2 . . . a1

∣∣∣∣∣∣∣∣∣∣
= 0 for all n > 1,

The coefficients bk are found from the theorem ( [2], Theorem 1.6.4, [6]).

Theorem 5. The formulas are valid

bk =

−

∣∣∣∣∣∣∣∣
(m+ p) ãm+p . . . (m+ p+ 1) ãm+p+1 . . . (p+ 1) ãp+1

(m+ p+ 1) ãm+p+1 . . . (m+ p+ 2) ãm+p+2 . . . (p+ 2) ãp+2

. . . . . . . . . . . . . . .
(2m+ p− 1) ã2m+p−1 . . . (2m+ p) ã2m+p . . . (p+m) ãp+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m+ p) ãm+p . . . (p+ 1) ãp+1

(m+ p+ 1) ãm+p+1 . . . (p+ 2) ãp+2

. . . . . . . . .
(2m+ p− 1) ã2m+p−1 . . . (p+m) ãp+m

∣∣∣∣∣∣∣∣
,

k = 1, . . . ,m. In the numerator k, the th column is replaced by the column
−(m+ p+ 1) ãm+p+1

−(m+ p+ 2) ãm+p+2

. . .
−(2m+ p) ã2m+p


Here m this is the smallest k for which bk is different from zero.

Corollary 1. A function f(z) has multiple roots if and only if the polynomial P (z) has multiple
roots.

Let us give an example.
Consider the function

f(z) = 1 + 2z +

∞∑
k=2

(
2k

k!
− 2k−2

(k − 2)!

)
zk = 1 + 2z + z2 − 2z3

3
− 4z4

3
− 16z5

15
+ . . . .

It is not difficult to calculate that the order of growth of this function is ρ = 1.
By Lemma 1.2.1 of [2], the power sums of Sj with even numbers are 2, with odd numbers

are 0. Therefore, the rank of the Hankel matrix is S

S =


2 0 2 . . .
0 2 0 . . .
2 0 2 . . .
. . . . . . . . . . . .


is equal to 2.
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From Theorem 5 and Lemma 1.2.1 from [2] we get

ã2 =
−1

2

∣∣∣∣ 2 1
2 2

∣∣∣∣ = −1,

ã3 =
1

3

∣∣∣∣∣∣
2 1 0
2 2 1
−2 1 2

∣∣∣∣∣∣ = 0,

ã4 =
−1

4

∣∣∣∣∣∣∣∣
2 1 0 0
2 2 1 0
−2 1 2 1
− 16

3 −2
3 1 2

∣∣∣∣∣∣∣∣ = −1

2
,

ã5 =
1

5

∣∣∣∣∣∣∣∣∣∣

2 1 0 0 0
2 2 1 0 0
−2 1 2 1 0
− 16

3 −2
3 1 2 1

− 16
3 −4

3 − 2
3 1 2

∣∣∣∣∣∣∣∣∣∣
= 0.

From here we find

b1 = −

∣∣∣∣ 4ã4 2ã2
5ã5 3ã3

∣∣∣∣∣∣∣∣ 3ã3 2ã2
4ã4 3ã3

∣∣∣∣ = −

∣∣∣∣ −2 −2
0 0

∣∣∣∣∣∣∣∣ 0 −2
−2 0

∣∣∣∣ = 0,

b2 = −

∣∣∣∣ 3ã3 4ã4
4ã4 5ã5

∣∣∣∣∣∣∣∣ 3ã3 2ã2
4ã4 3ã3

∣∣∣∣ = −

∣∣∣∣ 0 −2
−2 0

∣∣∣∣∣∣∣∣ 0 −2
−2 0

∣∣∣∣ = −1.

The remaining bk is zero. Therefore, the polynomial P (z) is equal to

P (z) = 1− z2.

It has two roots ±1 and has no multiple roots. Therefore, the function f(z) has no multiple
roots.

3. Let an function f(z) of the form (1) have an infinite number of zeros, then the rank of the
matrix S (3) is infinite. Multiple zeros can only have finite multiplicities. Therefore, if f(z) has
an infinite number of zeros, then it has an infinite number of distinct zeros.

Multiple zeros are the common zeros of the function and its derivative, i.e., the zeros of the
resultant. So the question is whether the function and its derivative have common zeros.

The approach to determining the resultant of two integer functions is considered in a number
of papers [5–7], but for arbitrary entire functions of finite growth order it is not yet known how
to find the common zeros of the function and its derivative.

Let an entire function f(z) have the order ρ. Due to the properties of entire functions, power
sums σk

σk =
∞∑

n=1

1

αk
n

, k ∈ N,

are absolutely convergent series for k > ρ. Here, as before, αn are zeros of the entire function
f(z). We will arrange them in ascending order of modules 0 < |α1| 6 |α2| 6 . . . 6 |αn| 6. . . .
The smallest such k is denoted by k0. We assume that k0 is an integer.
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We will introduce, as in the previous section, power sums sj = σ2k0+j , j = 0, 1, . . . and an
infinite Hankel matrix S of the form (3). Its rank is infinite.

Consider its submatrices of the order m:

Sm =


s0 s1 s2 . . . sm
s1 s2 s3 . . . sm+1

s2 s3 s4 . . . sm+2

. . . . . . . . . . . . . . .
sm sm+1 sm+2 . . . s2m+1

 . (5)

We introduce finite power sums

σm
k =

m∑
n=1

1

αk
n

, k ∈ N,

smj = σm
2k0+j and matrices

Sm
m =


sm0 sm1 sm2 . . . smm
sm1 sm2 sm3 . . . smm+1

sm2 sm3 sm4 . . . smm+2

. . . . . . . . . . . . . . .
smm smm+1 smm+2 . . . sm2m+1

 . (6)

Consider an infinite matrix

A =


1

α
k0
1

1

α
k0
2

1

α
k0
3

. . .

1

α
k0+1
1

1

α
k0+1
2

1

α
k0+1
3

. . .

1

α
k0+2
1

1

α
k0+2
2

1

α
k0+3
3

. . .

. . . . . . . . . . . .

 . (7)

Then we have
S = A ·A′,

where A′ is the transpose of the matrix A. If the function f has multiple zeros, then the matrix
A has the same columns.

Denote by Am the main submatrix of the matrix A of order m. Then Sm
m = Am ·A′

m. If the
function f(z) has multiple zeros, then detAm = 0, starting from some m. Since the matrix Am

is a Vandermonde matrix up to a nonzero multiplier, the opposite is also true: if its determinant
is 0, at least two of its columns coincide.

Thus, the next statement is true.

Lemma 1. In order for the function f(z) to have multiple zeros, it is necessary and sufficient
that detAm = 0 starting from some m.

Since Sm
m = Am ·A′

m, the following statement is true

Proposition 1. In order for the function f(z) to have multiple zeros, it is necessary and suffi-
cient that detSm

m = 0 starting from some m.

In order to find detSm
m , we first need to factorize the function f (see point 2). Suppose that

after factorization, the function f(z) takes the form

f(z) =

∞∏
j=1

(
1− z

αj

)
.

– 243 –



Alexander M.Kytmanov, Olga V.Khodos On Multiple Zeros of an Entire Function of Finite . . .

Thus, the function f(z) is a function of genus zero (or an entire function of the first order of
growth of minimal type ( [3], Chapter 7). In this case, the series

∞∑
j=0

1

αj

absolutely converges. Then the coefficients ak of the function f(z) take the form

ak =
∞∑
k=0

(−1)k
1

αj1 · · ·αjk

.
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Кратные нули целых функций конечного порядка роста
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Аннотация. Статья посвящена определению числа кратных нулей целой функции конечного по-
рядка роста.
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